1
|
Młotkowska P, Misztal T, Kowalczyk P, Marciniak E. Effect of kynurenic acid on enzymatic activity of the DNA base excision repair pathway in specific areas of the sheep brain. Sci Rep 2024; 14:15506. [PMID: 38969725 PMCID: PMC11226655 DOI: 10.1038/s41598-024-66094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Relatively low levels of antioxidant enzymes coupled with high oxygen metabolism result in the formation of numerous oxidative DNA damages in the tissues of the central nervous system. Recently, kynurenic acid (KYNA), knowns for its neuroprotective properties, has gained increasing attention in this context. Therefore, our hypothesis assumed that increased KYNA levels in the brain would positively influence mRNA expression of selected enzymes of the base excision repair pathway as well as enhance their efficiency in excising damaged nucleobases in specific areas of the sheep brain. The study was conducted on adult anestrous sheep (n = 18), in which two different doses of KYNA (20 and 100 μg/day) were infused into the third brain ventricle for three days. Molecular and biochemical analysis included the hypothalamus (preoptic and mediol-basal areas), hippocampus (CA3 field) and amygdala (central amygdaloid nucleus), dissected from the brain of sheep euthanized immediately after the last infusion. The results revealed a significant increase P < 0.001) in the relative mRNA abundance of N-methylpurine DNA glycosylase (MPG) following administration of both dose of KYNA across all examined tissues. The transcription of thymine-DNA glycosylase (TDG) increased significantly (P < 0.001) in all tissues in response to the lower KYNA dose compared to the control group. Moreover, 8-oxoguanine (8-oxoG) DNA glycosylase (OGG1) mRNA levels were also higher in both animal groups (P < 0.001). In addition, in the hypothalamus, hippocampus and amygdala, AP endonuclease 1 (APE1) mRNA expression increased under both doses of KYNA. Moreover, the both dose of KYNA significantly stimulated the efficiency of 8-oxoG excision in hypothalamus and amygdala (P < 0.05-0.001). The lower and higher doses of KYNA significantly influenced the effectiveness of εA and εC in all structures (P < 0.01-0.001). In conclusion, the favorable effect of KYNA in the brain may include the protection of genetic material in nerve and glial cells by stimulating the expression and efficiency of BER pathway enzymes.
Collapse
Affiliation(s)
- Patrycja Młotkowska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110, Jabłonna, Poland.
| | - Tomasz Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110, Jabłonna, Poland
| | - Paweł Kowalczyk
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110, Jabłonna, Poland
| | - Elżbieta Marciniak
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110, Jabłonna, Poland
| |
Collapse
|
2
|
Linowiecka K, Guz J, Dziaman T, Urbanowska-Domańska O, Zarakowska E, Szpila A, Szpotan J, Skalska-Bugała A, Mijewski P, Siomek-Górecka A, Różalski R, Gackowski D, Oliński R, Foksiński M. The level of active DNA demethylation compounds in leukocytes and urine samples as potential epigenetic biomarkers in breast cancer patients. Sci Rep 2024; 14:6481. [PMID: 38499584 PMCID: PMC10948817 DOI: 10.1038/s41598-024-56326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
The active DNA demethylation process, which involves TET proteins, can affect DNA methylation pattern. TET dependent demethylation results in DNA hypomethylation by oxidation 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) and its derivatives. Moreover, TETs' activity may be upregulated by ascorbate. Given that aberrant DNA methylation of genes implicated in breast carcinogenesis may be involved in tumor progression, we wanted to determine whether breast cancer patients exert changes in the active DNA demethylation process. The study included blood samples from breast cancer patients (n = 74) and healthy subjects (n = 71). We analyzed the expression of genes involved in the active demethylation process (qRT-PCR), and 5-mC and its derivatives level (2D-UPLC MS/MS). The ascorbate level was determined using UPLC-MS. Breast cancer patients had significantly higher TET3 expression level, lower 5-mC and 5-hmC DNA levels. TET3 was significantly increased in luminal B breast cancer patients with expression of hormone receptors. Moreover, the ascorbate level in the plasma of breast cancer patients was decreased with the accompanying increase of sodium-dependent vitamin C transporters (SLC23A1 and SLC23A2). The presented study indicates the role of TET3 in DNA demethylation in breast carcinogenesis.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland.
