1
|
Bodu M, Hitit M, Donmez H, Kaya A, Ugur MR, Memili E. Exploration of Small Non-Coding RNAs as Molecular Markers of Ram Sperm Fertility. Int J Mol Sci 2025; 26:2690. [PMID: 40141332 PMCID: PMC11942391 DOI: 10.3390/ijms26062690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
The identification of molecular markers for fertility is critical for the sustainability of livestock production. We profiled small non-coding RNAs (sncRNAs) in sperm from rams with high fertility (HF) and low fertility (LF) phenotypes to uncover their roles in ram sperm fertility. Rams were categorized into high-fertility (HF, n = 31; 94.5 ± 2.8%) and low-fertility (LF, n = 25; 83.1 ± 5.73%) phenotypes based on pregnancy rates (average 89.4 ± 7.2%). From these, sperm samples of HF (n = 4; pregnancy rate 99.2 ± 1.6%) and LF (n = 4; pregnancy rate 73.6 ± 4.4%) rams underwent sncRNA sequencing. Small RNA sequencing produced 14,962,876 reads in LF rams and 17,401,094 reads in HF rams, showing distinct sncRNA biotypes, including miRNAs, tRNAs, snoRNAs, snRNAs, and rRNAs. Among these, miRNAs comprised 7.12% of reads in LF rams and 3.78% in HF rams, while rRNAs and repeats formed significant proportions in both groups. A total of 1673 known and 627 novel miRNAs were identified, with 227 differentially expressed miRNAs between the HF and LF groups. We showed that key miRNAs, such as oar-miR-200b and oar-miR-370-3p, were upregulated in HF sperm, while downregulated miRNAs in LF, such as oar-miR-26b and oar-let-7d, were associated with impaired sperm function and DNA fragmentation. A functional enrichment analysis of miRNA target genes highlighted pathways related to ribonucleoprotein complex biogenesis, RNA processing, and gene expression regulation. These findings establish the critical role of sperm sncRNAs as regulators of fertility and potential biomarkers in breeding soundness tests for the precision farming of livestock for global food security.
Collapse
Affiliation(s)
- Mustafa Bodu
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77445, USA;
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Selcuk University, Konya 42005, Türkiye
| | - Mustafa Hitit
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77445, USA;
- Department of Animal Genetic, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu 37100, Türkiye
| | - Huseyin Donmez
- Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Abdullah Kaya
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin–Madison, Madison, WI 53558, USA;
| | - Muhammet Rasit Ugur
- IVF Michigan Fertility Centers, 37000 Woodward Ave #350, Bloomfield Hills, MI 48304, USA;
| | - Erdoğan Memili
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77445, USA;
| |
Collapse
|
2
|
Kasimanickam V, Kastelic J, Kasimanickam R. Transcriptomics of bovine sperm and oocytes. Anim Reprod Sci 2024; 271:107630. [PMID: 39500235 DOI: 10.1016/j.anireprosci.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Traditionally, sperm and embryos were studied using microscopy to assess morphology and motility. However, OMICS technologies, especially transcriptomic analysis, are now being used to screen the molecular dynamics of fertility markers at cellular and molecular levels, with high sensitivity. Transcriptomics is the study of the transcriptome - RNA transcripts produced by the genome - using high-throughput methods to understand how the RNAs are expressed. In this review, we have discussed gene contributions to sperm structure and function and their role in fertilization and early embryo development. Further, we identified miRNAs shared by sperm, oocytes, and early embryos and their roles in fertilization and early embryo development.
Collapse
Affiliation(s)
| | - John Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
3
|
Werry N, Russell SJ, Sivakumar R, Miller S, Hickey K, Larmer S, Lohuis M, Librach C, LaMarre J. piRNA expression patterns in high vs. low fertility bovine sperm. Syst Biol Reprod Med 2024; 70:183-194. [PMID: 38924761 DOI: 10.1080/19396368.2024.2364742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are 24-32 nucleotide RNA sequences primarily expressed in germ cells and developing embryos that suppress transposable element expression to protect genomic integrity during epigenetic reprogramming events. We characterized the expression of piRNA sequences and their encoding clusters in sperm samples from an idiopathic fertility model of Holstein bulls with high and low Sire Conception Rates. The piRNA populations were determined to be mostly similar between fertility conditions when investigated by principal component and differential expression analysis, suggesting that a high degree of conservation in the piRNA system is likely necessary for the production of viable sperm. Both fertility conditions demonstrated evidence of 'ping-pong' activity - a secondary biogenesis pathway associated with active transposable element targeting and suppression. Most sperm-borne piRNAs were between 29-30 nucleotides in length and originated from 226 clusters across the genome, with the exception of chromosome 20. Mapping analysis revealed abundant targeting of several transposable element families, suggesting a suppressive function of sperm piRNAs consistent with their established roles. Expression of genes targeted by sperm-borne piRNAs is significantly reduced throughout early embryogenesis compared to the mRNA population. Limited transposable element expression is known to be essential for spermatogenesis, thus epigenetic regulation of this pathway is likely to influence sperm quality and fertilizing capacity.
Collapse
Affiliation(s)
- Nicholas Werry
- Department of Biomedical Sciences, The University of Guelph, Guelph, Ontario, Canada
| | | | - Raamkumaar Sivakumar
- Department of Biomedical Sciences, The University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | - Clifford Librach
- CReATe Fertility Centre, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, The University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Zhao Z, Yang T, Li F. Sperm RNA code in spermatogenesis and male infertility. Reprod Biomed Online 2024; 49:104375. [PMID: 39481211 DOI: 10.1016/j.rbmo.2024.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 11/02/2024]
Abstract
Spermatozoa are traditionally thought to be transcriptionally inert, but recent studies have revealed the presence of sperm RNA, some of which is derived from the residues of spermatocyte transcription and some from epididymosomes. Paternal sperm RNA can be affected by external factors and further modified at the post-transcriptional level, for example N6-methyladenosine (m6A), thus shaping spermatogenesis and reproductive outcome. This review briefly introduces the origin of sperm RNA and, on this basis, summarizes the current knowledge on RNA modifications and their functional role in spermatogenesis and male infertility. The bottlenecks and knowledge gaps in the current research on RNA modification in male reproduction have also been indicated. Further investigations are needed to elucidate the functional consequences of these modifications, providing new therapeutic and preventive strategies for reproductive health and genetic inheritance.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Tingting Yang
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Fuping Li
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
5
|
Mikkola M, Desmet KLJ, Kommisrud E, Riegler MA. Recent advancements to increase success in assisted reproductive technologies in cattle. Anim Reprod 2024; 21:e20240031. [PMID: 39176005 PMCID: PMC11340803 DOI: 10.1590/1984-3143-ar2024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/14/2024] [Indexed: 08/24/2024] Open
Abstract
Assisted reproductive technologies (ART) are fundamental for cattle breeding and sustainable food production. Together with genomic selection, these technologies contribute to reducing the generation interval and accelerating genetic progress. In this paper, we discuss advancements in technologies used in the fertility evaluation of breeding animals, and the collection, processing, and preservation of the gametes. It is of utmost importance for the breeding industry to select dams and sires of the next generation as young as possible, as is the efficient and timely collection of gametes. There is a need for reliable and easily applicable methods to evaluate sexual maturity and fertility. Although gametes processing and preservation have been improved in recent decades, challenges are still encountered. The targeted use of sexed semen and beef semen has obliterated the production of surplus replacement heifers and bull calves from dairy breeds, markedly improving animal welfare and ethical considerations in production practices. Parallel with new technologies, many well-established technologies remain relevant, although with evolving applications. In vitro production (IVP) has become the predominant method of embryo production. Although fundamental improvements in IVP procedures have been established, the quality of IVP embryos remains inferior to their in vivo counterparts. Improvements to facilitate oocyte maturation and development of new culture systems, e.g. microfluidics, are presented in this paper. New non-invasive and objective tools are needed to select embryos for transfer. Cryopreservation of semen and embryos plays a pivotal role in the distribution of genetics, and we discuss the challenges and opportunities in this field. Finally, machine learning (ML) is gaining ground in agriculture and ART. This paper delves into the utilization of emerging technologies in ART, along with the current status, key challenges, and future prospects of ML in both research and practical applications within ART.
