1
|
Wu X, Xu H, Xia E, Gao L, Hou Y, Sun L, Zhang H, Cheng Y. Histone modifications in the regulation of erythropoiesis. Ann Med 2025; 57:2490824. [PMID: 40214280 PMCID: PMC11995772 DOI: 10.1080/07853890.2025.2490824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
INTRODUCTION The pathogenesis of anemia and other erythroid dysphasia are mains poorly understood, primarily due to limited knowledge about the differentiation processes and regulatory mechanisms governing erythropoiesis. Erythropoiesis is a highly complex and precise biological process, that can be categorized into three distinct stages: early erythropoiesis, terminal erythroid differentiation, and reticulocyte maturation, and this complex process is tightly controlled by multiple regulatory factors. Emerging evidence highlights the crucial role of epigenetic modifications, particularly histone modifications, in regulating erythropoiesis. Methylation and acetylation are two common modification forms that affect genome accessibility by altering the state of chromatin, thereby regulating gene expression during erythropoiesis. DISCUSSION This review systematically examines the roles of histone methylation and acetylation, along with their respective regulatory enzymes, in regulating the development and differentiation of hematopoietic stem/progenitor cells (HSPCs) and erythroid progenitors. Furthermore, we discuss the involvement of these histone modifications in erythroid-specific developmental processes, including hemoglobin switching, chromatin condensation, and enucleation.Conclusions This review summarizes the current understanding of the role of histone modifications in erythropoiesis based on existing research, as a foundation for further research the mechanisms of epigenetic regulatory in erythropoiesis.
Collapse
Affiliation(s)
- Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongdi Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Erxi Xia
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Linru Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Hou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Dolfini D, Imbriano C, Mantovani R. The role(s) of NF-Y in development and differentiation. Cell Death Differ 2025; 32:195-206. [PMID: 39327506 PMCID: PMC11802806 DOI: 10.1038/s41418-024-01388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
NF-Y is a conserved sequence-specific trimeric Transcription Factor -TF- binding to the CCAAT element. We review here the role(s) in development, from pre-implantation embryo to terminally differentiated tissues, by rationalizing and commenting on genetic, genomic, epigenetic and biochemical studies. This effort brings to light the impact of NF-YA isoforms on stemness and differentiation, as well as binding to distal vs promoter proximal sites and connections with selected TFs.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
3
|
Ma W, Arima Y, Umemoto T, Yokomizo T, Xu Y, Miharada K, Tanaka Y, Suda T. Metabolic regulation in erythroid differentiation by systemic ketogenesis in fasted mice. Exp Hematol 2024; 129:104124. [PMID: 37898316 DOI: 10.1016/j.exphem.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Erythroid terminal differentiation and maturation depend on an enormous energy supply. During periods of fasting, ketone bodies from the liver are transported into circulation and utilized as crucial fuel for peripheral tissues. However, the effects of fasting or ketogenesis on erythroid behavior remain unknown. Here, we generated a mouse model with insufficient ketogenesis by conditionally knocking out the gene encoding the hepatocyte-specific ketogenic enzyme hydroxymethylglutary-CoA synthase 2 (Hmgcs2 KO). Intriguingly, erythroid maturation was enhanced with boosted fatty acid synthesis in the bone marrow of a hepatic Hmgcs2 KO mouse under fasting conditions, suggesting that systemic ketogenesis has a profound effect on erythropoiesis. Moreover, we observed significantly activated fatty acid synthesis and mevalonate pathways along with reduced histone acetylation in immature erythrocytes under a less systemic ketogenesis condition. Our findings revealed a new insight into erythroid differentiation, in which metabolic homeostasis and histone acetylation mediated by ketone bodies are essential factors in adaptation toward nutrient deprivation and stressed erythropoiesis.