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland.
| | - Jolanta Guz
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Tomasz Dziaman
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Olga Urbanowska-Domańska
- Department of Oncology, Professor Franciszek Lukaszczyk Oncology Centre, Romanowskiej 2, 85-796, Bydgoszcz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Anna Szpila
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Justyna Szpotan
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Aleksandra Skalska-Bugała
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Paweł Mijewski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Agnieszka Siomek-Górecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Rafał Różalski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Ryszard Oliński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland.
| |
Collapse
|
3
|
Fischer V, Kretschmer M, Germain PL, Kaur J, Mompart-Barrenechea S, Pelczar P, Schürmann D, Schär P, Gapp K. Sperm chromatin accessibility's involvement in the intergenerational effects of stress hormone receptor activation. Transl Psychiatry 2023; 13:378. [PMID: 38065942 PMCID: PMC10709351 DOI: 10.1038/s41398-023-02684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Dexamethasone is a stress hormone receptor agonist used widely in clinics. We and others previously showed that paternal administration of dexamethasone in mice affects the phenotype of their offspring. The substrate of intergenerational transmission of environmentally induced effects often involves changes in sperm RNA, yet other epigenetic modifications in the germline can be affected and are also plausible candidates. First, we tested the involvement of altered sperm RNAs in the transmission of dexamethasone induced phenotypes across generations. We did this by injecting sperm RNA into naïve fertilized oocytes, before performing metabolic and behavioral phenotyping of the offspring. We observed phenotypic changes in discordance with those found in offspring generated by in vitro fertilization using sperm from dexamethasone exposed males. Second, we investigated the effect of dexamethasone on chromatin accessibility using ATAC sequencing and found significant changes at specific genomic features and gene regulatory loci. Employing q-RT-PCR, we show altered expression of a gene in the tissue of offspring affected by accessibility changes in sperm. Third, we establish a correlation between specific DNA modifications and stress hormone receptor activity as a likely contributing factor influencing sperm accessibility. Finally, we independently investigated this dependency by genetically reducing thymine-DNA glycosylase levels and observing concomitant changes at the level of chromatin accessibility and stress hormone receptor activity.
Collapse
Affiliation(s)
- Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Zürich, Switzerland
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Science and Technology, Zürich, Switzerland
- Laboratory of Statistical Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Jasmine Kaur
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Sergio Mompart-Barrenechea
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - David Schürmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Aranda S, Alcaine-Colet A, Ballaré C, Blanco E, Mocavini I, Sparavier A, Vizán P, Borràs E, Sabidó E, Di Croce L. Thymine DNA glycosylase regulates cell-cycle-driven p53 transcriptional control in pluripotent cells. Mol Cell 2023:S1097-2765(23)00517-8. [PMID: 37506700 DOI: 10.1016/j.molcel.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/11/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Cell cycle progression is linked to transcriptome dynamics and variations in the response of pluripotent cells to differentiation cues, mostly through unknown determinants. Here, we characterized the cell-cycle-associated transcriptome and proteome of mouse embryonic stem cells (mESCs) in naive ground state. We found that the thymine DNA glycosylase (TDG) is a cell-cycle-regulated co-factor of the tumor suppressor p53. Furthermore, TDG and p53 co-bind ESC-specific cis-regulatory elements and thereby control transcription of p53-dependent genes during self-renewal. We determined that the dynamic expression of TDG is required to promote the cell-cycle-associated transcriptional heterogeneity. Moreover, we demonstrated that transient depletion of TDG influences cell fate decisions during the early differentiation of mESCs. Our findings reveal an unanticipated role of TDG in promoting molecular heterogeneity during the cell cycle and highlight the central role of protein dynamics for the temporal control of cell fate during development.