Collapse
Affiliation(s)
| | | | - Elisabeth Kommisrud
- CRESCO, Centre for Embryology and Healthy Development, Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Michael A. Riegler
- Holistic Systems Department, Simula Metropolitan Center for Digital Engineering, Oslo, Norway
| |
Collapse
|
6
|
Costes V, Sellem E, Marthey S, Hoze C, Bonnet A, Schibler L, Kiefer H, Jaffrezic F. Multi-omics data integration for the identification of biomarkers for bull fertility. PLoS One 2024; 19:e0298623. [PMID: 38394258 PMCID: PMC10890740 DOI: 10.1371/journal.pone.0298623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Bull fertility is an important economic trait, and the use of subfertile semen for artificial insemination decreases the global efficiency of the breeding sector. Although the analysis of semen functional parameters can help to identify infertile bulls, no tools are currently available to enable precise predictions and prevent the commercialization of subfertile semen. Because male fertility is a multifactorial phenotype that is dependent on genetic, epigenetic, physiological and environmental factors, we hypothesized that an integrative analysis might help to refine our knowledge and understanding of bull fertility. We combined -omics data (genotypes, sperm DNA methylation at CpGs and sperm small non-coding RNAs) and semen parameters measured on a large cohort of 98 Montbéliarde bulls with contrasting fertility levels. Multiple Factor Analysis was conducted to study the links between the datasets and fertility. Four methodologies were then considered to identify the features linked to bull fertility variation: Logistic Lasso, Random Forest, Gradient Boosting and Neural Networks. Finally, the features selected by these methods were annotated in terms of genes, to conduct functional enrichment analyses. The less relevant features in -omics data were filtered out, and MFA was run on the remaining 12,006 features, including the 11 semen parameters and a balanced proportion of each type of-omics data. The results showed that unlike the semen parameters studied the-omics datasets were related to fertility. Biomarkers related to bull fertility were selected using the four methodologies mentioned above. The most contributory CpGs, SNPs and miRNAs targeted genes were all found to be involved in development. Interestingly, fragments derived from ribosomal RNAs were overrepresented among the selected features, suggesting roles in male fertility. These markers could be used in the future to identify subfertile bulls in order to increase the global efficiency of the breeding sector.
Collapse
Affiliation(s)
- Valentin Costes
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| | - Eli Sellem
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
| | - Sylvain Marthey
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Chris Hoze
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| | - Aurélie Bonnet
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
| | | | - Hélène Kiefer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Florence Jaffrezic
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| |
Collapse
|
7
|
Zhang Y, Labrecque R, Tremblay P, Plessis C, Dufour P, Martin H, Sirard MA. Sperm-borne tsRNAs and miRNAs analysis in relation to dairy cattle fertility. Theriogenology 2024; 215:241-248. [PMID: 38100996 DOI: 10.1016/j.theriogenology.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Sperm small non-coding RNAs (sncRNAs), such as microRNAs (miRNAs) and tRNA-derived small RNAs (tsRNAs), have been found to have implications for male fertility and play a role in the intergenerational transmission of specific phenotypes by influencing the early embryo's physiological processes in various animal species. This study postulates that there exists a correlation between sperm small non-coding RNAs (sncRNAs) and bull fertility, which in turn can influence the fertility of offspring through the modulation of early embryo development. To investigate this hypothesis, we generated comparative libraries of sperm sncRNAs from sires exhibiting high (n = 3) versus low bull fertility (n = 3), as well as high (n = 3) versus low daughter fertility (n = 3), as determined by the industry-standard Bull fertility index and Daughter fertility index. In total, 12 tsRNAs carried by sperm (11 down-regulated and 1 up-regulated) were found to be associated with bull fertility, while 19 tsRNAs (11 down-regulated and 8 up-regulated) were found to be associated with daughter fertility (q < 0.05, Log2foldchange>±1.5, base mean > 50). Notably, tRX-Glu-NNN-3811 exhibited potential as a biomarker for predicting fertility in both male and female dairy cattle. Moreover, a total of six miRNAs sperm-borne (two up-regulated and four down-regulated) and 35 miRNAs (27 up-regulated and eight down-regulated) exhibited a significant correlation with both bull fertility and daughter fertility individually (p < 0.05, base mean > 50, log2foldchange>±1.5), two microRNAs, namely miR-2385-5p (down-regulated) and miR-98 (up-regulated), exhibit a significant association (p < 0.05, base mean > 50, log2foldchange>±1.5) with the fertility of both bulls and daughter. The targets of these two microRNAs were subsequently identified and integrated with the transcriptomic database of the embryonic cells at the two-cell stage, which is known to be indicative of embryonic competence. The KEGG analysis revealed a potential correlation between these targets and choline metabolism, a crucial factor in embryonic epigenetic programming. In summary, the findings of this study indicate that sperm-borne small non-coding RNAs (sncRNAs) hold promise as biomarkers for predicting and enhancing fertility in dairy cattle. Furthermore, it is plausible that these sncRNAs may exert their effects on daughter fertility by targeting genes in the early embryo.