Collapse
Affiliation(s)
- Wenjuan Ma
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yuichiro Arima
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Terumasa Umemoto
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tomomasa Yokomizo
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yuqing Xu
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Kenichi Miharada
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yosuke Tanaka
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Toshio Suda
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Cancer Science Institute of Singapore, Centre for Translation Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Xiong D, Zhang L, Sun ZJ. Targeting the epigenome to reinvigorate T cells for cancer immunotherapy. Mil Med Res 2023; 10:59. [PMID: 38044445 PMCID: PMC10694991 DOI: 10.1186/s40779-023-00496-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer immunotherapy using immune-checkpoint inhibitors (ICIs) has revolutionized the field of cancer treatment; however, ICI efficacy is constrained by progressive dysfunction of CD8+ tumor-infiltrating lymphocytes (TILs), which is termed T cell exhaustion. This process is driven by diverse extrinsic factors across heterogeneous tumor immune microenvironment (TIME). Simultaneously, tumorigenesis entails robust reshaping of the epigenetic landscape, potentially instigating T cell exhaustion. In this review, we summarize the epigenetic mechanisms governing tumor microenvironmental cues leading to T cell exhaustion, and discuss therapeutic potential of targeting epigenetic regulators for immunotherapies. Finally, we outline conceptual and technical advances in developing potential treatment paradigms involving immunostimulatory agents and epigenetic therapies.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China
| | - Lu Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
5
|
Jackson JT, Nutt SL, McCormack MP. The Haematopoietically-expressed homeobox transcription factor: roles in development, physiology and disease. Front Immunol 2023; 14:1197490. [PMID: 37398663 PMCID: PMC10313424 DOI: 10.3389/fimmu.2023.1197490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Haematopoietically expressed homeobox transcription factor (Hhex) is a transcriptional repressor that is of fundamental importance across species, as evident by its evolutionary conservation spanning fish, amphibians, birds, mice and humans. Indeed, Hhex maintains its vital functions throughout the lifespan of the organism, beginning in the oocyte, through fundamental stages of embryogenesis in the foregut endoderm. The endodermal development driven by Hhex gives rise to endocrine organs such as the pancreas in a process which is likely linked to its role as a risk factor in diabetes and pancreatic disorders. Hhex is also required for the normal development of the bile duct and liver, the latter also importantly being the initial site of haematopoiesis. These haematopoietic origins are governed by Hhex, leading to its crucial later roles in definitive haematopoietic stem cell (HSC) self-renewal, lymphopoiesis and haematological malignancy. Hhex is also necessary for the developing forebrain and thyroid gland, with this reliance on Hhex evident in its role in endocrine disorders later in life including a potential role in Alzheimer's disease. Thus, the roles of Hhex in embryological development throughout evolution appear to be linked to its later roles in a variety of disease processes.
Collapse
Affiliation(s)
- Jacob T. Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthew P. McCormack
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- iCamuno Biotherapeutics, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Gungi A, Saha S, Pal M, Galande S. H4K20me1 plays a dual role in transcriptional regulation of regeneration and axis patterning in Hydra. Life Sci Alliance 2023; 6:e202201619. [PMID: 36944423 PMCID: PMC10031314 DOI: 10.26508/lsa.202201619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
The evolution of the first body axis in the animal kingdom and its extensive ability to regenerate makes Hydra, a Cnidarian, an excellent model system for understanding the underlying epigenetic mechanisms. We identify that monomethyltransferase SETD8 is critical for regeneration in Hydra because of its conserved interaction with β-catenin to fine-tune the associated gene regulatory network. Inhibition of SETD8 activity abolishes head and foot regeneration in Hydra Furthermore, we show that H4K20me1, the histone mark imparted by SETD8, colocalizes with the transcriptional activation machinery locally at the β-catenin-bound TCF/LEF-binding sites on the promoters of head-associated genes, marking an epigenetic activation mode. In contrast, genome-wide analysis of the H4K20me1 occupancy revealed a negative correlation with transcriptional activation. We propose that H4K20me1 acts as a general repressive histone mark in Cnidaria and describe its dichotomous role in transcriptional regulation in Hydra.