Collapse
Affiliation(s)
- Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Anna Alcaine-Colet
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Cecilia Ballaré
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ivano Mocavini
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Pedro Vizán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Blanquerna School of Health Science, Universitat Ramon Llull, Barcelona 08025, Spain
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
5
|
McGregor LA, Deckard CE, Smolen JA, Porter GM, Sczepanski JT. Thymine DNA glycosylase mediates chromatin phase separation in a DNA methylation-dependent manner. J Biol Chem 2023; 299:104907. [PMID: 37307918 PMCID: PMC10404674 DOI: 10.1016/j.jbc.2023.104907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/14/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is an essential enzyme involved in numerous biological pathways, including DNA repair, DNA demethylation, and transcriptional activation. Despite these important functions, the mechanisms surrounding the actions and regulation of TDG are poorly understood. In this study, we demonstrate that TDG induces phase separation of DNA and nucleosome arrays under physiologically relevant conditions in vitro and show that the resulting chromatin droplets exhibited behaviors typical of phase-separated liquids, supporting a liquid-liquid phase separation model. We also provide evidence that TDG has the capacity to form phase-separated condensates in the cell nucleus. The ability of TDG to induce chromatin phase separation is dependent on its intrinsically disordered N- and C-terminal domains, which in isolation, promote the formation of chromatin-containing droplets having distinct physical properties, consistent with their unique mechanistic roles in the phase separation process. Interestingly, DNA methylation alters the phase behavior of the disordered domains of TDG and compromises formation of chromatin condensates by full-length TDG, indicating that DNA methylation regulates the assembly and coalescence of TDG-mediated condensates. Overall, our results shed new light on the formation and physical nature of TDG-mediated chromatin condensates, which have broad implications for the mechanism and regulation of TDG and its associated genomic processes.
Collapse
Affiliation(s)
- Lauren A McGregor
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Charles E Deckard
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Justin A Smolen
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Gabriela M Porter
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
6
|
McGregor LA, Zhu B, Goetz AM, Sczepanski JT. Thymine DNA Glycosylase is an RNA-Binding Protein with High Selectivity for G-Rich Sequences. J Biol Chem 2023; 299:104590. [PMID: 36889585 PMCID: PMC10124917 DOI: 10.1016/j.jbc.2023.104590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is a multifaceted enzyme involved in several critical biological pathways, including transcriptional activation, DNA demethylation, and DNA repair. Recent studies have established regulatory relationships between TDG and RNA, but the molecular interactions underlying these relationships is poorly understood. Herein, we now demonstrate that TDG binds directly to RNA with nanomolar affinity. Using synthetic oligonucleotides of defined length and sequence, we show that TDG has a strong preference for binding G-rich sequences in single-stranded RNA but binds weakly to single-stranded DNA and duplex RNA. TDG also binds tightly to endogenous RNA sequences. Studies with truncated proteins indicate that TDG binds RNA primarily through its structured catalytic domain and that its disordered C-terminal domain plays a key role in regulating TDG's affinity and selectivity for RNA. Finally, we show that RNA competes with DNA for binding to TDG, resulting in inhibition of TDG-mediated excision in the presence of RNA. Together, this work provides support for and insights into a mechanism wherein TDG-mediated processes (e.g., DNA demethylation) are regulated through the direct interactions of TDG with RNA.
