1
|
Castelo-Soccio L, Kim H, Gadina M, Schwartzberg PL, Laurence A, O'Shea JJ. Protein kinases: drug targets for immunological disorders. Nat Rev Immunol 2023; 23:787-806. [PMID: 37188939 PMCID: PMC10184645 DOI: 10.1038/s41577-023-00877-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Protein kinases play a major role in cellular activation processes, including signal transduction by diverse immunoreceptors. Given their roles in cell growth and death and in the production of inflammatory mediators, targeting kinases has proven to be an effective treatment strategy, initially as anticancer therapies, but shortly thereafter in immune-mediated diseases. Herein, we provide an overview of the status of small molecule inhibitors specifically generated to target protein kinases relevant to immune cell function, with an emphasis on those approved for the treatment of immune-mediated diseases. The development of inhibitors of Janus kinases that target cytokine receptor signalling has been a particularly active area, with Janus kinase inhibitors being approved for the treatment of multiple autoimmune and allergic diseases as well as COVID-19. In addition, TEC family kinase inhibitors (including Bruton's tyrosine kinase inhibitors) targeting antigen receptor signalling have been approved for haematological malignancies and graft versus host disease. This experience provides multiple important lessons regarding the importance (or not) of selectivity and the limits to which genetic information informs efficacy and safety. Many new agents are being generated, along with new approaches for targeting kinases.
Collapse
Affiliation(s)
- Leslie Castelo-Soccio
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Kim
- Juvenile Myositis Pathogenesis and Therapeutics Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela L Schwartzberg
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arian Laurence
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK.
- University College London Hospitals NHS Foundation Trust, London, UK.
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Cho S, Jang E, Yoon T, Hwang H, Youn J. A novel selective spleen tyrosine kinase inhibitor SKI-O-703 (cevidoplenib) ameliorates lupus nephritis and serum-induced arthritis in murine models. Clin Exp Immunol 2023; 211:31-45. [PMID: 36346114 PMCID: PMC9993459 DOI: 10.1093/cei/uxac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Spleen tyrosine kinase (Syk) plays a pivotal role in the activation of B cells and innate inflammatory cells by transducing immune receptor-triggered signals. Dysregulated activity of Syk is implicated in the development of antibody-mediated autoimmune diseases including systemic lupus erythematosus (SLE) and rheumatoid arthritis, but the effect of Syk inhibition on such diseases remains to be fully evaluated. We have developed a novel selective Syk inhibitor, SKI-O-592, and its orally bioavailable salt form, SKI-O-703 (cevidoplenib). To examine the efficacy of SKI-O-703 on the progression of SLE, New Zealand black/white mice at the autoimmunity-established phase were administrated orally with SKI-O-703 for 16 weeks. Levels of IgG autoantibody, proteinuria, and glomerulonephritis fell significantly, and this was associated with hypoactivation of follicular B cells via the germinal center. In a model of serum-transferred arthritis, SKI-O-703 significantly ameliorated synovitis, with fewer neutrophils and macrophages infiltrated into the synovial tissue. This effect was recapitulated when mice otherwise refractory to anti-TNF therapy were treated by TNF blockade combined with a suboptimal dose of SKI-O-703. These results demonstrate that the novel selective Syk inhibitor SKI-O-703 attenuates the progression of autoantibody-mediated autoimmune diseases by inhibiting both autoantibody-producing and autoantibody-sensing cells.