Collapse
Affiliation(s)
- Akhila Gungi
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Shagnik Saha
- Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| | - Mrinmoy Pal
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Sanjeev Galande
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
- Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| |
Collapse
|
7
|
Guo B, Friedland SC, Alexander W, Myers JA, Wang W, O'Dell MR, Getman M, Whitney-Miller CL, Agostini-Vulaj D, Huber AR, Mello SS, Vertino PM, Land HK, Steiner LA, Hezel AF. Arid1a mutation suppresses TGF-β signaling and induces cholangiocarcinoma. Cell Rep 2022; 40:111253. [PMID: 36044839 PMCID: PMC9808599 DOI: 10.1016/j.celrep.2022.111253] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023] Open
Abstract
Activating KRAS mutations and functional loss of members of the SWI/SNF complex, including ARID1A, are found together in the primary liver tumor cholangiocarcinoma (CC). How these mutations cooperate to promote CC has not been established. Using murine models of hepatocyte and biliary-specific lineage tracing, we show that Kras and Arid1a mutations drive the formation of CC and tumor precursors from the biliary compartment, which are accelerated by liver inflammation. Using cultured cells, we find that Arid1a loss causes cellular proliferation, escape from cell-cycle control, senescence, and widespread changes in chromatin structure. Notably, we show that the biliary proliferative response elicited by Kras/Arid1a cooperation and tissue injury in CC is caused by failed engagement of the TGF-β-Smad4 tumor suppressor pathway. We thus identify an ARID1A-TGF-β-Smad4 axis as essential in limiting the biliary epithelial response to oncogenic insults, while its loss leads to biliary pre-neoplasia and CC.
Collapse
Affiliation(s)
- Bing Guo
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Scott C Friedland
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - William Alexander
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacquelyn A Myers
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wenjia Wang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael R O'Dell
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael Getman
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christa L Whitney-Miller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Diana Agostini-Vulaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aaron R Huber
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Stephano S Mello
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paula M Vertino
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hartmut K Land
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Laurie A Steiner
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aram F Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
8
|
Wells M, Steiner L. Epigenetic and Transcriptional Control of Erythropoiesis. Front Genet 2022; 13:805265. [PMID: 35330735 PMCID: PMC8940284 DOI: 10.3389/fgene.2022.805265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Erythropoiesis is a process of enormous magnitude, with the average person generating two to three million red cells every second. Erythroid progenitors start as large cells with large nuclei, and over the course of three to four cell divisions they undergo a dramatic decrease in cell size accompanied by profound nuclear condensation, which culminates in enucleation. As maturing erythroblasts are undergoing these dramatic phenotypic changes, they accumulate hemoglobin and express high levels of other erythroid-specific genes, while silencing much of the non-erythroid transcriptome. These phenotypic and gene expression changes are associated with distinct changes in the chromatin landscape, and require close coordination between transcription factors and epigenetic regulators, as well as precise regulation of RNA polymerase II activity. Disruption of these processes are associated with inherited anemias and myelodysplastic syndromes. Here, we review the epigenetic mechanisms that govern terminal erythroid maturation, and their role in human disease.