Collapse
Affiliation(s)
- Lauren A McGregor
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Baiyu Zhu
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Allison M Goetz
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | | |
Collapse
|
7
|
Functional Relationships between Long Non-Coding RNAs and Estrogen Receptor Alpha: A New Frontier in Hormone-Responsive Breast Cancer Management. Int J Mol Sci 2023; 24:ijms24021145. [PMID: 36674656 PMCID: PMC9863308 DOI: 10.3390/ijms24021145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In the complex and articulated machinery of the human genome, less than 2% of the transcriptome encodes for proteins, while at least 75% is actively transcribed into non-coding RNAs (ncRNAs). Among the non-coding transcripts, those ≥200 nucleotides long (lncRNAs) are receiving growing attention for their involvement in human diseases, particularly cancer. Genomic studies have revealed the multiplicity of processes, including neoplastic transformation and tumor progression, in which lncRNAs are involved by regulating gene expression at epigenetic, transcriptional, and post-transcriptional levels by mechanism(s) that still need to be clarified. In breast cancer, several lncRNAs were identified and demonstrated to have either oncogenic or tumor-suppressive roles. The functional understanding of the mechanisms of lncRNA action in this disease could represent a potential for translational applications, as these molecules may serve as novel biomarkers of clinical use and potential therapeutic targets. This review highlights the relationship between lncRNAs and the principal hallmark of the luminal breast cancer phenotype, estrogen receptor α (ERα), providing an overview of new potential ways to inhibit estrogenic signaling via this nuclear receptor toward escaping resistance to endocrine therapy.
Collapse
|
8
|
Chromatin modifiers – Coordinators of estrogen action. Biomed Pharmacother 2022; 153:113548. [DOI: 10.1016/j.biopha.2022.113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
|
9
|
Wang L, Song K, Yu J, Da LT. Computational investigations on target-site searching and recognition mechanisms by thymine DNA glycosylase during DNA repair process. Acta Biochim Biophys Sin (Shanghai) 2022; 54:796-806. [PMID: 35593467 PMCID: PMC9828053 DOI: 10.3724/abbs.2022050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylase, as one member of DNA repair machineries, plays an essential role in correcting mismatched/damaged DNA nucleotides by cleaving the N-glycosidic bond between the sugar and target nucleobase through the base excision repair (BER) pathways. Efficient corrections of these DNA lesions are critical for maintaining genome integrity and preventing premature aging and cancers. The target-site searching/recognition mechanisms and the subsequent conformational dynamics of DNA glycosylase, however, remain challenging to be characterized using experimental techniques. In this review, we summarize our recent studies of sequential structural changes of thymine DNA glycosylase (TDG) during the DNA repair process, achieved mostly by molecular dynamics (MD) simulations. Computational simulations allow us to reveal atomic-level structural dynamics of TDG as it approaches the target-site, and pinpoint the key structural elements responsible for regulating the translocation of TDG along DNA. Subsequently, upon locating the lesions, TDG adopts a base-flipping mechanism to extrude the mispaired nucleobase into the enzyme active-site. The constructed kinetic network model elucidates six metastable states during the base-extrusion process and suggests an active role of TDG in flipping the intrahelical nucleobase. Finally, the molecular mechanism of product release dynamics after catalysis is also summarized. Taken together, we highlight to what extent the computational simulations advance our knowledge and understanding of the molecular mechanism underlying the conformational dynamics of TDG, as well as the limitations of current theoretical work.
Collapse
Affiliation(s)
- Lingyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Kaiyuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jin Yu
- Department of Physics and AstronomyDepartment of ChemistryNSF-Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCA92697USA
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China,Correspondence address. Tel: +86-21-34207348; E-mail:
| |
Collapse
|
10
|
The Role of Thymine DNA Glycosylase in Transcription, Active DNA Demethylation, and Cancer. Cancers (Basel) 2022; 14:cancers14030765. [PMID: 35159032 PMCID: PMC8833622 DOI: 10.3390/cancers14030765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Thymine DNA Glycosylase (TDG) is a DNA repair protein that plays an important role in gene regulation. Recent studies have shown that TDG interacts with various transcription factors to activate target genes. TDG also functions in a pathway known as active DNA demethylation, which removes 5-mC from DNA and replaces it with unmethylated cytosine. In this review, we summarize the various functions of TDG in gene regulation as well as the physiological relevance of TDG in cancer. Abstract DNA methylation is an essential covalent modification that is required for growth and development. Once considered to be a relatively stable epigenetic mark, many studies have established that DNA methylation is dynamic. The 5-methylcytosine (5-mC) mark can be removed through active DNA demethylation in which 5-mC is converted to an unmodified cytosine through an oxidative pathway coupled to base excision repair (BER). The BER enzyme Thymine DNA Glycosylase (TDG) plays a key role in active DNA demethylation by excising intermediates of 5-mC generated by this process. TDG acts as a key player in transcriptional regulation through its interactions with various nuclear receptors and transcription factors, in addition to its involvement in classical BER and active DNA demethylation, which serve to protect the stability of the genome and epigenome, respectively. Recent animal studies have identified a connection between the loss of Tdg and the onset of tumorigenesis. In this review, we summarize the recent findings on TDG’s function as a transcriptional regulator as well as the physiological relevance of TDG and active DNA demethylation in cancer.