Collapse
Affiliation(s)
- Ying Zhang
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon, INAF, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Rémi Labrecque
- SEMEX Boviteq, 3450 Rue Sicotte, Saint-Hyacinthe, QC J2S, Canada
| | - Patricia Tremblay
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon, INAF, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Clément Plessis
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon, INAF, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Pascal Dufour
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon, INAF, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Hélène Martin
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon, INAF, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Marc André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon, INAF, Université Laval, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
8
|
Douet C, Grasseau I, Vitorino Carvalho A. Avian sperm-borne RNAs: optimisation of a new isolation protocol. Br Poult Sci 2023; 64:641-649. [PMID: 37266980 DOI: 10.1080/00071668.2023.2220128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
1. Sperm-borne RNAs are involved in sperm and embryonic protein translation, the regulation of early development and the epigenetic inheritance of the paternal phenotype. Sperm-borne RNA purification protocols generally include a cell purification stage to discard contamination by somatic cells. In avian species, no protocol is currently available to isolate all the populations composing sperm-borne RNAs.2. This study evaluated the presence of somatic cells in semen samples of chickens and quails using visual examination after fluorescent nuclei staining. The efficiency of somatic cell lysis buffer (SCLB) on chicken liver cells and its impacts on chicken sperm cell integrity was explored. Three different approaches were tested to isolate RNA: two developed for mammalian sperm cells and a commercial kit for somatic cells. The efficiency and reliability of each approach was determined based on RNA quality and purity. Eventually, the presence of miRNA and mRNA in purified avian sperm-borne RNAs was investigated by RT-(q)PCR.3. No somatic cells were found in chicken and quail semen. The SCLB totally lysed chicken liver cells but also induced sperm cell necrosis. Consequently, this treatment wasn't performed on samples prior to RNA isolation. Among the tested RNA purification protocols, the commercial one was the least variable and isolated RNA with the highest purity levels. No DNA contamination was observed. Furthermore, the samples contained miRNA and mRNA already known as present in mammalian sperm cells (gga-miR-100-5p, gga-miR-191-5p, GAPDH and PLCZ1), but mRNAs associated with leucocytes (CD4) and Sertoli cells (SOX4, CLDN11) were not detected. This protocol was successfully applied to quail sperm cells.4. Altogether, the study reveals that it is unnecessary to pre-treat samples to remove somatic cell contamination before RNA purification and successfully describes an isolation protocol for sperm-borne RNAs, including small non-coding and long coding RNAs, in two distinct avian species highly valuable as biological models.
Collapse
Affiliation(s)
- C Douet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - I Grasseau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | |
Collapse
|
9
|
Hashemi Karoii D, Azizi H. Functions and mechanism of noncoding RNA in regulation and differentiation of male mammalian reproduction. Cell Biochem Funct 2023; 41:767-778. [PMID: 37583312 DOI: 10.1002/cbf.3838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Noncoding RNAs (ncRNAs) are active regulators of a wide range of biological and physiological processes, including the majority of mammalian reproductive events. Knowledge of the biological activities of ncRNAs in the context of mammalian reproduction will allow for a more comprehensive and comparative understanding of male sterility and fertility. In this review, we describe recent advances in ncRNA-mediated control of mammalian reproduction and emphasize the importance of ncRNAs in several aspects of mammalian reproduction, such as germ cell biogenesis and reproductive organ activity. Furthermore, we focus on gene expression regulatory feedback loops including hormones and ncRNA expression to better understand germ cell commitment and reproductive organ function. Finally, this study shows the role of ncRNAs in male reproductive failure and provides suggestions for further research.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
10
|
Salas-Huetos A, Ribas-Maynou J, Mateo-Otero Y, Tamargo C, Llavanera M, Yeste M. Expression of miR-138 in cryopreserved bovine sperm is related to their fertility potential. J Anim Sci Biotechnol 2023; 14:129. [PMID: 37730625 PMCID: PMC10510164 DOI: 10.1186/s40104-023-00909-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, single-stranded, non-coding RNA molecules of 22-24 nucleotides that regulate gene expression. In the last decade, miRNAs have been described in sperm of several mammals, including cattle. It is known that miRNAs can act as key gene regulators of early embryogenesis in mice and humans; however, little is known about the content, expression, and function of sperm-borne miRNAs in early bovine embryo. In this study, total sperm RNA was isolated from 29 cryopreserved sperm samples (each coming from a separate bull) using a RNeasy kit and treatment with DNase I. RNA concentration and purity were determined through an Epoch spectrophotometer and an Agilent Bioanalyzer. The expression of 10 candidate miRNAs in bovine sperm (bta-miR-10a, bta-miR-10b, bta-miR-138, bta-miR-146b, bta-miR-19b, bta-miR-26a, bta-miR-34a, bta-miR-449a, bta-miR-495 and bta-miR-7), previously identified in testis and/or epididymis, was evaluated with RT-qPCR. The cel-miR-39-3p was used as a spike-in exogenous control. Nonparametric Mann-Whitney tests were run to evaluate which miRNAs were differentially expressed between bulls with high fertility [HF; non-return rates (NRR) ranging from 39.5 to 43.5] and those with subfertility (SF; NRR ranging from 33.3 to 39.3). Several sperm functionality parameters (e.g., viability, membrane stability or oxygen consumption, among others) were measured by multiplexing flow cytometry and oxygen sensing technologies. RESULTS RNA concentration and purity (260/280 nm ratio) (mean ± SD) from the 29 samples were 99.3 ± 84.6 ng/µL and 1.97 ± 0.72, respectively. Bioanalyzer results confirmed the lack of RNA from somatic cells. In terms of the presence or absence of miRNAs, and after applying the Livak method, 8 out of 10 miRNAs (bta-miR-10b, -138, -146b, -19b, -26a, -449a, -495, -7) were consistently detected in bovine sperm, whereas the other two (bta-miR-10a, and -34a) were absent. Interestingly, the relative expression of one miRNA (bta-miR-138) in sperm was significantly lower in the SF than in the HF group (P = 0.038). In addition to being associated to fertility potential, the presence of this miRNA was found to be negatively correlated with sperm oxygen consumption. The expression of three other miRNAs (bta-miR-19b, bta-miR-26a and bta-miR-7) was also correlated with sperm function variables. CONCLUSIONS In conclusion, although functional validation studies are required to confirm these results, this study suggests that sperm bta-miR-138 is involved in fertilization events and beyond, and supports its use as a fertility biomarker in cattle.
Collapse
Affiliation(s)
- Albert Salas-Huetos
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, 17003, Spain.
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA.
- Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain.
- Present Address: Unit of Preventive Medicine and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, 43201, Spain.
| | - Jordi Ribas-Maynou
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, 17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain
| | - Yentel Mateo-Otero
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, 17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain
| | - Carolina Tamargo
- Department of Animal Selection and Reproduction, The Regional Agri-Food Research and Development Service of Asturias (SERIDA), Gijón, 33394, Spain
| | - Marc Llavanera
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, 17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, 17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
11
|
Liu S, Sharma U. Sperm RNA Payload: Implications for Intergenerational Epigenetic Inheritance. Int J Mol Sci 2023; 24:5889. [PMID: 36982962 PMCID: PMC10052761 DOI: 10.3390/ijms24065889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
There is mounting evidence that ancestral life experiences and environment can influence phenotypes in descendants. The parental environment regulates offspring phenotypes potentially via modulating epigenetic marks in the gametes. Here, we review examples of across-generational inheritance of paternal environmental effects and the current understanding of the role of small RNAs in such inheritance. We discuss recent advances in revealing the small RNA payload of sperm and how environmental conditions modulate sperm small RNAs. Further, we discuss the potential mechanism of inheritance of paternal environmental effects by focusing on sperm small RNA-mediated regulation of early embryonic gene expression and its role in influencing offspring phenotypes.
