1
|
Li Y, Xu F, Fang Y, Cui Y, Zhu Z, Wu Y, Tong Y, Hu J, Zhu L, Shen H. Inflammation-fibrosis interplay in inflammatory bowel disease: mechanisms, progression, and therapeutic strategies. Front Pharmacol 2025; 16:1530797. [PMID: 40093318 PMCID: PMC11906429 DOI: 10.3389/fphar.2025.1530797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Background The incidence of intestinal fibrosis in Inflammatory bowel disease has increased in recent years, and the repair process is complex, leading to substantial economic and social burdens. Therefore, understanding the pathogenesis of intestinal fibrosis and exploring potential therapeutic agents is crucial. Purpose This article reviews the pathogenesis of IBD-related intestinal fibrosis, potential therapeutic targets, and the progress of research on Traditional Chinese Medicine (TCM) in inhibiting intestinal fibrosis. It also provides foundational data for developing innovative drugs to prevent intestinal fibrosis. Methods This article reviews the literature from the past decade on advancements in the cellular and molecular mechanisms underlying intestinal fibrosis. Data for this systematic research were obtained from electronic databases including PubMed, CNKI, SciFinder, and Web of Science. Additionally, a comprehensive analysis was conducted on reports regarding the use of TCM for the treatment of intestinal fibrosis. The study synthesizes and summarizes the research findings, presenting key patterns and trends through relevant charts. Results This study reviewed recent advancements in understanding the cellular and molecular mechanisms of intestinal fibrosis, the active ingredients of TCM that inhibit intestinal fibrosis, the efficacy of TCM formulae in preventing intestinal fibrosis, and dietary modification that may contribute to the inhibition of intestinal fibrosis. Conclusion This article examines the cellular and molecular mechanisms that promote the development of intestinal fibrosis, as well as potential therapeutic targets for its treatment. It also provides a theoretical basis for exploring and utilizing TCM resources in the management of intestinal fibrosis. Through the analysis of various TCM medicines, this article underscores the clinical significance and therapeutic potential of TCM and dietary modifications in treating intestinal fibrosis.
Collapse
Affiliation(s)
- Yanan Li
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Xu
- Department of Gastroenterology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yulai Fang
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Cui
- Department of Gastroenterology, Ningxian second People's Hospital, Qing Yang, China
| | - Zhenxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuguang Wu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiheng Tong
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingyi Hu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Zhu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong Shen
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Torre A, Martínez‐Sánchez FD, Narvaez‐Chávez SM, Herrera‐Islas MA, Aguilar‐Salinas CA, Córdova‐Gallardo J. Pirfenidone use in fibrotic diseases: What do we know so far? Immun Inflamm Dis 2024; 12:e1335. [PMID: 38967367 PMCID: PMC11225083 DOI: 10.1002/iid3.1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Pirfenidone has demonstrated significant anti-inflammatory and antifibrotic effects in both animal models and some clinical trials. Its potential for antifibrotic activity positions it as a promising candidate for the treatment of various fibrotic diseases. Pirfenidone exerts several pleiotropic and anti-inflammatory effects through different molecular pathways, attenuating multiple inflammatory processes, including the secretion of pro-inflammatory cytokines, apoptosis, and fibroblast activation. OBJECTIVE To present the current evidence of pirfenidone's effects on several fibrotic diseases, with a focus on its potential as a therapeutic option for managing chronic fibrotic conditions. FINDINGS Pirfenidone has been extensively studied for idiopathic pulmonary fibrosis, showing a favorable impact and forming part of the current treatment regimen for this disease. Additionally, pirfenidone appears to have beneficial effects on similar fibrotic diseases such as interstitial lung disease, myocardial fibrosis, glomerulopathies, aberrant skin scarring, chronic liver disease, and other fibrotic disorders. CONCLUSION Given the increasing incidence of chronic fibrotic conditions, pirfenidone emerges as a potential therapeutic option for these patients. However, further clinical trials are necessary to confirm its therapeutic efficacy in various fibrotic diseases. This review aims to highlight the current evidence of pirfenidone's effects in multiple fibrotic conditions.