Collapse
|
11
|
Roles of enhancer RNAs in sex hormone-dependent cancers. J Cancer Res Clin Oncol 2022; 148:293-307. [DOI: 10.1007/s00432-021-03886-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022]
|
12
|
Loss of Thymine DNA Glycosylase Causes Dysregulation of Bile Acid Homeostasis and Hepatocellular Carcinoma. Cell Rep 2021; 31:107475. [PMID: 32268085 DOI: 10.1016/j.celrep.2020.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/14/2020] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
Thymine DNA glycosylase (TDG) is a nuclear receptor coactivator that plays an essential role in the maintenance of epigenetic stability in cells. Here, we demonstrate that the conditional deletion of TDG in adult mice results in a male-predominant onset of hepatocellular carcinoma (HCC). TDG loss leads to a prediabetic state, as well as bile acid (BA) accumulation in the liver and serum of male mice. Consistent with these data, TDG deletion led to dysregulation of the farnesoid X receptor (FXR) and small heterodimer partner (SHP) regulatory cascade in the liver. FXR and SHP are tumor suppressors of HCC and play an essential role in BA and glucose homeostasis. These results indicate that TDG functions as a tumor suppressor of HCC by regulating a transcriptional program that protects against the development of glucose intolerance and BA accumulation in the liver.
Collapse
|
13
|
Deckard CE, Sczepanski JT. Reversible chromatin condensation by the DNA repair and demethylation factor thymine DNA glycosylase. Nucleic Acids Res 2021; 49:2450-2459. [PMID: 33733652 PMCID: PMC7969020 DOI: 10.1093/nar/gkab040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
Chromatin structures (and modulators thereof) play a central role in genome organization and function. Herein, we report that thymine DNA glycosylase (TDG), an essential enzyme involved in DNA repair and demethylation, has the capacity to alter chromatin structure directly through its physical interactions with DNA. Using chemically defined nucleosome arrays, we demonstrate that TDG induces decompaction of individual chromatin fibers upon binding and promotes self-association of nucleosome arrays into higher-order oligomeric structures (i.e. condensation). Chromatin condensation is mediated by TDG’s disordered polycationic N-terminal domain, whereas its C-terminal domain antagonizes this process. Furthermore, we demonstrate that TDG-mediated chromatin condensation is reversible by growth arrest and DNA damage 45 alpha (GADD45a), implying that TDG cooperates with its binding partners to dynamically control chromatin architecture. Finally, we show that chromatin condensation by TDG is sensitive to the methylation status of the underlying DNA. This new paradigm for TDG has specific implications for associated processes, such as DNA repair, DNA demethylation, and transcription, and general implications for the role of DNA modification ‘readers’ in controlling chromatin organization.