Collapse
Affiliation(s)
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
12
|
Chen Q. Sperm RNA-mediated epigenetic inheritance in mammals: challenges and opportunities. Reprod Fertil Dev 2022; 35:118-124. [PMID: 36592983 PMCID: PMC9827497 DOI: 10.1071/rd22218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence now shows that in addition to delivering a haploid DNA, the mammalian sperm also carry various types of RNAs that respond to the paternal environment, which can mediate the intergenerational transmission of certain phenotypes to the offspring relating to the paternal environmental exposures (e.g. diet, mental stress). Improved analytical tools are beginning to decipher the complexity of sperm RNAs, RNA modifications and their spatial compartmentalisation, which support the concept of 'sperm RNA code' in programming specific offspring phenotypes during embryonic development. In this commentary article, I discuss the challenges and opportunities in solidifying the field of mammalian sperm RNA-mediated epigenetic inheritance, including the identification of the key sperm RNAs that are responsible for the paternal phenotype transmission, and the cellular and molecular events that are triggered by sperm RNAs during embryo development. I also discuss the translational application potential by harnessing the knowledge of sperm RNA code to improve farm animal production and human health.
Collapse
Affiliation(s)
- Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.,Correspondence to: Qi Chen, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA,
| |
Collapse
|
13
|
Donnellan EM, Perrier JP, Keogh K, Štiavnická M, Collins CM, Dunleavy EM, Sellem E, Bernecic NC, Lonergan P, Kenny DA, Fair S. Identification of differentially expressed mRNAs and miRNAs in spermatozoa of bulls of varying fertility. Front Vet Sci 2022; 9:993561. [PMID: 36277068 PMCID: PMC9581129 DOI: 10.3389/fvets.2022.993561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022] Open
Abstract
Bulls used in artificial insemination, with apparently normal semen quality, can vary significantly in their field fertility. This study aimed to characterize the transcriptome of spermatozoa from high (HF) and low (LF) fertility bulls at the mRNA and miRNA level in order to identify potential novel markers of fertility. Holstein-Friesian bulls were assigned to either the HF or LF group (n = 10 per group) based on an adjusted national fertility index from a minimum of 500 inseminations. Total RNA was extracted from a pool of frozen-thawed spermatozoa from three different ejaculates per bull, following which mRNA-seq and miRNA-seq were performed. Six mRNAs and 13 miRNAs were found differentially expressed (P < 0.05, FC > 1.5) between HF and LF bulls. Of particular interest, the gene pathways targeted by the 13 differentially expressed miRNAs were related to embryonic development and gene expression regulation. Previous studies reported that disruptions to protamine 1 mRNA (PRM1) had deleterious consequences for sperm chromatin structure and fertilizing ability. Notably, PRM1 exhibited a higher expression in spermatozoa from LF than HF bulls. In contrast, Western Blot analysis revealed a decrease in PRM1 protein abundance for spermatozoa from LF bulls; this was not associated with increased protamine deficiency (measured by the degree of chromatin compaction) or DNA fragmentation, as assessed by flow cytometry analyses. However, protamine deficiency was positively and moderately correlated with the percentage of spermatozoa with DNA fragmentation, irrespective of fertility group. This study has identified potential biomarkers that could be used for improving semen quality assessments of bull fertility.
Collapse
Affiliation(s)
- Eimear M. Donnellan
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Jean-Philippe Perrier
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Ireland
| | - Miriam Štiavnická
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Elaine M. Dunleavy
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland, Galway, Ireland
| | - Eli Sellem
- ALLICE, Innovation and Development, Paris, France
| | - Naomi C. Bernecic
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland,*Correspondence: Sean Fair
| |
Collapse
|
14
|
Investigation of Sperm and Seminal Plasma Candidate MicroRNAs of Bulls with Differing Fertility and In Silico Prediction of miRNA-mRNA Interaction Network of Reproductive Function. Animals (Basel) 2022; 12:ani12182360. [PMID: 36139221 PMCID: PMC9495167 DOI: 10.3390/ani12182360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The objective of this study was to identify differentially expressed (DE) sperm and seminal plasma microRNAs (miRNAs) in high- and low-fertile Holstein bulls (four bulls per group), integrate miRNAs to their target genes, and categorize target genes based on predicted biological processes. Out of 84 bovine-specific, prioritized miRNAs analyzed by RT-PCR, 30 were differentially expressed in high-fertile sperm and seminal plasma compared to low-fertile sperm and seminal plasma, respectively (p ≤ 0.05, fold regulation ≥5 magnitudes). Interestingly, expression levels of DE-miRNAs in sperm and seminal plasma followed a similar pattern. Highly scored integrated genes of DE-miRNAs predicted various biological and molecular functions, cellular process, and pathways. Further in silico analysis revealed categorized genes may have a plausible association with pathways regulating sperm structure and function, fertilization, and embryo and placental development. In conclusion, highly DE-miRNAs in bovine sperm and seminal plasma could be used as a tool for predicting reproductive functions. Since the identified miRNA-mRNA interactions were mostly based on predictions from public databases, the causal regulations of miRNA-mRNA and the underlying mechanisms require further functional characterization in future studies. Abstract Recent advances in high-throughput in silico techniques portray experimental data as exemplified biological networks and help us understand the role of individual proteins, interactions, and their biological functions. The objective of this study was to identify differentially expressed (DE) sperm and seminal plasma microRNAs (miRNAs) in high- and low-fertile Holstein bulls (four bulls per group), integrate miRNAs to their target genes, and categorize the target genes based on biological process predictions. Out of 84 bovine-specific, prioritized miRNAs analyzed by RT-PCR, 30 were differentially expressed in high-fertile sperm and seminal plasma compared to low-fertile sperm and seminal plasma, respectively (p ≤ 0.05, fold regulation ≥ 5 magnitudes). The expression levels of DE-miRNAs in sperm and seminal plasma followed a similar pattern. Highly scored integrated genes of DE-miRNAs predicted various biological and molecular functions, cellular process, and pathways. Further, analysis of the categorized genes showed association with pathways regulating sperm structure and function, fertilization, and embryo and placental development. In conclusion, highly DE-miRNAs in bovine sperm and seminal plasma could be used as a tool for predicting reproductive functions. Since the identified miRNA-mRNA interactions were mostly based on predictions from public databases, the causal regulations of miRNA-mRNA and the underlying mechanisms require further functional characterization in future studies.