Collapse
Affiliation(s)
- Aldo Torre
- Metabolic UnitInstituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubiran”Mexico CityMexico
| | - Froylan David Martínez‐Sánchez
- Facultad de MedicinaUniversidad Nacional Autonoma de MexicoMexico CityMexico
- Department of Internal MedicineHospital General “Dr. Manuel Gea González”Mexico CityMexico
| | | | | | | | - Jacqueline Córdova‐Gallardo
- Facultad de MedicinaUniversidad Nacional Autonoma de MexicoMexico CityMexico
- Department of HepatologyHospital General “Dr. Manuel Gea González”Mexico CityMexico
| |
Collapse
|
3
|
Liu J, Wang J, Zhang Q, Lu F, Cai J. Clinical, Histologic, and Transcriptomic Evaluation of Sequential Fat Grafting for Morphea: A Nonrandomized Controlled Trial. JAMA Dermatol 2024; 160:425-433. [PMID: 38324287 PMCID: PMC11024779 DOI: 10.1001/jamadermatol.2023.5908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Importance Morphea is a rare disease of unknown etiology without satisfactory treatment for skin sclerosis and soft tissue atrophy. Objective To provide clinical, histologic, and transcriptome evidence of the antisclerotic and regenerative effects of sequential fat grafting with fresh fat and cryopreserved stromal vascular fraction gel (SVF gel) for morphea. Design, Setting, and Participants This single-center, nonrandomized controlled trial was conducted between January 2022 and March 2023 in the Department of Plastic and Reconstructive Surgery of Nanfang Hospital, Southern Medical University and included adult participants with early-onset or late-onset morphea who presented with varying degrees of skin sclerosis and soft tissue defect. Interventions Group 1 received sequential grafting of fresh fat and cryopreserved SVF gel (at 1 and 2 months postoperation). Group 2 received single autologous fat grafting. All patients were included in a 12-month follow-up. Main Outcome and Measures The primary outcome included changes in the modified Localized Scleroderma Skin Severity Index (mLoSSI) and Localized Scleroderma Skin Damage Index (LoSDI) scores as evaluated by 2 independent blinded dermatologists. The histologic and transcriptome changes of morphea skin lesions were also evaluated. Results Of 44 patients (median [IQR] age, 26 [23-33] years; 36 women [81.8%]) enrolled, 24 (54.5%) were assigned to group 1 and 20 (45.5%) to group 2. No serious adverse events were noted. The mean (SD) mLoSSI scores at 12 months showed a 1.6 (1.50) decrease in group 1 and 0.9 (1.46) in group 2 (P = .13), whereas the mean (SD) LoSDI scores at 12 months showed a 4.3 (1.34) decrease in group 1 and 2.1 (1.07) in group 2 (P < .001), indicating that group 1 had more significant improvement in morphea skin damage but not disease activity compared with group 2. Histologic analysis showed improved skin regeneration and reduced skin sclerosis in group 1, whereas skin biopsy specimens of group 2 patients did not show significant change. Transcriptome analysis of skin biopsy specimens from group 1 patients suggested that tumor necrosis factor α signaling via NFκB might contribute to the immunosuppressive and antifibrotic effect of sequential fat grafting. A total of 15 hub genes were captured, among which many associated with morphea pathogenesis were downregulated and validated by immunohistochemistry, such as EDN1, PAI-1, and CTGF. Conclusions and Relevance The results of this nonrandomized trial suggest that sequential fat grafting with fresh fat and cryopreserved SVF gel was safe and its therapeutic effect was superior to that of single autologous fat grafting with improved mLoSSI and LoSDI scores. Histological and transcriptomic changes further support the effectiveness after treatment. Trial Registration Chinese Clinical Trial Registry identifier: ChiCTR2200058003.
Collapse
Affiliation(s)
- Juzi Liu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Wang
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Zhang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junrong Cai
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Saracino AM, Kelberman D, Otto GW, Gagunashvili A, Abraham DJ, Denton CP. Unravelling morphoea aetiopathogenesis by next-generation sequencing of paired skin biopsies. Arch Dermatol Res 2023; 315:2035-2056. [PMID: 36912952 PMCID: PMC10366313 DOI: 10.1007/s00403-023-02541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Morphoea can have a significant disease burden. Aetiopathogenesis remains poorly understood, with very limited existing genetic studies. Linear morphoea (LM) may follow Blascho's lines of epidermal development, providing potential pathogenic clues. OBJECTIVE The first objective of this study was to identify the presence of primary somatic epidermal mosaicism in LM. The second objective was tTo explore differential gene expression in morphoea epidermis and dermis to identify potential pathogenic molecular pathways and tissue layer cross-talk. METHODOLOGY Skin biopsies from paired affected and contralateral unaffected skin were taken from 16 patients with LM. Epidermis and dermis were isolated using a 2-step chemical-physical separation protocol. Whole Genome Sequencing (WGS; n = 4 epidermal) and RNA-seq (n = 5-epidermal, n = 5-dermal) with gene expression analysis via GSEA-MSigDBv6.3 and PANTHER-v14.1 pathway analyses, were performed. RTqPCR and immunohistochemistry were used to replicate key results. RESULTS Sixteen participants (93.8% female, mean age 27.7 yrs disease-onset) were included. Epidermal WGS identified no single affected gene or SNV. However, many potential disease-relevant pathogenic variants were present, including ADAMTSL1 and ADAMTS16. A highly proliferative, inflammatory and profibrotic epidermis was seen, with significantly-overexpressed TNFα-via-NFkB, TGFβ, IL6/JAKSTAT and IFN-signaling, apoptosis, p53 and KRAS-responses. Upregulated IFI27 and downregulated LAMA4 potentially represent initiating epidermal 'damage' signals and enhanced epidermal-dermal communication. Morphoea dermis exhibited significant profibrotic, B-cell and IFN-signatures, and upregulated morphogenic patterning pathways such as Wnt. CONCLUSION This study supports the absence of somatic epidermal mosaicism in LM, and identifies potential disease-driving epidermal mechanisms, epidermal-dermal interactions and disease-specific dermal differential-gene-expression in morphoea. We propose a potential molecular narrative for morphoea aetiopathogenesis which could help guide future targeted studies and therapies.
Collapse
Affiliation(s)
- Amanda M Saracino
- Division of Medicine, Centre for Rheumatology and Connective Tissues Diseases, University College London, London, UK.
- Department of Dermatology, Royal Free NHS Foundation Trust, London, UK.