Collapse
Affiliation(s)
- Charles E Deckard
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
14
|
Tian J, Wang L, Da LT. Atomic resolution of short-range sliding dynamics of thymine DNA glycosylase along DNA minor-groove for lesion recognition. Nucleic Acids Res 2021; 49:1278-1293. [PMID: 33469643 PMCID: PMC7897493 DOI: 10.1093/nar/gkaa1252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Thymine DNA glycosylase (TDG), as a repair enzyme, plays essential roles in maintaining the genome integrity by correcting several mismatched/damaged nucleobases. TDG acquires an efficient strategy to search for the lesions among a vast number of cognate base pairs. Currently, atomic-level details of how TDG translocates along DNA as it approaches the lesion site and the molecular mechanisms of the interplay between TDG and DNA are still elusive. Here, by constructing the Markov state model based on hundreds of molecular dynamics simulations with an integrated simulation time of ∼25 μs, we reveal the rotation-coupled sliding dynamics of TDG along a 9 bp DNA segment containing one G·T mispair. We find that TDG translocates along DNA at a relatively faster rate when distant from the lesion site, but slows down as it approaches the target, accompanied by deeply penetrating into the minor-groove, opening up the mismatched base pair and significantly sculpturing the DNA shape. Moreover, the electrostatic interactions between TDG and DNA are found to be critical for mediating the TDG translocation. Notably, several uncharacterized TDG residues are identified to take part in regulating the conformational switches of TDG occurred in the site-transfer process, which warrants further experimental validations.
Collapse
Affiliation(s)
- Jiaqi Tian
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lingyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
15
|
Ponferrada AR, Orriach JLG, Manso AM, Haro ES, Molina SR, Heredia AF, Lopez MB, Mañas JC. Anaesthesia and cancer: can anaesthetic drugs modify gene expression? Ecancermedicalscience 2020; 14:1080. [PMID: 32863874 PMCID: PMC7434501 DOI: 10.3332/ecancer.2020.1080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 01/21/2023] Open
Abstract
Cancer remains a primary cause of morbidity and mortality worldwide, and its incidence continues to increase. The most common cause of death in cancer patients is tumour recurrence. Surgery is the gold standard in the treatment of most tumours. However, cancer surgery can lead to the release of tumour cells into the systemic circulation. Surgical stress and several perioperative factors have been suggested to boost tumour growth, thereby increasing the risk of metastatic recurrence. Preclinical and clinical studies suggest that anaesthetics and adjuvants administered during the perioperative period may impact cancer recurrence and survival. This document summarises the current evidence regarding the effects of anaesthetic drugs and analgesic techniques on the immune system, systemic inflammatory response and tumour cells, as well as their impact on cancer recurrence.
Collapse
Affiliation(s)
- Aida Raigon Ponferrada
- Institute of Biomedical Research in Malaga [IBIMA], Malaga 29010, Spain
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Jose Luis Guerrero Orriach
- Institute of Biomedical Research in Malaga [IBIMA], Malaga 29010, Spain
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, Malaga 29010, Spain
- Member of COST Action 15204
| | - Alfredo Malo Manso
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Enrique Sepúlveda Haro
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Salvador Romero Molina
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Ana Fontaneda Heredia
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Manolo Baena Lopez
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Jose Cruz Mañas
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| |
Collapse
|
16
|
Feng C, Zhao J, Ji F, Su L, Chen Y, Jiao J. TCF20 dysfunction leads to cortical neurogenesis defects and autistic-like behaviors in mice. EMBO Rep 2020; 21:e49239. [PMID: 32510763 DOI: 10.15252/embr.201949239] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, de novo mutations of transcription factor 20 (TCF20) were found in patients with autism by large-scale exome sequencing. However, how TCF20 modulates brain development and whether its dysfunction causes ASD remain unclear. Here, we show that TCF20 deficits impair neurogenesis in mouse. TCF20 deletion significantly reduces the number of neurons, which leads to abnormal brain functions. Furthermore, transcriptome analysis and ChIP-qPCR reveal that the DNA demethylation factor TDG is a downstream target gene of TCF20. As a nonspecific DNA demethylation factor, TDG potentially affects many genes. Combined TDG ChIP-seq and GO analysis of TCF20 RNA-Seq identifies T-cell factor 4 (TCF-4) as a common target. TDG controls the DNA methylation level in the promoter area of TCF-4, affecting TCF-4 expression and modulating neural differentiation. Overexpression of TDG or TCF-4 rescues the deficient neurogenesis of TCF20 knockdown brains. Together, our data reveal that TCF20 is essential for neurogenesis and we suggest that defects in neurogenesis caused by TCF20 loss are associated with ASD.