Collapse
|
15
|
Bisconti M, Leroy B, Gallagher MT, Senet C, Martinet B, Arcolia V, Wattiez R, Kirkman-Brown JC, Simon JF, Hennebert E. The ribosome inhibitor chloramphenicol induces motility deficits in human spermatozoa: A proteomic approach identifies potentially involved proteins. Front Cell Dev Biol 2022; 10:965076. [PMID: 36120567 PMCID: PMC9478589 DOI: 10.3389/fcell.2022.965076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Mature spermatozoa are almost completely devoid of cytoplasm; as such it has long been believed that they do not contain ribosomes and are therefore not capable of synthesising proteins. However, since the 1950s, various studies have shown translational activity within spermatozoa, particularly during their in vitro capacitation. But the type of ribosomes involved (cytoplasmic or mitochondrial) is still debated. Here, we investigate the presence and activity of the two types of ribosomes in mature human spermatozoa. By targeting ribosomal RNAs and proteins, we show that both types of ribosomes are localized in the midpiece as well as in the neck and the base of the head of the spermatozoa. We assessed the impact of cycloheximide (CHX) and chloramphenicol (CP), inhibitors of cytoplasmic and mitochondrial ribosomes, respectively, on different sperm parameters. Neither CHX, nor CP impacted sperm vitality, mitochondrial activity (measured through the ATP content), or capacitation (measured through the content in phosphotyrosines). However, increasing CP concentrations induced a decrease in total and progressive motilities as well as on some kinematic parameters while no effect was observed with CHX. A quantitative proteomic analysis was performed by mass spectrometry in SWATH mode to compare the proteomes of spermatozoa capacitated in the absence or presence of the two ribosome inhibitors. Among the ∼700 proteins identified in the different tested conditions, 3, 3 and 25 proteins presented a modified abundance in the presence of 1 and 2 mg/ml of CHX, and 1 mg/ml of CP, respectively. The observed abundance variations of some CP-down regulated proteins were validated using Multiple-Reaction Monitoring (MRM). Taken together, our results are in favor of an activity of mitochondrial ribosomes. Their inhibition by CP results in a decrease in the abundance of several proteins, at least FUNDC2 and QRICH2, and consequently induces sperm motility deficits.
Collapse
Affiliation(s)
- Marie Bisconti
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Centre for Human Reproductive Science, Birmingham Women’s and Children’s National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Coralie Senet
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Baptiste Martinet
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Vanessa Arcolia
- Clinique de Fertilité Régionale de Mons, CHU Ambroise Paré Hospital, Mons, Belgium
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Jackson C. Kirkman-Brown
- Institute of Metabolism and Systems Research, University of Birmingham, Centre for Human Reproductive Science, Birmingham Women’s and Children’s National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Jean-François Simon
- Clinique de Fertilité Régionale de Mons, CHU Ambroise Paré Hospital, Mons, Belgium
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
- *Correspondence: Elise Hennebert,
| |
Collapse
|
16
|
Werry N, Russell SJ, Gillis DJ, Miller S, Hickey K, Larmer S, Lohuis M, Librach C, LaMarre J. Characteristics of miRNAs Present in Bovine Sperm and Associations With Differences in Fertility. Front Endocrinol (Lausanne) 2022; 13:874371. [PMID: 35663333 PMCID: PMC9160602 DOI: 10.3389/fendo.2022.874371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/14/2022] [Indexed: 12/23/2022] Open
Abstract
Small non-coding RNAs have been linked to different phenotypes in bovine sperm, however attempts to identify sperm-borne molecular biomarkers of male fertility have thus far failed to identify a robust profile of expressed miRNAs related to fertility. We hypothesized that some differences in bull fertility may be reflected in the levels of different miRNAs in sperm. To explore such differences in fertility that are not due to differences in visible metrics of sperm quality, we employed Next Generation Sequencing to compare the miRNA populations in Bos taurus sperm from bulls with comparable motility and morphology but varying Sire Conception Rates. We identified the most abundant miRNAs in both populations (miRs -34b-3p; -100-5p; -191-5p; -30d-4p; -21-5p) and evaluated differences in the overall levels and specific patterns of isomiR expression. We also explored correlations between specific pairs of miRNAs in each population and identified 10 distinct pairs of miRNAs that were positively correlated in bulls with higher fertility and negatively correlated in comparatively less fertile individuals. Furthermore, 8 additional miRNA pairs demonstrated the opposite trend; negatively correlated in high fertility animals and positively correlated in less fertile bulls. Finally, we performed pathway analysis to identify potential roles of miRNAs present in bull sperm in the regulation of specific genes that impact spermatogenesis and embryo development. Together, these results present a comprehensive picture of the bovine sperm miRNAome that suggests multiple potential roles in fertility.
Collapse
Affiliation(s)
- Nicholas Werry
- Department of Biomedical Sciences, The University of Guelph, Guelph, ON, Canada
| | | | - Daniel J. Gillis
- School of Computer Science, The University of Guelph, Guelph, ON, Canada
| | | | | | | | | | - Clifford Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, The University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Klein EK, Swegen A, Gunn AJ, Stephen CP, Aitken RJ, Gibb Z. The future of assessing bull fertility: Can the 'omics fields identify usable biomarkers? Biol Reprod 2022; 106:854-864. [PMID: 35136971 PMCID: PMC9113469 DOI: 10.1093/biolre/ioac031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Breeding soundness examinations for bulls rely heavily on the subjective, visual assessment of sperm motility and morphology. Although these criteria have the potential to identify infertile males, they cannot be used to guarantee fertility or provide information about varying degrees of bull fertility. Male factor fertility is complex, and the success of the male gamete is not necessarily realized until well after the spermatozoon enters the oocyte. This paper reviews our existing knowledge of the bull’s contribution from a standpoint of the sperm’s cargo and the impact that this can have on fertilization and the development of the embryo. There has been a plethora of recent research characterizing the many molecular attributes that can affect the functional competence of a spermatozoon. A better understanding of the molecular factors influencing fertilization and embryo development in cattle will lead to the identification of biomarkers for the selection of bulls of superior fertility, which will have major implications for livestock production. To see this improvement in reproductive performance, we believe incorporation of modern technology into breeding soundness examinations will be necessary—although many of the discussed technologies are not ready for large-scale field application. Each of the ‘omics fields discussed in this review have shown promise for the identification of biomarkers of fertility, with certain families of biomarkers appearing to be better suited to different evaluations throughout a bull’s lifetime. Further research is needed for the proposed biomarkers to be of diagnostic or predictive value.