- Melbourne Dermatology Clinic, 258 Park Street, South Melbourne, VIC, 3205, Australia.
| | - Daniel Kelberman
- GOSgene, Genetics and Genomic Medicine, Great Ormand Street Institute of Child Health, University College London, London, UK
| | - Georg W Otto
- GOSgene, Genetics and Genomic Medicine, Great Ormand Street Institute of Child Health, University College London, London, UK
| | - Andrey Gagunashvili
- GOSgene, Genetics and Genomic Medicine, Great Ormand Street Institute of Child Health, University College London, London, UK
| | - David J Abraham
- Division of Medicine, Centre for Rheumatology and Connective Tissues Diseases, University College London, London, UK
| | - Christopher P Denton
- Division of Medicine, Centre for Rheumatology and Connective Tissues Diseases, University College London, London, UK
- Department of Rheumatology, Royal Free NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Ivanova Z, Aleksiev T, Dobrev H, Atanasov N. Use of a novel indentometer to evaluate skin stiffness in healthy and diseased human skin. Skin Res Technol 2023; 29:e13384. [PMID: 37522487 PMCID: PMC10339004 DOI: 10.1111/srt.13384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/25/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Mechanical behavior of the skin can be evaluated by different non-invasive methods. In this study, we applied a new measurement device based on indentometry to determine the skin mechanical properties in healthy individuals and in patients with systemic sclerosis (SSc). MATERIAL AND METHODS Three studies were performed. Study 1 included 100 healthy individuals (46 male and 54 female) divided into four age groups with mean ages of 21.5, 28.9, 51.2, and 69.3 years, respectively. Test sites were located on the center of the forehead and the middle of both volar forearms. Study 2 included 16 healthy individuals (two males and 14 females). Test sites were on both volar forearms. Measurements were made before and after the application of Vaseline and emulsion with 12% urea. Study 3 included 20 patients (one male and 19 females) with SSc and 60 age-matched healthy individuals (23 males and 37 females). Test sites were on the center of the forehead and the middle of both volar forearms. Skin stiffness was measured with skin Indentometer IDM 800 (Courage + Khazaka, Cologne, Germany) equipped with two probes with pin diameters of 3 and 5 mm, respectively. The stiffer the skin, the less deep the displacement by the indenter. The smaller the diameter, the deeper the pin will go into the skin when using the same force. In addition, the Corneometer CM 820 (Courage + Khazaka) was used to determine epidermal water content in study 2. RESULTS Indentometric (IDM) values of healthy subjects measured with both probes were lower on the forehead compared to volar forearms. There was no significant difference between both forearms. In all age groups, the IDM values on the male forearms were lower than on the female forearms whereas there was no significant difference on the forehead. In both sex and on all test locations a significant positive correlation between age and IDM values measured with both probes was observed. There was a significant positive correlation between IDM values measured with both probes. The application of moisturizers induced significant changes in epidermal water content whereas the IDM values remained unchanged. At both the forehead and volar forearms, the IDM values in patients with SSc were significantly lower compared to the healthy control skin. CONCLUSION The non-invasive indentometric method used can successfully distinguish the changes in normal skin mechanical properties related to age, sex, and anatomical location, as well as in patients with SSc. The method is not appropriate to study the changes related to epidermal hydration.
Collapse
Affiliation(s)
- Zlatina Ivanova
- Department of Dermatology and Venereology, Medical FacultyMedical UniversityPlovdivBulgaria
| | - Teodor Aleksiev
- Department of Dermatology and Venereology, Medical FacultyMedical UniversityPlovdivBulgaria
| | - Hristo Dobrev
- Department of Dermatology and Venereology, Medical FacultyMedical UniversityPlovdivBulgaria
| | - Nikolay Atanasov
- Department of Health Management and Health Economics, Faculty of Public HealthMedical UniversityPlovdivBulgaria
| |
Collapse
|
6
|
Chung EP, Nguyen JQ, Tellkamp-Schehr T, Goebel K, Ollek A, Krein C, Wells AR, Sebastian EA, Goebel A, Niese S, Leung KP. A Soft Skin Adhesive (SSA) Patch for Extended Release of Pirfenidone in Burn Wounds. Pharmaceutics 2023; 15:1842. [PMID: 37514029 PMCID: PMC10386754 DOI: 10.3390/pharmaceutics15071842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
As much as half or more of deep partial-thickness burn wounds develop hypertrophic scarring and contracture. Once formed, treatments are only minimally effective. Pirfenidone (Pf), indicated for treatment of idiopathic pulmonary fibrosis, is an anti-inflammatory and anti-fibrotic small molecule that potentially can be repurposed as a preventative against scarring in burn wounds. We present a drug-in-matrix patch with a soft skin adhesive (SSA) wound-contacting layer for multi-day drug delivery of Pf into burn wounds at the point of injury. Our patch construction consists of an SSA adhesive layer (Liveo™ MG7-9850, Dupont, Wilmington, DE, USA) for wound fixation, an acrylic co-polymer drug matrix (DURO-TAK 87-2852, Henkel, Düsseldorf, Germany) as the drug (Pf) reservoir, and an outermost protective polyurethane backing. By employing a drug-in-matrix patch design, Pf can be loaded as high as 2 mg/cm2. Compared to the acrylic co-polymer adhesive patch preparations and commercial films, adding an SSA layer markedly reduces skin stripping observed under scanning electron microscopy (SEM). Moreover, the addition of varying SSA thicknesses did not interfere with the in vitro release kinetics or drug permeation in ex vivo porcine skin. The Pf patch can be easily applied onto and removed from deep partial-thickness burn wounds on Duroc pigs. Continuous multi-day dosing of Pf by the patches (>200 μg/cm2/day) reduced proinflammatory biomarkers in porcine burn wounds. Pf patches produced by the manual laboratory-scale process showed excellent stability, maintaining intact physical patch properties and in vitro biological activity for up to one year under long-term (25 °C at 60% RH) and 6 months under accelerated (40 °C at 75% RH) test conditions. To manufacture our wound safe-and-extended-release patch, we present scale-up processes using a machine-driven automated roll-to-roll pilot scale coater.