Collapse
Affiliation(s)
- Chao Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish College at University of Chinese Academy of Sciences, Beijing, China
| | - Jinyue Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fen Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Libo Su
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Kovács T, Szabó-Meleg E, Ábrahám IM. Estradiol-Induced Epigenetically Mediated Mechanisms and Regulation of Gene Expression. Int J Mol Sci 2020; 21:ijms21093177. [PMID: 32365920 PMCID: PMC7246826 DOI: 10.3390/ijms21093177] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Gonadal hormone 17β-estradiol (E2) and its receptors are key regulators of gene transcription by binding to estrogen responsive elements in the genome. Besides the classical genomic action, E2 regulates gene transcription via the modification of epigenetic marks on DNA and histone proteins. Depending on the reaction partner, liganded estrogen receptor (ER) promotes DNA methylation at the promoter or enhancer regions. In addition, ERs are important regulators of passive and active DNA demethylation. Furthermore, ERs cooperating with different histone modifying enzymes and chromatin remodeling complexes alter gene transcription. In this review, we survey the basic mechanisms and interactions between estrogen receptors and DNA methylation, demethylation and histone modification processes as well as chromatin remodeling complexes. The particular relevance of these mechanisms to physiological processes in memory formation, embryonic development, spermatogenesis and aging as well as in pathophysiological changes in carcinogenesis is also discussed.
Collapse
Affiliation(s)
- Tamás Kovács
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary;
| | - István M. Ábrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary;
- Correspondence:
| |
Collapse
|
18
|
Zheng Y, Liu X. Review: Chromatin organization in plant and animal stem cell maintenance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:173-179. [PMID: 30824049 DOI: 10.1016/j.plantsci.2018.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Stem cells have self-renewal capacity and can differentiate into specialized cell types. Although the origin, form and differentiated destinations of stem cells differ between animals and plants, they are regulated by similar epigenetic mechanisms during differentiation. There is increasing evidence that the three-dimensional (3D) genome organization plays important roles in gene expression regulation during stem cell differentiation. In plant cells, however, studies related to chromatin interaction in gene expression regulation are just beginning and will be a hot topic in the future. In this review, we summarized the similarities of plant and animal stem cell niches and their function in stem cell maintenance, the roles of chromatin conformation changes in regulating gene expression and recent findings about chromatin organization in plant cells at genome-wide and loci-specific levels.
Collapse
Affiliation(s)
- Yan Zheng
- National Marine Data and Information Service, Tianjin 300100, China; Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Rd, Shijiazhuang, 050021 China
| | - Xigang Liu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Rd, Shijiazhuang, 050021 China.
| |
Collapse
|
19
|
Current Advances on the Important Roles of Enhancer RNAs in Gene Regulation and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2405351. [PMID: 29951530 PMCID: PMC5987348 DOI: 10.1155/2018/2405351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 12/27/2022]
Abstract
Revealing the gene regulation networks governing cancer initiation and development is necessary while it remains uncompleted. In recent years, enhancers have been reported to be widely transcribed, resulting in the generation of enhancer RNAs (eRNAs). Previous studies have reported that eRNAs are a subclass of long noncoding RNAs (lncRNAs), which play a critical role in gene regulation and cancer development. These eRNAs can promote enhancer-promoter (E-P) looping formation by binding to other protein factors or propel expression of downstream protein-coding gene. In this review, we have focused on the characteristics of eRNAs and illustrated the biological function and potential mechanism of eRNAs in regulating gene expression and cancer development.
Collapse
|