Collapse
Affiliation(s)
- Maeve Wells
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Laurie Steiner
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| |
Collapse
|
9
|
Murphy ZC, Murphy K, Myers J, Getman M, Couch T, Schulz VP, Lezon-Geyda K, Palumbo C, Yan H, Mohandas N, Gallagher PG, Steiner LA. Regulation of RNA polymerase II activity is essential for terminal erythroid maturation. Blood 2021; 138:1740-1756. [PMID: 34075391 PMCID: PMC8569412 DOI: 10.1182/blood.2020009903] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
The terminal maturation of human erythroblasts requires significant changes in gene expression in the context of dramatic nuclear condensation. Defects in this process are associated with inherited anemias and myelodysplastic syndromes. The progressively dense appearance of the condensing nucleus in maturing erythroblasts led to the assumption that heterochromatin accumulation underlies this process, but despite extensive study, the precise mechanisms underlying this essential biologic process remain elusive. To delineate the epigenetic changes associated with the terminal maturation of human erythroblasts, we performed mass spectrometry of histone posttranslational modifications combined with chromatin immunoprecipitation coupled with high-throughput sequencing, Assay for Transposase Accessible Chromatin, and RNA sequencing. Our studies revealed that the terminal maturation of human erythroblasts is associated with a dramatic decline in histone marks associated with active transcription elongation, without accumulation of heterochromatin. Chromatin structure and gene expression were instead correlated with dynamic changes in occupancy of elongation competent RNA polymerase II, suggesting that terminal erythroid maturation is controlled largely at the level of transcription. We further demonstrate that RNA polymerase II "pausing" is highly correlated with transcriptional repression, with elongation competent RNA polymerase II becoming a scare resource in late-stage erythroblasts, allocated to erythroid-specific genes. Functional studies confirmed an essential role for maturation stage-specific regulation of RNA polymerase II activity during erythroid maturation and demonstrate a critical role for HEXIM1 in the regulation of gene expression and RNA polymerase II activity in maturing erythroblasts. Taken together, our findings reveal important insights into the mechanisms that regulate terminal erythroid maturation and provide a novel paradigm for understanding normal and perturbed erythropoiesis.
Collapse
Affiliation(s)
| | | | - Jacquelyn Myers
- Department of Pediatrics and
- Genomics Resource Center, University of Rochester, Rochester, NY
| | | | | | | | | | - Cal Palumbo
- Genomics Resource Center, University of Rochester, Rochester, NY
| | | | | | | | | |
Collapse
|
10
|
Impairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency. Blood 2021; 138:1615-1627. [PMID: 34036344 DOI: 10.1182/blood.2020007401] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
Histone deacetylases (HDACs) are a group of enzymes catalyzing the removal of acetyl groups from histone and non-histone proteins. HDACs have been shown to play diverse functions in a wide range of biological processes. However, their roles in mammalian erythropoiesis remain to be fully defined. We show here that of the eleven classic HDAC family members, six of them (HDAC 1,2,3 and HDAC 5,6,7) are expressed in human erythroid cells with HDAC5 most significantly up regulated during terminal erythroid differentiation. Knockdown of HDAC5 by either shRNA or siRNA in human CD34+ cells followed by erythroid cell culture led to increased apoptosis, decreased chromatin condensation, and impaired enucleation of erythroblasts. Biochemical analyses revealed that HDAC5 deficiency resulted in activation of p53 in association with increased acetylation of p53. Furthermore, while acetylation of histone 4 (H4) is decreased during normal terminal erythroid differentiation, HDAC5 deficiency led to increased acetylation of H4 (K12) in late stage erythroblasts. This increased acetylation was accompanied by decreased chromatin condensation, implying a role for H4 (K12) deacetylation in chromatin condensation. ATAC-seq and RNA-seq analyses revealed that HDAC5 knockdown leads to increased chromatin accessibility genome wide and global changes in gene expression. Moreover, pharmacological inhibition of HDAC5 by the inhibitor LMK235 also led to increased H4 acetylation, impaired chromatin condensation and enucleation. Taken together, our findings have uncovered previously unrecognized roles and molecular mechanisms of action for HDAC5 in human erythropoiesis. These results may provide insights into understanding the anemia associated with HDAC inhibitor treatment.