Collapse
Affiliation(s)
- Eugene P Chung
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Jesse Q Nguyen
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
| | | | - Katja Goebel
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Anita Ollek
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Cliff Krein
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Adrienne R Wells
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
- MicRoN Core, Harvard Medical School, Boston, MA 02215, USA
| | - Eliza A Sebastian
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
| | - Anja Goebel
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Svenja Niese
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Kai P Leung
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
7
|
Effective therapy of pirfenidone in a patient with idiopathic retroperitoneal fibrosis: report of a case. Clin Rheumatol 2023; 42:591-595. [PMID: 36477394 DOI: 10.1007/s10067-022-06466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Idiopathic retroperitoneal fibrosis (iRPF) is a chronic autoimmune disease characterized by fibroinflammatory tissue surrounding the abdominal aorta and iliac arteries and extending into the retroperitoneum to envelop neighboring structures. Hydronephrosis due to obstruction of ureters is the most common complication of iRPF. Glucocorticoid with or without immunosuppressants or tamoxifen, the mainstay of iRPF treatment, usually brings good response. Nevertheless, in some conditions, the obstruction of ureters remains unresolved with the treatment of all these medications. One of the reasons lies in the innate feature of the fibroinflammatory tissue. The proliferation of fibrosis tissue in addition to inflammation in the mass was associated with insufficient response to immunosuppressive therapies. Pirfenidone, an anti-fibrosis agent, has been successful in treating pulmonary fibrosis and renal fibrosis. Therefore, it is rationale to assume the effectiveness of pirfenidone in the treatment of iRPF. In the current article, we report a 61-year-old Chinese man with iRPF who responded well to pirfenidone.
Collapse
|
8
|
Cristodor PL, Nechifor A, Fotea S, Nadasdy T, Bahloul Y, Nicolescu AC, Tatu AL. New Antifibroblastic Medication in Dermatology: Could Nintedanib Treat Scarring? Int J Gen Med 2022; 15:7169-7172. [PMID: 36118185 PMCID: PMC9480593 DOI: 10.2147/ijgm.s377073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
There are a wide variety of disfiguring dermatological conditions whose pathologic substrate is represented by the unwanted deposition of collagen from dermal fibroblasts. Pirfenidone has demonstrated efficiency in the treatment of disordered collagen production when applied topically. Due to a similar mechanism of action, we also hypothesize that a similar medication, nintedanib, might have similar applications. We also propose that a liposomal technology may assist in the penetration of nintedanib and enhance its clinical effects.
Collapse
Affiliation(s)
- Patricia Liana Cristodor
- Center for the Morphologic Study of the Skin MORPHODERM, University of Medicine and Pharmacy “Victor Babeș”, Timișoara, TM, Romania
- Dermatology Department, Spitalul Clinic Municipal de Urgenta Timisoara, Timişoara, TM, Romania
| | - Alexandru Nechifor
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, GL, Romania
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, GL, Romania
| | - Thomas Nadasdy
- Dermatology Department, Spitalul Clinic Municipal de Urgenta Timisoara, Timişoara, TM, Romania
- Multidisciplinary Integrative Center for Dermatologic Interface Research MIC-DIR, Galati, GL, Romania
- Correspondence: Thomas Nadasdy; Yousef Bahloul, Dermatology Department, Spitalul Clinic Municipal de Urgenta Timisoara, str. Ofcea nr.24, Timişoara, TM, 300558, Romania, Tel +40 751609000, Email ;
| | - Yousef Bahloul
- Dermatology Department, Spitalul Clinic Municipal de Urgenta Timisoara, Timişoara, TM, Romania
- PhD Studies Department, University of Medicine and Pharmacy, Victor Babeș” Timișoara, Timișoara, TM, Romania
| | - Alin Codrut Nicolescu
- Department of Dermatology, ‘Roma’ Medical Center for Diagnosis and Treatment, Bucharest, Romania
| | - Alin Laurentiu Tatu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, GL, Romania
- Multidisciplinary Integrative Center for Dermatologic Interface Research MIC-DIR, Galati, GL, Romania
- Dermatology Department, “Sf. Cuvioasa Parascheva” Clinical Hospital of Infectious Diseases, Galati, GL, Romania
- Research Center in the Field of Medical and Pharmaceutical Sciences ReFORM-UDJ, Galati, GL, Romania
| |
Collapse
|
9
|
Kumari J, Wagener FADTG, Kouwer PHJ. Novel Synthetic Polymer-Based 3D Contraction Assay: A Versatile Preclinical Research Platform for Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19212-19225. [PMID: 35468292 PMCID: PMC9073832 DOI: 10.1021/acsami.2c02549] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The driving factors causing fibrosis and scar formation include fibroblast differentiation into myofibroblasts and hampered myofibroblast apoptosis, which ultimately results in collagen accumulation and tissue contraction. Currently, only very few drugs are available for fibrosis treatment, and there is an urgent demand for new pharmaceutical products. High-throughput in vitro fibrosis models are necessary to develop such drugs. In this study, we developed such a novel model based on synthetic polyisocyanide (PIC-RGD) hydrogels. The model not only measures contraction but also allows for subsequent molecular and cellular analysis. Fibroblasts were seeded in small (10 μL) PIC-RGD gels in the absence or presence of TGFβ1, the latter to induce myofibroblast differentiation. The contraction model clearly differentiates fibroblasts and myofibroblasts. Besides a stronger contraction, we also observed α-smooth muscle actin (αSMA) production and higher collagen deposition for the latter. The results were supported by mRNA expression experiments of αSMA, Col1α1, P53, and Ki67. As proof of principle, the effects of FDA-approved antifibrotic drugs nintedanib and pirfenidone were tested in our newly developed fibrosis model. Both drugs clearly reduce myofibroblast-induced contraction. Moreover, both drugs significantly decrease myofibroblast viability. Our low-volume synthetic PIC-RGD hydrogel platform is an attractive tool for high-throughput in vitro antifibrotic drug screening.