Collapse
Affiliation(s)
- Somi Cho
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Eunkyeong Jang
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Taeyoung Yoon
- Department of Discovery Biology, Research Institute, Oscotec Inc., Seongnam-si, Gyeonggi-do 13488, Korea
| | - Haejun Hwang
- Department of Discovery Biology, Research Institute, Oscotec Inc., Seongnam-si, Gyeonggi-do 13488, Korea
| | - Jeehee Youn
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
3
|
Danese S, Solitano V, Jairath V, Peyrin-Biroulet L. The future of drug development for inflammatory bowel disease: the need to ACT (advanced combination treatment). Gut 2022; 71:2380-2387. [PMID: 35701092 DOI: 10.1136/gutjnl-2022-327025] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/02/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Silvio Danese
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milano, Italy
| | - Virginia Solitano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Vipul Jairath
- Division of Gastroenterology, Department of Medicine, Western University, London, Ontario, Canada.,Alimentiv, London, Ontario, Canada
| | | |
Collapse
|
4
|
Figueroa-Romero C, Monteagudo A, Murdock BJ, Famie JP, Webber-Davis IF, Piecuch CE, Teener SJ, Pacut C, Goutman SA, Feldman EL. Tofacitinib Suppresses Natural Killer Cells In Vitro and In Vivo: Implications for Amyotrophic Lateral Sclerosis. Front Immunol 2022; 13:773288. [PMID: 35197969 PMCID: PMC8859451 DOI: 10.3389/fimmu.2022.773288] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease with few therapeutic options. However, the immune system, including natural killer (NK) cells, is linked to ALS progression and may constitute a viable therapeutic ALS target. Tofacitinib is an FDA-approved immunomodulating small molecule which suppresses immune cell function by blocking proinflammatory cytokine signaling. This includes the cytokine IL-15 which is the primary cytokine associated with NK cell function and proliferation. However, the impact of tofacitinib on NK activation and cytotoxicity has not been thoroughly investigated, particularly in ALS. We therefore tested the ability of tofacitinib to suppress cytotoxicity and cytokine production in an NK cell line and in primary NK cells derived from control and ALS participants. We also investigated whether tofacitinib protected ALS neurons from NK cell cytotoxicity. Finally, we conducted a comprehensive pharmacokinetic study of tofacitinib in mice and tested the feasibility of administration formulated in chow. Success was assessed through the impact of tofacitinib on peripheral NK cell levels in mice. We found tofacitinib suppressed IL-15-induced activation as measured by STAT1 phosphorylation, cytotoxicity, pro-inflammatory gene expression, and pro-inflammatory cytokine secretion in both an NK cell line and primary NK cells. Furthermore, tofacitinib protected ALS neurons from NK cell-mediated cytotoxicity. In mice, we found tofacitinib bioavailability was 37% in both male and female mice; using these data we formulated mouse containing low and high doses of tofacitinib and found that the drug suppressed peripheral NK cell levels in a dose-dependent manner. These results demonstrate that tofacitinib can suppress NK cell function and may be a viable therapeutic strategy for ALS.
Collapse
Affiliation(s)
| | - Alina Monteagudo
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Benjamin J Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Joshua P Famie
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Ian F Webber-Davis
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Caroline E Piecuch
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Samuel J Teener
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Crystal Pacut
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Tang S, Yu Q, Ding C. Investigational spleen tyrosine kinase (SYK) inhibitors for the treatment of autoimmune diseases. Expert Opin Investig Drugs 2022; 31:291-303. [PMID: 35130124 DOI: 10.1080/13543784.2022.2040014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Autoimmune diseases (ADs) are disorders induced by multiple inflammatory mediators, in which immune system attacks healthy tissues and triggers tissue injury. Targeted regulation of the activity of kinases that influence inflammation is one of the major therapies for ADs. Recently, investigational spleen tyrosine kinase (SYK) inhibitors have shown encouraging results in the ADs therapy. AREAS COVERED This article provides a background on autoimmune diseases and provides an update on investigational SYK inhibitors. This literature review was conducted by searching publications about investigational Spleen tyrosine kinase inhibitors in the treatment of ADs from experimental to clinical studies. The search terms used were SYK inhibitors, R406, fostamatinib (R788), P505-15 (PRT062607), entospletinib (GS-9973), R112, lanraplenib (GS-9876), cerdulatinib, R343, BAY-61-3606, GSK compound 143 (GSK143), R211, SKI-G-618, SKI-O-85, ER-27319, YM193306, RO9021 in conjunction with autoimmune disease using electronic databases including PubMed, EMBASE, MEDLINE and Google Scholar. EXPERT OPINION SYK inhibitors are promising drugs with unique advantages and acceptable tolerability and safety for the treatment of ADs. However, the difficulties in developing highly selective SYK inhibitors and the unknown effects are challenges. Long term and real-world data are essential to determine the risk-benefit ratio and true role of SYK inhibitors in the therapy of ADs.