Collapse
Affiliation(s)
- Erin K Klein
- Priority Research Centre for Reproductive Science, University of Newcastle, NSW, Australia
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, University of Newcastle, NSW, Australia.,Nuffield Department of Women's and Reproductive Health, University of Oxford, UK
| | - Allan J Gunn
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.,Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Cyril P Stephen
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.,Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Robert John Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, NSW, Australia
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, University of Newcastle, NSW, Australia
| |
Collapse
|
18
|
Kiefer H, Sellem E, Bonnet-Garnier A, Pannetier M, Costes V, Schibler L, Jammes H. The epigenome of male germ cells and the programming of phenotypes in cattle. Anim Front 2021; 11:28-38. [PMID: 34934527 PMCID: PMC8683155 DOI: 10.1093/af/vfab062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hélène Kiefer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | - Amélie Bonnet-Garnier
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Maëlle Pannetier
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Valentin Costes
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.,R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | | | - Hélène Jammes
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| |
Collapse
|
19
|
Sahoo B, Choudhary RK, Sharma P, Choudhary S, Gupta MK. Significance and Relevance of Spermatozoal RNAs to Male Fertility in Livestock. Front Genet 2021; 12:768196. [PMID: 34956322 PMCID: PMC8696160 DOI: 10.3389/fgene.2021.768196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Livestock production contributes to a significant part of the economy in developing countries. Although artificial insemination techniques brought substantial improvements in reproductive efficiency, male infertility remains a leading challenge in livestock. Current strategies for the diagnosis of male infertility largely depend on the evaluation of semen parameters and fail to diagnose idiopathic infertility in most cases. Recent evidences show that spermatozoa contains a suit of RNA population whose profile differs between fertile and infertile males. Studies have also demonstrated the crucial roles of spermatozoal RNA (spRNA) in spermatogenesis, fertilization, and early embryonic development. Thus, the spRNA profile may serve as unique molecular signatures of fertile sperm and may play pivotal roles in the diagnosis and treatment of male fertility. This manuscript provides an update on various spRNA populations, including protein-coding and non-coding RNAs, in livestock species and their potential role in semen quality, particularly sperm motility, freezability, and fertility. The contribution of seminal plasma to the spRNA population is also discussed. Furthermore, we discussed the significance of rare non-coding RNAs (ncRNAs) such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs) in spermatogenic events.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Ratan K. Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Paramajeet Sharma
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Shanti Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
20
|
Winter E, Cisilotto J, Silva AH, Rosolen D, Fabichak AP, Rode MP, Creczynski-Pasa TB. MicroRNAs: Potential biomarkers for reproduction, diagnosis, prognosis, and therapeutic in domestic animals. Res Vet Sci 2021; 142:117-132. [PMID: 34942556 DOI: 10.1016/j.rvsc.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/02/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
MicroRNA (miRNAs) are small non-coding RNA molecules involved in a wide range of biological processes through the post-transcriptional regulation of gene expression. Most studies evaluated microRNA expression in human, and despite fewer studies in veterinary medicine, this topic is one of the most exciting areas of modern veterinary medicine. miRNAs showed to be part of the pathogenesis of diseases and reproduction physiology in animals, making them biomarkers candidates. This review provides an overview of the current knowledge regarding miRNAs' role in reproduction and animal diseases, diagnostic and therapy.
Collapse
Affiliation(s)
- Evelyn Winter
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, 89520000, SC, Brazil.
| | - Júlia Cisilotto
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Adny Henrique Silva
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Daiane Rosolen
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Ana Paula Fabichak
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, 89520000, SC, Brazil
| | - Michele Patricia Rode
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil; Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| |
Collapse
|
21
|
Sellem E, Jammes H, Schibler L. Sperm-borne sncRNAs: potential biomarkers for semen fertility? Reprod Fertil Dev 2021; 34:160-173. [PMID: 35231268 DOI: 10.1071/rd21276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Semen infertility or sub-fertility, whether in humans or livestock species, remains a major concern for clinicians and technicians involved in reproduction. Indeed, they can cause tragedies in human relationships or have a dramatic overall negative impact on the sustainability of livestock breeding. Understanding and predicting semen fertility issues is therefore crucial and quality control procedures as well as biomarkers have been proposed to ensure sperm fertility. However, their predictive values appeared to be too limited and additional relevant biomarkers are still required to diagnose sub-fertility efficiently. During the last decade, the study of molecular mechanisms involved in spermatogenesis and sperm maturation highlighted the regulatory role of a variety of small non-coding RNAs (sncRNAs) and led to the discovery that sperm sncRNAs comprise both remnants from spermatogenesis and post-testicular sncRNAs acquired through interactions with extracellular vesicles along epididymis. This has led to the hypothesis that sncRNAs may be a source of relevant biomarkers, associated either with sperm functionality or embryo development. This review aims at providing a synthetic overview of the current state of knowledge regarding implication of sncRNA in spermatogenesis defects and their putative roles in sperm maturation and embryo development, as well as exploring their use as fertility biomarkers.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012 Paris, France
| | - Hélène Jammes
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350 Jouy en Josas, France; and Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | | |
Collapse
|
22
|
Alshanbayeva A, Tanwar DK, Roszkowski M, Manuella F, Mansuy IM. Early life stress affects the miRNA cargo of epididymal extracellular vesicles in mouse†. Biol Reprod 2021; 105:593-602. [PMID: 34426825 DOI: 10.1093/biolre/ioab156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Sperm RNA can be modified by environmental factors and has been implicated in communicating signals about changes in a father's environment to the offspring. The small RNA composition of sperm could be changed during its final stage of maturation in the epididymis by extracellular vesicles (EVs) released by epididymal cells. We studied the effect of exposure to stress in early postnatal life on the transcriptome of epididymal EVs using a mouse model of transgenerational transmission. We found that the small RNA signature of epididymal EVs, particularly miRNAs, is altered in adult males exposed to postnatal stress. In some cases, these miRNA changes correlate with differences in the expression of their target genes in sperm and zygotes generated from that sperm. These results suggest that stressful experiences in early life can have persistent biological effects on the male reproductive tract that may in part be responsible for the transmission of the effects of exposure to the offspring.
Collapse
Affiliation(s)
- Anar Alshanbayeva
- Laboratory of Neuroepigenetics, Brain Research Institute at the Medical Faculty of the University of Zurich, Zurich, Switzerland.,Institute for Neuroscience of the Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center, ETH and University of Zurich, Zurich, Switzerland
| | - Deepak K Tanwar
- Laboratory of Neuroepigenetics, Brain Research Institute at the Medical Faculty of the University of Zurich, Zurich, Switzerland.,Institute for Neuroscience of the Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center, ETH and University of Zurich, Zurich, Switzerland
| | - Martin Roszkowski
- Laboratory of Neuroepigenetics, Brain Research Institute at the Medical Faculty of the University of Zurich, Zurich, Switzerland.,Institute for Neuroscience of the Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center, ETH and University of Zurich, Zurich, Switzerland
| | - Francesca Manuella
- Laboratory of Neuroepigenetics, Brain Research Institute at the Medical Faculty of the University of Zurich, Zurich, Switzerland.,Institute for Neuroscience of the Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center, ETH and University of Zurich, Zurich, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute at the Medical Faculty of the University of Zurich, Zurich, Switzerland.,Institute for Neuroscience of the Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center, ETH and University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Le Danvic C, Guyonnet B, Kiefer H, Jammes H, Schibler L. Dynamics of cattle sperm sncRNAs during maturation, from testis to ejaculated sperm. Epigenetics Chromatin 2021; 14:24. [PMID: 34030709 PMCID: PMC8146655 DOI: 10.1186/s13072-021-00397-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background During epididymal transit, spermatozoa go through several functional maturation steps, resulting from interactions with epididymal secretomes specific to each region. In particular, the sperm membrane is under constant remodeling, with sequential attachment and shedding of various molecules provided by the epididymal lumen fluid and epididymosomes, which also deliver sncRNA cargo to sperm. As a result, the payload of sperm sncRNAs changes during the transit from the epididymis caput to the cauda. This work was designed to study the dynamics of cattle sperm sncRNAs from spermatogenesis to final maturation. Results Comprehensive catalogues of sperm sncRNAs were obtained from testicular parenchyma, epididymal caput, corpus and cauda, as well as ejaculated semen from three Holstein bulls. The primary cattle sncRNA sperm content is markedly remodeled as sperm mature along the epididymis. Expression of piRNAs, which are abundant in testis parenchyma, decreases dramatically at epididymis. Conversely, sperm progressively acquires miRNAs, rsRNAs, and tsRNAs along epididymis, with regional specificities. For instance, miRNAs and tsRNAs are enriched in epididymis cauda and ejaculated sperm, while rsRNA expression peaks at epididymis corpus. In addition, epididymis corpus contains mainly 20 nt long piRNAs, instead of 30 nt in all other locations. Beyond the bulk differences in abundance of sncRNAs classes, K-means clustering was performed to study their spatiotemporal expression profile, highlighting differences in specific sncRNAs and providing insights into their putative biological role at each maturation stage. For instance, Gene Ontology analyses using miRNA targets highlighted enriched processes such as cell cycle regulation, response to stress and ubiquitination processes in testicular parenchyma, protein metabolism in epididymal sperm, and embryonic morphogenesis in ejaculated sperm. Conclusions Our findings confirm that the sperm sncRNAome does not simply reflect a legacy of spermatogenesis. Instead, sperm sncRNA expression shows a remarkable level of plasticity resulting probably from the combination of multiple factors such as loss of the cytoplasmic droplet, interaction with epididymosomes, and more surprisingly, the putative in situ production and/or modification of sncRNAs by sperm. Given the suggested role of sncRNA in epigenetic trans-generational inheritance, our detailed spatiotemporal analysis may pave the way for a study of sperm sncRNAs role in embryo development. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00397-5.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.