Collapse
Affiliation(s)
- Jyoti Kumari
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department
of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 6525 EX Nijmegen, The Netherlands
| | - Frank A. D. T. G. Wagener
- Department
of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 6525 EX Nijmegen, The Netherlands
- (F.A.D.T.G.W.)
| | - Paul H. J. Kouwer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- (P.H.J.K.)
| |
Collapse
|
10
|
Panigrahi S, Barry A, Multner S, Kasting G, Landero Figueroa JA, Satish L, Kumari H. Pirfenidone as a potential Antifibrotic Injectable for Dupuytren’s Disease. Pharm Dev Technol 2022; 27:242-250. [DOI: 10.1080/10837450.2022.2038201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Suchitra Panigrahi
- James L. Winkle College of Pharmacy, University of Cincinnati, OH 45267-0514
| | - Amanda Barry
- Shriners Hospitals for Children-Cincinnati, Research Department, Cincinnati, OH 45229
| | - Scott Multner
- Department of Chemistry, University of Cincinnati, OH 45229
| | - Gerald Kasting
- James L. Winkle College of Pharmacy, University of Cincinnati, OH 45267-0514
- Shriners Hospitals for Children-Cincinnati, Research Department, Cincinnati, OH 45229
| | | | - Latha Satish
- Shriners Hospitals for Children-Cincinnati, Research Department, Cincinnati, OH 45229
- Department of Pathology & Laboratory Medicine, University of Cincinnati, OH 45229
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati, OH 45267-0514
| |
Collapse
|
11
|
Glaser D, Torok KS. Evaluation and Treatment of Pediatric Localized Scleroderma: Pearls and Updates. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021. [DOI: 10.1007/s40674-021-00170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Abstract
Despite recent advances in the treatment of autoimmune and inflammatory diseases, unmet medical needs in some areas still exist. One of the main therapeutic approaches to alleviate dysregulated inflammation has been to target the activity of kinases that regulate production of inflammatory mediators. Small-molecule kinase inhibitors have the potential for broad efficacy, convenience and tissue penetrance, and thus often offer important advantages over biologics. However, designing kinase inhibitors with target selectivity and minimal off-target effects can be challenging. Nevertheless, immense progress has been made in advancing kinase inhibitors with desirable drug-like properties into the clinic, including inhibitors of JAKs, IRAK4, RIPKs, BTK, SYK and TPL2. This Review will address the latest discoveries around kinase inhibitors with an emphasis on clinically validated autoimmunity and inflammatory pathways.
Collapse
Affiliation(s)
- Ali A Zarrin
- Discovery Department, TRex Bio, South San Francisco, CA, USA.
| | - Katherine Bao
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| | | | - Domagoj Vucic
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| |
Collapse
|
13
|
Chung EP, Wells AR, Kiamco MM, Leung KP. Dual Asymmetric Centrifugation Efficiently Produces a Poloxamer-Based Nanoemulsion Gel for Topical Delivery of Pirfenidone. AAPS PharmSciTech 2020; 21:265. [PMID: 33006045 PMCID: PMC7529632 DOI: 10.1208/s12249-020-01798-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
This study used dual asymmetric centrifugation (DAC) to produce a topical vehicle for Pirfenidone (Pf; 5-methyl-1-phenyl-2[1H]-pyridone)—a Food and Drug Administration-approved antifibrotic drug indicated for idiopathic fibrosis treatment. Pf was loaded (8 wt%) in a poloxamer nanoemulsion gel (PNG) formulation consisting of water (47.8 wt%), triacetin (27.6 wt%), poloxamer 407 (P407, 13.8 wt%), polysorbate 80 (1.8 wt%), and benzyl alcohol (0.9 wt%). To our knowledge, poloxamer gels are typically processed with either high-shear methods or temperature regulation and have not been emulsified using DAC. Using a single-step emulsification process, 2 min mixed at 2500 RPM resulted in the lowest Pf loading variability with a relative standard deviation (RSD) of 0.96% for a 1.5 g batch size. Batch sizes of 15 g and 100 g yield higher RSD of 4.18% and 3.05%, respectively, but still in compliance with USP guidelines. Ex vivo permeation in full thickness porcine skin after 24 h showed total Pf permeation of 404.90 ± 67.07 μg/cm2. Tested in vitro on human dermal fibroblasts stimulated with transforming growth factor-beta 1 (TGF-β1), Pf-PNG resulted in a > 2 fold decrease in α-SMA expression over vehicle control demonstrating that formulated Pf retained its biological activity. One-month stability testing at 25°C/60% relative humidity (RH) and 40°C/75% RH showed that % drug content, release kinetics, and biological activity were largely unchanged for both conditions; however, pH decreased from 6.7 to 5.5 (25°C/60% RH) and 4.5 (40°C/75% RH) after 1 month. Overall, these data demonstrate the utility of DAC to rapidly and reproducibly prepare lab-scale batches of emulsified gels for pharmaceutical formulation development.