Collapse
|
11
|
Histone lysine methyltransferase SET8 is a novel therapeutic target for cancer treatment. Drug Discov Today 2021; 26:2423-2430. [PMID: 34022460 DOI: 10.1016/j.drudis.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
SET8 is the only lysine methyltransferase that can specifically monomethylate the histone H4K20. SET8-mediated protein modifications are largely involved in the regulation of cell cycle, DNA repair, gene transcription, cell apoptosis, and other vital physiological processes. The aberrant expression of SET8 is closely linked to the proliferation, invasion, metastasis, and prognosis of a variety of cancers. As a consequence, targeting SET8 could be an appealing strategy for cancer therapy. In this article, we introduce the molecular structure of SET8, followed by summarizing its roles in various biological pathways. Crucially, we highlight the potential functions of SET8 in tumors, as well as progress in the development of SET inhibitors for cancer treatment.
Collapse
|
12
|
Rossmann MP, Zon LI. 'Enhancing' red cell fate through epigenetic mechanisms. Curr Opin Hematol 2021; 28:129-137. [PMID: 33741760 PMCID: PMC8695091 DOI: 10.1097/moh.0000000000000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Transcription of erythroid-specific genes is regulated by the three-dimensional (3D) structure and composition of chromatin, which dynamically changes during erythroid differentiation. Chromatin organization and dynamics are regulated by several epigenetic mechanisms involving DNA (de-)methylation, posttranslational modifications (PTMs) of histones, chromatin-associated structural proteins, and higher-order structural changes and interactions. This review addresses examples of recent developments in several areas delineating the interface of chromatin regulation and erythroid-specific lineage transcription. RECENT FINDINGS We survey and discuss recent studies that focus on the erythroid chromatin landscape, erythroid enhancer-promotor interactions, super-enhancer functionality, the role of chromatin modifiers and epigenetic crosstalk, as well as the progress in mapping red blood cell (RBC) trait-associated genetic variants within cis-regulatory elements (CREs) identified in genome-wide association study (GWAS) efforts as a step toward determining their impact on erythroid-specific gene expression. SUMMARY As one of the best characterized and accessible cell differentiation systems, erythropoiesis has been at the forefront of studies aiming to conceptualize how chromatin dynamics regulate transcription. New emerging technologies that bring a significantly enhanced spatial and temporal resolution of chromatin structure, and allow investigation of small cell numbers, have advanced our understanding of chromatin dynamics during erythroid differentiation in vivo.
Collapse
Affiliation(s)
- Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
13
|
Liu M, Qin Y, Hu Q, Liu W, Ji S, Xu W, Fan G, Ye Z, Zhang Z, Xu X, Yu X, Zhuo Q. SETD8 potentiates constitutive ERK1/2 activation via epigenetically silencing DUSP10 expression in pancreatic cancer. Cancer Lett 2021; 499:265-278. [PMID: 33232789 DOI: 10.1016/j.canlet.2020.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022]
Abstract
Constitutive ERK1/2 activation has been frequently observed in pancreatic adenocarcinoma (PDAC). How ERK1/2 activation status been potentiated and maintained by epigenetic mechanisms has seldom been discussed in PDAC. In this study, we first examined the expression status of p-ERK1/2 in PDAC tissues by immunohistochemical staining and then screened possible epigenetic factors that displayed different expression status between p-ERK1/2 high and low groups by RNA profiling, and found that SETD8 displayed an increased expressional pattern in p-ERK1/2high patient group. Then the impact of SETD8 on the proliferation of PDAC cells were investigated on the basis of gain or loss-of-function assays. RNA sequencing assays were performed to screen potential SETD8 downstream targets that contribute to ERK1/2 activation. Mass spectrometry and transcriptional analysis, including dual-luciferase assay and chromatin immunoprecipitation assay (ChIP), were used to explore the molecular mechanisms that governing SETD8-mediated ERK1/2 activation. In vitro cell line studies and in vivo xenograft mouse model studies indicated that SETD8 promoted cell proliferation and increased tumor formation capacity of PDAC cell lines. Mechanism explorations uncovered that SETD8 suppressed the expression of DUSP10, which was responsible for dephosphorylation of ERK1/2. Mass spectrometry and transcriptional analysis results demonstrated that STAT3 interacted with SETD8 and recruited SETD8 to the promoter region of DUSP10, leading to epigenetic silencing of DUSP10 and the resultant activation of ERK1/2. In conclusion, SETD8 interacts with STAT3 on DUSP10 promoter region and epigenetically silences DUSP10 expression. Decreased DUSP10 expression in PDAC potentiates activation of ERK1/2 phosphorylation, resulting in unfavorable prognosis of PDAC.