| | - Sylvain Marthey
- AgroParisTech, INRAE, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,INRAE, MaIAGE, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- AgroParisTech, INRAE, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, Estrées-Mons, France
| | - Luc Jouneau
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Aurelie Bonnet
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | | | - Benoît Guyonnet
- R&D Department, Union Evolution, rue Eric Tabarly, 35538, Noyal-Sur-Vilaine, France
| | - Hélène Kiefer
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Hélène Jammes
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | | |
Collapse
|
24
|
Li HM, Tan X, Zhang S, Yao J, Li HG. Transfer- or 'transmission'-RNA fragments? The roles of tsRNAs in the reproductive system. Mol Hum Reprod 2021; 27:6218776. [PMID: 33837423 DOI: 10.1093/molehr/gaab026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Transfer-RNAs (tRNAs) help ribosomes decode mRNAs and synthesize proteins; however, tRNA fragments produced under certain conditions, known as tRNA-derived small RNAs (tsRNAs), have been found to play important roles in pathophysiological processes. In the reproductive system, tsRNAs are abundant in gametes and embryos and at the maternal-fetal interface, as well as in microvesicles like epididymosomes, seminal plasma exosomes, and syncytiotrophoblast-derived extracellular vesicles. tsRNAs can affect gamete cell maturation, zygote activation, and early embryonic development. tsRNAs can transmit epigenetic information to later generations. In particular, exposure to environmental factors such as nutrition, isoproterenol, and poly(I:C) may allow tsRNAs to transfer information to the gametes or placenta to alter offspring phenotype. The underlying mechanisms of tsRNAs action include transposon silencing, translation regulation, and target mRNA degradation. Herein, we review the currently reported tsRNAs in the reproductive system, their validated functions, and potential roles. A better understanding of this field may help to provide useful recommendations or develop strategies to increase fertility and conception of healthy babies.
Collapse
Affiliation(s)
- Hui-Min Li
- Guilin Medical University, Guilin, P.R. China
| | - Xia Tan
- Center of Reproductive Medicine, Wuhan Union Hospital, Wuhan, P.R. China
| | - Shun Zhang
- Guilin Medical University Affiliated Hospital, Guilin, P.R. China
| | - Jun Yao
- Guilin Medical University Affiliated Hospital, Guilin, P.R. China
| | - Hong-Gang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,Genetic Laboratory, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, P.R. China
| |
Collapse
|
25
|
Chukrallah LG, Badrinath A, Seltzer K, Snyder EM. Of rodents and ruminants: a comparison of small noncoding RNA requirements in mouse and bovine reproduction. J Anim Sci 2021; 99:6156131. [PMID: 33677580 DOI: 10.1093/jas/skaa388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023] Open
Abstract
Ruminants are major producers of meat and milk, thus managing their reproductive potential is a key element in cost-effective, safe, and efficient food production. Of particular concern, defects in male germ cells and female germ cells may lead to significantly reduced live births relative to fertilization. However, the underlying molecular drivers of these defects are unclear. Small noncoding RNAs, such as piRNAs and miRNAs, are known to be important regulators of germ-cell physiology in mouse (the best-studied mammalian model organism) and emerging evidence suggests that this is also the case in a range of ruminant species, in particular bovine. Similarities exist between mouse and bovids, especially in the case of meiotic and postmeiotic male germ cells. However, fundamental differences in small RNA abundance and metabolism between these species have been observed in the female germ cell, differences that likely have profound impacts on their physiology. Further, parentally derived small noncoding RNAs are known to influence early embryos and significant species-specific differences in germ-cell born small noncoding RNAs have been observed. These findings demonstrate the mouse to be an imperfect model for understanding germ-cell small noncoding RNA biology in ruminants and highlight the need to increase research efforts in this underappreciated aspect of animal reproduction.
Collapse
Affiliation(s)
| | - Aditi Badrinath
- Department of Animal Science, Rutgers University, New Brunswick, NJ
| | - Kelly Seltzer
- Department of Animal Science, Rutgers University, New Brunswick, NJ
| | | |
Collapse
|
26
|
Zhu L, Marjani SL, Jiang Z. The Epigenetics of Gametes and Early Embryos and Potential Long-Range Consequences in Livestock Species-Filling in the Picture With Epigenomic Analyses. Front Genet 2021; 12:557934. [PMID: 33747031 PMCID: PMC7966815 DOI: 10.3389/fgene.2021.557934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
The epigenome is dynamic and forged by epigenetic mechanisms, such as DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA species. Increasing lines of evidence support the concept that certain acquired traits are derived from environmental exposure during early embryonic and fetal development, i.e., fetal programming, and can even be "memorized" in the germline as epigenetic information and transmitted to future generations. Advances in technology are now driving the global profiling and precise editing of germline and embryonic epigenomes, thereby improving our understanding of epigenetic regulation and inheritance. These achievements open new avenues for the development of technologies or potential management interventions to counteract adverse conditions or improve performance in livestock species. In this article, we review the epigenetic analyses (DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs) of germ cells and embryos in mammalian livestock species (cattle, sheep, goats, and pigs) and the epigenetic determinants of gamete and embryo viability. We also discuss the effects of parental environmental exposures on the epigenetics of gametes and the early embryo, and evidence for transgenerational inheritance in livestock.