Collapse
|
14
|
Li SC, Zheng RJ. Overview of Juvenile localized scleroderma and its management. World J Pediatr 2020; 16:5-18. [PMID: 31786801 DOI: 10.1007/s12519-019-00320-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Juvenile localized scleroderma (JLS) is a rare pediatric disease characterized by inflammation and skin thickening. JLS is associated with deep tissue and extracutaneous involvement that often results in functional impairment and growth disturbances. This article provides an overview of the disease with a focus on active features and treatment. DATA SOURCES We searched databases including PubMed, Elsevier and MedLine and Wanfang, reviewing publications from 2013 to 2019. Selected earlier publications were also reviewed. RESULTS Linear scleroderma is the most common JLS subtype. Several lines of evidence suggest that JLS is an autoimmune disease. Extracutaneous involvement is common and can present before the onset of skin disease. Multiple skin features are associated with disease activity, and activity can also manifest as arthritis, myositis, uveitis, seizures, and growth impairment. Systemic immunosuppressive treatment, commonly methotrexate with or without glucocorticoids, greatly improves outcome and is recommended for treating JLS patients with active disease and moderate or higher severity. Long term monitoring is needed because of the disease's chronicity and the high frequency of relapses off of treatment. CONCLUSIONS JLS is associated with a risk for disabling and disfiguring morbidity for the growing child. Identifying active disease is important for guiding treatment, but often difficult because of the paucity of markers and lack of a universal skin activity feature. More studies of JLS pathophysiology are needed to allow the identification of biomarkers and therapeutic targets. Comparative effectiveness treatment studies are also needed to work towards optimizing care and outcome.
Collapse
Affiliation(s)
- Suzanne C Li
- Department of Pediatrics, Division of Pediatric Rheumatology, Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center, 30 Prospect Avenue, Imus 337, Hackensack, 07601, NJ, USA.
- Department of Pediatrics, Hackensack Meridian School of Medicine at Seton Hall University, Clifton, 07110, NJ, USA.
| | - Rong-Jun Zheng
- Department of Rheumatology, Immunology, and Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
15
|
Sun YW, Zhang YY, Ke XJ, Wu XJ, Chen ZF, Chi P. Pirfenidone prevents radiation-induced intestinal fibrosis in rats by inhibiting fibroblast proliferation and differentiation and suppressing the TGF-β1/Smad/CTGF signaling pathway. Eur J Pharmacol 2018; 822:199-206. [DOI: 10.1016/j.ejphar.2018.01.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
|
16
|
Chan DD, Li J, Luo W, Predescu DN, Cole BJ, Plaas A. Pirfenidone reduces subchondral bone loss and fibrosis after murine knee cartilage injury. J Orthop Res 2018; 36. [PMID: 28646530 PMCID: PMC5742076 DOI: 10.1002/jor.23635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pirfenidone is an anti-inflammatory and anti-fibrotic drug that has shown efficacy in lung and kidney fibrosis. Because inflammation and fibrosis have been linked to the progression of osteoarthritis, we investigated the effects of oral Pirfenidone in a mouse model of cartilage injury, which results in chronic inflammation and joint-wide fibrosis in mice that lack hyaluronan synthase 1 (Has1-/- ) in comparison to wild-type. Femoral cartilage was surgically injured in wild-type and Has1-/- mice, and Pirfenidone was administered in food starting after 3 days. At 4 weeks, Pirfenidone reduced the appearance, on micro-computed tomography, of pitting in subchondral bone at, and cortical bone surrounding, the site of cartilage injury. This corresponded with a reduction in fibrotic tissue deposits as observed with gross joint surface photography. Pirfenidone resulted in significant recovery of trabecular bone parameters affected by joint injury in Has1-/- mice, although the effect in wild-type was less pronounced. Pirfenidone also increased Safranin-O staining of growth plate cartilage after cartilage injury and sham operation in both genotypes. Taken together with the expression of selected extracellular matrix, inflammation, and fibrosis genes, these results indicate that Pirfenidone may confer chondrogenic and bone-protective effects, although the well-known anti-fibrotic effects of Pirfenidone may occur earlier in the wound-healing response than the time point examined in this study. Further investigations to identify the specific cell populations in the joint and signaling pathways that are responsive to Pirfenidone are warranted, as Pirfenidone and other anti-fibrotic drugs may encourage tissue repair and prevent progression of post-traumatic osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:365-376, 2018.