Collapse
Affiliation(s)
- Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai, China.
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai, China.
| |
Collapse
|
14
|
Sundaravel S, Steidl U, Wickrema A. Epigenetic modifiers in normal and aberrent erythropoeisis. Semin Hematol 2021; 58:15-26. [PMID: 33509439 PMCID: PMC7883935 DOI: 10.1053/j.seminhematol.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Erythroid differentiation program is comprised of lineage commitment, erythroid progenitor proliferation, and termination differentiation. Each stage of the differentiation program is heavily influenced by epigenetic modifiers that alter the epigenome in a dynamic fashion influenced by cytokines/humeral factors and are amicable to target by drugs. The epigenetic modifiers can be classified as DNA modifiers (DNMT, TET), mRNA modifiers (RNA methylases and demethylases) and histone protein modifiers (methyltransferases, acetyltransferases, demethylases, and deacetylases). Here we describe mechanisms by which these epigenetic modifiers influence and guide erythroid-lineage differentiation during normal and malignant erythropoiesis and also benign diseases that arise from their altered structure or function.
Collapse
Affiliation(s)
- Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY; Department of Medicine, Albert Einstein College of Medicine-Montefiore Medical center, Bronx, NY
| | | |
Collapse
|
15
|
Piao L, Che N, Li H, Li M, Feng Y, Liu X, Kim S, Jin Y, Xuan Y. SETD8 promotes stemness characteristics and is a potential prognostic biomarker of gastric adenocarcinoma. Exp Mol Pathol 2020; 117:104560. [PMID: 33127342 DOI: 10.1016/j.yexmp.2020.104560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
SETD8 is a lysine methyltransferase containing an SET domain, which is involved in the carcinogenesis of many cancer types through monomethylation of the histone H4 lysine 20. However, its prognostic value and underlying mechanisms in gastric adenocarcinoma (GA) have not been extensively studied. Here, we assessed SETD8 expression and its relationship with clinicopathological parameters, cancer stemness-related proteins, cell cycle-related proteins, and PI3K/Akt pathway proteins in GA. SETD8 expression in GA tissues was correlated with the primary tumor stage, lymph node metastasis, tumor size, gross type, and clinical stage. SETD8 was an independent predictor of poor overall survival of patients with GA. Cox regression analysis showed that SETD8 is a potential biomarker of unfavorable clinical outcomes in patients with GA. Moreover, SETD8 overexpression was associated with cancer stemness-related genes, cell cycle-related genes, and PI3K/Akt/NF-κB pathway genes in clinical GA tissue samples. SETD8 silencing downregulated the expression of cancer stemness-associated genes (LSD1 and SOX2) and inhibited GA cell proliferation, spheroid formation, invasion, and migration. Additionally, LY294002 significantly reduced the expression of SETD8, pAkt-Ser473, pPI3K-p85, and NFκB-p65 in MKN74 and MKN28 cells. SETD8 may be a novel cancer stemness-associated protein and potential prognostic biomarker in GA.