Collapse
Affiliation(s)
- Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinghong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
6
|
Sensitization of knee-innervating sensory neurons by tumor necrosis factor-α-activated fibroblast-like synoviocytes: an in vitro, coculture model of inflammatory pain. Pain 2021; 161:2129-2141. [PMID: 32332252 PMCID: PMC7431145 DOI: 10.1097/j.pain.0000000000001890] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
ABSTRACT Pain is a principal contributor to the global burden of arthritis with peripheral sensitization being a major cause of arthritis-related pain. Within the knee joint, distal endings of dorsal root ganglion neurons (knee neurons) interact with fibroblast-like synoviocytes (FLS) and the inflammatory mediators they secrete, which are thought to promote peripheral sensitization. Correspondingly, RNA sequencing has demonstrated detectable levels of proinflammatory genes in FLS derived from arthritis patients. This study confirms that stimulation with tumor necrosis factor (TNF-α) results in expression of proinflammatory genes in mouse and human FLS (derived from osteoarthritis and rheumatoid arthritis patients), as well as increased secretion of cytokines from mouse TNF-α-stimulated FLS (TNF-FLS). Electrophysiological recordings from retrograde labelled knee neurons cocultured with TNF-FLS, or supernatant derived from TNF-FLS, revealed a depolarized resting membrane potential, increased spontaneous action potential firing, and enhanced TRPV1 function, all consistent with a role for FLS in mediating the sensitization of pain-sensing nerves in arthritis. Therefore, data from this study demonstrate the ability of FLS activated by TNF-α to promote neuronal sensitization, results that highlight the importance of both nonneuronal and neuronal cells to the development of pain in arthritis.
Collapse
|
7
|
Bae D, Choi Y, Lee J, Ha N, Suh D, Baek J, Park J, Son W. M-134, a novel HDAC6-selective inhibitor, markedly improved arthritic severity in a rodent model of rheumatoid arthritis when combined with tofacitinib. Pharmacol Rep 2020; 73:185-201. [PMID: 33188511 DOI: 10.1007/s43440-020-00188-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/06/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although tofacitinib has shown highly significant efficacy for rheumatoid arthritis (RA), there are still a considerable number of patients that are non-responders owing to its limited effectiveness and various adverse effects. Thus, alternative options with better efficacy and lower toxicity are desired. Here, M-134, a recently developed HDAC6 inhibitor, was examined for its therapeutic potential when combined with tofacitinib in a rat model of RA. METHODS The single or combined administration of M-134 and tofacitinib was examined in complete Freund's adjuvant-induced arthritis (AIA) or collagen-induced arthritis (CIA) rodent models. To evaluate the therapeutic and adverse effects, the following factors were observed: macroscopic or microscopic scoring of all four paws; the expression of ICAM-1, VCAM-1, and IP-10 in the joints and that of various cytokines and chemokines in the plasma; the weight of the thymus and the liver; and changes in hematological enzymes. RESULTS Combination treatment showed strong synergistic effects as measured by the clinical score and histological changes, without adverse effects such as weight loss in the thymus and increased liver enzymes (ALT and AST). Additionally, it also reduced ICAM-1, VCAM-1, and IP-10 expression in the joints, and M-134 increased the efficacy of tofacitinib by regulating various cytokines, such as interleukin (IL)-1β, IL-17, and TNF-α, in the serum of AIA rats. Differences in the cytokine expression for each drug were found in the CIA model. CONCLUSIONS M-134 and tofacitinib combination therapy is a potential option for the treatment of RA through the regulation of cytokines, chemokines, and adhesion molecules.