Collapse
Affiliation(s)
- Deva D. Chan
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center; 1653 West Congress Parkway, Chicago, Illinois, USA 60612,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA,Corresponding author: Deva D. Chan, 110 Eighth St., BT 3141, Troy, NY 12180, Phone: (518) 276-4272
| | - Jun Li
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center; 1653 West Congress Parkway, Chicago, Illinois, USA 60612,Department of Biochemistry, Rush University Medical Center
| | - Wei Luo
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center; 1653 West Congress Parkway, Chicago, Illinois, USA 60612,Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Brian J. Cole
- Midwest Orthopaedics at Rush, Rush University Medical Center,Department of Anatomy and Cell Biology, Rush University Medical Center
| | - Anna Plaas
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center; 1653 West Congress Parkway, Chicago, Illinois, USA 60612,Department of Biochemistry, Rush University Medical Center
| |
Collapse
|
17
|
Abstract
Morphea, also known as localized scleroderma, encompasses a group of idiopathic sclerotic skin diseases. The spectrum ranges from relatively mild phenotypes, which generally cause few problems besides local discomfort and visible disfigurement, to subtypes with severe complications such as joint contractures and limb length discrepancies. Eosinophilic fasciitis (EF, Shulman syndrome) is often regarded as belonging to the severe end of the morphea spectrum. The exact driving mechanisms behind morphea and EF pathogenesis remain to be elucidated. However, extensive extracellular matrix formation and autoimmune dysfunction are thought to be key pathogenic processes. Likewise, these processes are considered essential in systemic sclerosis (SSc) pathogenesis. In addition, similarities in clinical presentation between morphea and SSc have led to many theories about their relatedness. Importantly, morphea may be differentiated from SSc based on absence of sclerodactyly, Raynaud’s phenomenon, and nailfold capillary changes. The diagnosis of morphea is often based on characteristic clinical findings. Histopathological evaluation of skin biopsies and laboratory tests are not necessary in the majority of morphea cases. However, full-thickness skin biopsies, containing fascia and muscle tissue, are required for the diagnosis of EF. Monitoring of disease activity and damage, especially of subcutaneous involvement, is one of the most challenging aspects of morphea care. Therefore, data harmonization is crucial for optimizing standard care and for comparability of study results. Recently, the localized scleroderma cutaneous assessment tool (LoSCAT) has been developed and validated for morphea. The LoSCAT is currently the most widely reported outcome measure for morphea. Care providers should take disease subtype, degree of activity, depth of involvement, and quality-of-life impairments into account when initiating treatment. In most patients with circumscribed superficial subtypes, treatment with topical therapies suffices. In more widespread disease, UVA1 phototherapy or systemic treatment with methotrexate (MTX), with or without a systemic corticosteroid combination, should be initiated. Disappointingly, few alternatives for MTX have been described and additional research is still needed to optimize treatment for these debilitating conditions. In this review, we present a state-of-the-art flow chart that guides care providers in the treatment of morphea and EF.
Collapse
|
18
|
Pirfenidone ameliorates murine chronic GVHD through inhibition of macrophage infiltration and TGF-β production. Blood 2017; 129:2570-2580. [PMID: 28254742 DOI: 10.1182/blood-2017-01-758854] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is hampered by chronic graft-versus-host disease (cGVHD), resulting in multiorgan fibrosis and diminished function. Fibrosis in lung and skin leads to progressive bronchiolitis obliterans (BO) and scleroderma, respectively, for which new treatments are needed. We evaluated pirfenidone, a Food and Drug Administration (FDA)-approved drug for idiopathic pulmonary fibrosis, for its therapeutic effect in cGVHD mouse models with distinct pathophysiology. In a full major histocompatibility complex (MHC)-mismatched, multiorgan system model with BO, donor T-cell responses that support pathogenic antibody production are required for cGVHD development. Pirfenidone treatment beginning one month post-transplant restored pulmonary function and reversed lung fibrosis, which was associated with reduced macrophage infiltration and transforming growth factor-β production. Pirfenidone dampened splenic germinal center B-cell and T-follicular helper cell frequencies that collaborate to produce antibody. In both a minor histocompatibility antigen-mismatched as well as a MHC-haploidentical model of sclerodermatous cGVHD, pirfenidone significantly reduced macrophages in the skin, although clinical improvement of scleroderma was only seen in one model. In vitro chemotaxis assays demonstrated that pirfenidone impaired macrophage migration to monocyte chemoattractant protein-1 (MCP-1) as well as IL-17A, which has been linked to cGVHD generation. Taken together, our data suggest that pirfenidone is a potential therapeutic agent to ameliorate fibrosis in cGVHD.
Collapse
|
19
|
Dart JK. The 2016 Bowman Lecture Conjunctival curses: scarring conjunctivitis 30 years on. Eye (Lond) 2017; 31:301-332. [PMID: 28106896 DOI: 10.1038/eye.2016.284] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022] Open
Abstract
This review is in two sections. The first section summarises 35 conditions, both common and infrequent, causing cicatrising conjunctivitis. Guidelines for making a diagnosis are given together with the use of diagnostic tests, including direct and indirect immunofluorescence, and their interpretation. The second section evaluates our knowledge of ocular mucous membrane pemphigoid, which is the commonest cause of cicatrizing conjunctivitis in most developed countries. The clinical characteristics, demographics, and clinical signs of the disease are described. This is followed by a review and re-evaluation of the pathogenesis of conjunctival inflammation in mucous membrane pemphigoid (MMP), resulting in a revised hypothesis of the autoimmune mechanisms causing inflammation in ocular MMP. The relationship between inflammation and scarring in MMP conjunctiva is described. Recent research, describing the role of aldehyde dehydrogenase (ALDH) and retinoic acid (RA) in both the initiation and perpetuation of profibrotic activity in MMP conjunctival fibroblasts is summarised and the potential for antifibrotic therapy, using ALDH inhibition, is discussed. The importance of the management of the ocular surface in MMP is briefly summarised. This is followed with the rationale for the use of systemic immunomodulatory therapy, currently the standard of care for patients with active ocular MMP. The evidence for the use of these drugs is summarised and guidelines given for their use. Finally, the areas for research and innovation in the next decade are reviewed including the need for better diagnostics, markers of disease activity, and the potential for biological and topical therapies for both inflammation and scarring.