Collapse
Affiliation(s)
- Linkai Zhu
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Sadie L. Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT, United States
| | - Zongliang Jiang
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
27
|
Keles E, Malama E, Bozukova S, Siuda M, Wyck S, Witschi U, Bauersachs S, Bollwein H. The micro-RNA content of unsorted cryopreserved bovine sperm and its relation to the fertility of sperm after sex-sorting. BMC Genomics 2021; 22:30. [PMID: 33413071 PMCID: PMC7792310 DOI: 10.1186/s12864-020-07280-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The use of sex-sorted sperm in cattle assisted reproduction is constantly increasing. However, sperm fertility can substantially differ between unsorted (conventional) and sex-sorted semen batches of the same sire. Sperm microRNAs (miRNA) have been suggested as promising biomarkers of bull fertility the last years. In this study, we hypothesized that the miRNA profile of cryopreserved conventional sperm is related to bull fertility after artificial insemination with X-bearing sperm. For this purpose, we analyzed the miRNA profile of 18 conventional sperm samples obtained from nine high- (HF) and nine low-fertility (LF) bulls that were contemporaneously used to produce conventional and sex-sorted semen batches. The annual 56-day non-return rate for each semen type (NRRconv and NRRss, respectively) was recorded for each bull. RESULTS In total, 85 miRNAs were detected. MiR-34b-3p and miR-100-5p were the two most highly expressed miRNAs with their relative abundance reaching 30% in total. MiR-10a-5p and miR-9-5p were differentially expressed in LF and HF samples (false discovery rate < 10%). The expression levels of miR-9-5p, miR-34c, miR-423-5p, miR-449a, miR-5193-5p, miR-1246, miR-2483-5p, miR-92a, miR-21-5p were significantly correlated to NRRss but not to NRRconv. Based on robust regression analysis, miR-34c, miR-7859 and miR-342 showed the highest contribution to the prediction of NRRss. CONCLUSIONS A set of miRNAs detected in conventionally produced semen batches were linked to the fertilizing potential of bovine sperm after sex-sorting. These miRNAs should be further evaluated as potential biomarkers of a sire's suitability for the production of sex-sorted sperm.
Collapse
Affiliation(s)
- Esin Keles
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland
| | - Eleni Malama
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland.
- Veterinary Research Institute, Hellenic Agricultural Organization Demeter, 57001, Thermi, Thessaloniki, Greece.
| | - Siyka Bozukova
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland
| | - Mathias Siuda
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland
| | - Sarah Wyck
- Swissgenetics, CH-3052, Zollikofen, Switzerland
| | | | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland
| |
Collapse
|
28
|
Prakash MA, Kumaresan A, Sinha MK, Kamaraj E, Mohanty TK, Datta TK, Morrell JM. RNA-Seq analysis reveals functionally relevant coding and non-coding RNAs in crossbred bull spermatozoa. Anim Reprod Sci 2020; 222:106621. [PMID: 33069132 PMCID: PMC7607363 DOI: 10.1016/j.anireprosci.2020.106621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022]
Abstract
RNA-Seq analysis was done to characterize the transcriptome of crossbred bull spermatozoa. Among the 13,814 transcripts detected, 431 had FPKM > 1 and 13,673 had FPKM > 0 or < 1. Coding and non-coding RNAs account for 13,145 (95.15%) and 152 (1.1%), respectively. Sperm transcripts were mainly related to ribosome, oxidative phosphorylation and spliceosome pathways. qPCR analysis showed individual variations in transcriptional abundance of selected genes.
Sperm, which are believed to be transcriptionally and translationally inactive, synthesize RNA and proteins before there is gradual disappearance of the ribosome during chromatin compaction. Sperm transfer several functionally relevant transcripts to the oocyte, controlling maternal-zygotic transition and embryonic development. The present study was undertaken to profile and analyze sperm transcripts comprehensively using Next Generation Ribonucleic acid sequencing technology in Holstein Friesian x Tharparkar crossbred bulls. The results from global transcriptomic profiling revealed transcripts for 13,814 genes; of which 431 transcripts were expressed with >1 FPKM and 13,383 transcripts were expressed with >0 or <1 FPKM. The abundant mRNA transcripts of crossbred bull sperm were PRM1 and HMGB4. Gene ontology of transcripts with>1 FPKM revealed there was a major involvement in the structural constituent of ribosomes and translation. Results from pathway enrichment indicated the connection between ribosome, oxidative phosphorylation and spliceosome pathways and the transcripts of crossbred bull spermatozoa. The transcriptional abundance of selected genes, validated using RT-qPCR, indicated significant variations between bulls. Collectively, it may be inferred that the transcripts in crossbred bull sperm were heavily implicated in functions such as the structural constituent of ribosomes and translation, and pathways such as ribosome, oxidative phosphorylation and spliceosome. Further studies using larger sample sizes are required to understand the possible implications of transcriptomic variations on semen quality and fertility.
Collapse
Affiliation(s)
- Mani Arul Prakash
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030 Karnataka, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030 Karnataka, India.
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030 Karnataka, India
| | - Elango Kamaraj
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030 Karnataka, India
| | - Tushar Kumar Mohanty
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, 132001 Haryana, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana, India
| | - Jane M Morrell
- Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
29
|
Zhou H, Liu J, Sun W, Ding R, Li X, Shangguan A, Zhou Y, Worku T, Hao X, Khan FA, Yang L, Zhang S. Differences in small noncoding RNAs profile between bull X and Y sperm. PeerJ 2020; 8:e9822. [PMID: 32999759 PMCID: PMC7505075 DOI: 10.7717/peerj.9822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
The differences in small noncoding RNAs (sncRNAs), including miRNAs, piRNAs, and tRNA-derived fragments (tsRNAs), between X and Y sperm of mammals remain unclear. Here, we employed high-throughput sequencing to systematically compare the sncRNA profiles of X and Y sperm from bulls (n = 3), which may have a wider implication for the whole mammalian class. For the comparison of miRNA profiles, we found that the abundance of bta-miR-652 and bta-miR-378 were significantly higher in X sperm, while nine miRNAs, including bta-miR-204 and bta-miR-3432a, had greater abundance in Y sperm (p < 0.05). qPCR was then used to further validate their abundances. Subsequent functional analysis revealed that their targeted genes in sperm were significantly involved in nucleosome binding and nucleosomal DNA binding. In contrast, their targeted genes in mature oocyte were significantly enriched in 11 catabolic processes, indicating that these differentially abundant miRNAs may trigger a series of catabolic processes for the catabolization of different X and Y sperm components during fertilization. Furthermore, we found that X and Y sperm showed differences in piRNA clusters distributed in the genome as well as piRNA and tsRNA abundance, two tsRNAs (tRNA-Ser-AGA and tRNA-Ser-TGA) had lower abundance in X sperm than Y sperm (p < 0.05). Overall, our work describes the different sncRNA profiles of X and Y sperm in cattle and enhances our understanding of their potential roles in the regulation of sex differences in sperm and early embryonic development.
Collapse
Affiliation(s)
- Hao Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Jiajia Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Wei Sun
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Rui Ding
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Xihe Li
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Aishao Shangguan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tesfaye Worku
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xingjie Hao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Faheem Ahmed Khan
- Department of Zoology, University of Central Punjab, Lahore, Pakistan
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shujun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|