Collapse
Affiliation(s)
- Lihua Piao
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Histology and Embryology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Nan Che
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Haoyue Li
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Mengxuan Li
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Anatomy, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Ying Feng
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Xingzhe Liu
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Seokhyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul 110-745, Republic of Korea
| | - Yu Jin
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Anatomy, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China.
| | - Yanhua Xuan
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China.
| |
Collapse
|
16
|
Piao L, Feng Y, Che N, Li M, Li X, Jin Y, Xuan Y. SETD8 is a prognostic biomarker that contributes to stem-like cell properties in non-small cell lung cancer. Pathol Res Pract 2020; 216:153258. [PMID: 33130499 DOI: 10.1016/j.prp.2020.153258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022]
Abstract
SETD8 is a lysine methyltransferase containing an SET domain and has been reported to regulate various biological processes, including carcinogenesis. However, its prognostic value and mechanisms of action in non-small cell lung cancer (NSCLC) have not been extensively studied. Here, we assessed SETD8 expression and its relationship with clinicopathological parameters, cancer stemness proteins, and cell cycle-regulating proteins in NSCLC. SETD8 expression in NSCLC tissues was correlated with primary tumor stage, lymph node metastases, and clinical stage. Moreover, SETD8 was an independent predictor of poor overall survival in NSCLC. A Cox regression analysis showed that SETD8 was a potential biomarker of unfavorable clinical outcomes in patients with NSCLC. SETD8 overexpression was associated with cancer stemness-related genes and cell cycle-related genes in NSCLC tissue samples. SETD8 silencing significantly reduced the expression of cancer stemness-associated genes (CD44, LGR5, and SOX2) and inhibited NSCLC cell proliferation, spheroid formation, invasion, and migration. Our findings demonstrate that SETD8 may be a novel cancer stemness-associated protein and a potential prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Lihua Piao
- Department of Histology and Embryology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, P.R. China; Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Ying Feng
- Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, P.R. China; Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Nan Che
- Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, P.R. China; Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Mengxuan Li
- Department of Anatomy, Yanbian University College of Medicine, Yanji 133002, Jilin Province, P.R. China; Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Xiaogang Li
- Department of Urology, Yanbian University Affiliated Hospital, Yanji 133002, Jilin Province, P.R. China
| | - Yu Jin
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China.
| | - Yanhua Xuan
- Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, P.R. China; Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China.
| |
Collapse
|
17
|
Murphy ZC, Getman MR, Myers JA, Burgos Villar KN, Leshen E, Kurita R, Nakamura Y, Steiner LA. Codanin-1 mutations engineered in human erythroid cells demonstrate role of CDAN1 in terminal erythroid maturation. Exp Hematol 2020; 91:32-38.e6. [PMID: 33075436 DOI: 10.1016/j.exphem.2020.09.201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/29/2022]
Abstract
The generation of a functional erythrocyte from a committed progenitor requires significant changes in gene expression during hemoglobin accumulation, rapid cell division, and nuclear condensation. Congenital dyserythropoietic anemia type I (CDA-I) is an autosomal recessive disease that presents with erythroid hyperplasia in the bone marrow. Erythroblasts in patients with CDA-I are frequently binucleate and have chromatin bridging and defective chromatin condensation. CDA-1 is most commonly caused by mutations in Codanin-1 (CDAN1). The function of CDAN1 is poorly understood but it is thought to regulate histone incorporation into nascent DNA during cellular replication. The study of CDA-1 has been limited by the lack of in vitro models that recapitulate key features of the disease, and most studies on CDAN1 function have been done in nonerythroid cells. To model CDA-I we generated HUDEP2 mutant lines with deletion or mutation of R1042 of CDAN1, mirroring mutations found in CDA-1 patients. CDAN1 mutant cell lines had decreased viability and increased intercellular bridges and binucleate cells. Further, they had alterations in histone acetylation associated with prematurely elevated erythroid gene expression, including gamma globin. Together, these data imply a specific functional role for CDAN1, specifically R1042 on exon 24, in the regulation of DNA replication and organization during erythroid maturation. Most importantly, generation of models with specific patient mutations, such as R1042, will provide further mechanistic insights into CDA-I pathology.
Collapse
Affiliation(s)
- Zachary C Murphy
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY
| | - Michael R Getman
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY
| | - Jaquelyn A Myers
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY
| | | | - Emily Leshen
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Laurie A Steiner
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY.
| |
Collapse
|