Collapse
Affiliation(s)
- J K Dart
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,National Institute of Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and The UCL Institute of Ophthalmology, London, UK.,Corneal and External Disease Service, Moorfields Eye Hospital, London, UK
| |
Collapse
|
20
|
Zhou C, Liu F, Gallo PH, Baratz ME, Kathju S, Satish L. Anti-fibrotic action of pirfenidone in Dupuytren's disease-derived fibroblasts. BMC Musculoskelet Disord 2016; 17:469. [PMID: 27835939 PMCID: PMC5106805 DOI: 10.1186/s12891-016-1326-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/03/2016] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Dupuytren's disease (DD) is a complex fibro-proliferative disorder of the hand that is often progressive and eventually can cause contractures of the affected fingers. Transforming growth factor beta (TGF-β1) has been implicated as a key stimulator of myofibroblast activity and fascial contraction in DD. Pirfenidone (PFD) is an active small molecule shown to inhibit TGF-β1-mediated action in other fibrotic disorders. This study investigates the efficacy of PFD in vitro in inhibiting TGF-β1-mediated cellular functions leading to Dupuytren's fibrosis. METHODS Fibroblasts harvested from (DD) and carpal tunnel (CT)- tissues were treated with or without TGF-β1 and/or PFD and were subjected to cell migration, cell proliferation and cell contraction assays. ELISA; western blots and real time RT-PCR assays were performed to determine the levels of fibronectin; p-Smad2/Smad3; alpha-smooth muscle actin (α-SMA), α2 chain of type I collagen and α1 chain of type III collagen respectively. RESULTS Our results show that PFD effectively inhibits TGF-β1-induced cell migration, proliferation and cell contractile properties of both CT- and DD-derived fibroblasts. TGF-β1-induced α-SMA mRNA and protein levels were inhibited at the higher concentration of PFD (800 μg/ml). Interestingly, TGF-β1 induction of type I and type III collagens and fibronectin was inhibited by PFD in both CT- and DD- derived fibroblasts, but the effect was more prominent in DD cells. PFD down-regulated TGF-β1-induced phosphorylation of Smad2/Smad3, a key factor in the TGF-β1 signaling pathway. CONCLUSION Taken together these results suggest the PFD can potentially prevent TGF-β1-induced fibroblast to myofibroblast transformation and inhibit ECM production mainly Type I- and Type III- collagen and fibronectin in DD-derived fibroblasts. Further in-vivo studies with PFD may lead to a novel therapeutic application in preventing the progression or recurrence of Dupuytren's disease.
Collapse
Affiliation(s)
- Chaoming Zhou
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Fang Liu
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Phillip H. Gallo
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Mark E. Baratz
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Sandeep Kathju
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Latha Satish
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Plastic Surgery, University of Pittsburgh, 3550 Terrace Street, Scaife Hall, S685.2, Pittsburgh, PA 15261 USA
| |
Collapse
|
21
|
Li G, Ren J, Hu Q, Deng Y, Chen G, Guo K, Li R, Li Y, Wu L, Wang G, Gu G, Li J. Oral pirfenidone protects against fibrosis by inhibiting fibroblast proliferation and TGF-β signaling in a murine colitis model. Biochem Pharmacol 2016; 117:57-67. [DOI: 10.1016/j.bcp.2016.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 12/16/2022]
|
22
|
Huang H, Feng RE, Li S, Xu K, Bi YL, Xu ZJ. A case report: The efficacy of pirfenidone in a Chinese patient with progressive systemic sclerosis-associated interstitial lung disease: A CARE-compliant article. Medicine (Baltimore) 2016; 95:e4113. [PMID: 27399114 PMCID: PMC5058843 DOI: 10.1097/md.0000000000004113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Systemic sclerosis (SSc)-associated interstitial lung disease (SSc-ILD) has become the leading SSc-related cause of death. Although various types of immunosuppressive therapy have been attempted for patients with SSc-ILD, no curative or effective treatment strategies for SSc-ILD have been developed. Therefore, management of patients with SSc-ILD remains a challenge. Here, we report a Chinese, female, SSc-ILD patient who was negative for Scl-70 and showed an excellent response to pirfenidone without obvious adverse effects. She had been suffered from dry cough and exertional dyspnea for 2 months. The chest computed tomography manifestation was consistent with a pattern of fibrotic nonspecific interstitial pneumonia. The pulmonary function test showed isolated impaired diffusion. After 11 weeks of administration of pirfenidone, the dry cough and dyspnea had disappeared. Both of the lung shadows and the pulmonary diffusion function were improved. Pirfenidone might be an effective option for early SSc-ILD treatment. A well-controlled clinical trial is expected in the future.
Collapse
Affiliation(s)
- Hui Huang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Rui E. Feng
- Pathological Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Shan Li
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Kai Xu
- Radiological Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Ya Lan Bi
- Pathological Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Zuo Jun Xu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
- Correspondence: Zuo Jun Xu, Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #1 Shuaifuyuan Street, Dongcheng, Beijing 100730, China ()
| |
Collapse
|
23
|
Brady SM, Shapiro L, Mousa SA. Current and future direction in the management of scleroderma. Arch Dermatol Res 2016; 308:461-71. [PMID: 27139430 DOI: 10.1007/s00403-016-1647-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/23/2016] [Accepted: 04/08/2016] [Indexed: 12/19/2022]
Abstract
Scleroderma is a heterogeneous disease with a complex etiology. As more information is gained about the underlying mechanisms and the improved classifications of scleroderma subtypes, treatments can be better personalized. Improving scleroderma patients' early diagnosis before end organ manifestations occur should improve clinical trial design and outcomes. Two recently FDA-approved antifibrotics for idiopathic pulmonary fibrosis may be effective treatments in patients with pulmonary fibrosis secondary to scleroderma after further investigation. The potential impact of Nanobiotechnology in improving the efficacy and safety of existing antifibrotics and immunomodulators might present an exciting new approach in the management of scleroderma.
Collapse
Affiliation(s)
- Sean M Brady
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, NY, 12144, USA
| | - Lee Shapiro
- Division of Rheumatology, Steffens Scleroderma Center, Albany Medical College, Albany, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, NY, 12144, USA.
| |
Collapse
|