Collapse
Affiliation(s)
- Daekwon Bae
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Youngil Choi
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Jiyoung Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Nina Ha
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Donghyeon Suh
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Jiyeon Baek
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Jinsol Park
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Woochan Son
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| |
Collapse
|
8
|
Burja B, Mertelj T, Frank-Bertoncelj M. Hi- JAKi-ng Synovial Fibroblasts in Inflammatory Arthritis With JAK Inhibitors. Front Med (Lausanne) 2020; 7:124. [PMID: 32432116 PMCID: PMC7214667 DOI: 10.3389/fmed.2020.00124] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022] Open
Abstract
The Janus kinase (JAK)-Signal transducer and activator of transcription (STAT) pathway is one of the central signaling hubs in inflammatory, immune and cancer cells. Inhibiting the JAK-STAT pathway with JAK inhibitors (jakinibs) constitutes an important therapeutic strategy in cancer and chronic inflammatory diseases like rheumatoid arthritis (RA). FDA has approved different jakinibs for the treatment of RA, including tofacitinib, baricitinib and upadacitinib, and several jakinibs are being tested in clinical trials. Here, we reviewed published studies of jakinib effects on resolving synovial pathology in inflammatory arthritis. We discussed the results of jakinibs on structural joint damage in clinical trials and explored the effects of jakinibs across different in vitro, ex vivo, and in vivo synovial experimental models. We delved rigorously into experimental designs of in vitro fibroblast studies, deconvoluted jakinib efficacy in synovial fibroblasts across diverse experimental conditions and discussed their translatability in vivo. Synovial fibroblasts can readily activate the JAK-STAT signaling pathway in response to cytokine stimulation. We highlighted rather limited effects of jakinibs on the in vitro cultured synovial fibroblasts and inferred that direct and indirect (immune cell-dependent) actions of jakinibs are required to curb the fibroblast pathology in vivo. These actions have not been mimicked optimally in current in vitro experimental designs, where inflammatory stimuli do not naturally clear out with treatment as they do in vivo. While summarizing the broad knowledge of synovial jakinib effects, our review uniquely challenges future study designs to better mimick the jakinib actions in broader cell communities, as occurring in vivo in the inflamed synovium. This can deepen our understanding of collective synovial activities of jakinibs and their therapeutic limitations, thereby fostering jakinib development in arthritis.
Collapse
Affiliation(s)
- Blaž Burja
- Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland.,Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tonja Mertelj
- Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland
| | | |
Collapse
|
9
|
Renert-Yuval Y, Guttman-Yassky E. New treatments for atopic dermatitis targeting beyond IL-4/IL-13 cytokines. Ann Allergy Asthma Immunol 2019; 124:28-35. [PMID: 31622669 DOI: 10.1016/j.anai.2019.10.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/25/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Atopic dermatitis (AD) is an increasingly common inflammatory skin disease undergoing significant revolution in recent years. New data on disease pathogenesis advanced the developments of novel therapeutics, mainly for patients with moderate to severe conditions, for whom treatment options have been largely insufficient for many years. DATA SOURCES Review of recent studies investigating systemic treatments for AD. STUDY SELECTIONS Relevant literature concerning novel therapeutics for AD beyond targeted monoclonal antibodies antagonizing selectively interleukin (IL)-4 or IL-13 was obtained from a PubMed and clinicaltrials.gov search and summarized. RESULTS Multiple clinical trials of both nonspecific as well as specific agents revealed favorable outcomes in AD, including JAK inhibitors, a dual JAK/SYK inhibitor, a histamine H4R antagonist, antagonists of the TSLP/OX40L axis, an IL-22 inhibitor, and IL-33 and IL-17C antagonists. Importantly, negative trials were published as well (eg, phosphodiesterase 4 inhibitor, apremilast). CONCLUSION In this rapidly evolving field of AD treatments, a completely new treatment paradigm will be available in the near future.
Collapse
Affiliation(s)
- Yael Renert-Yuval
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Emma Guttman-Yassky
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
10
|
Oral Janus kinase/SYK inhibition (ASN002) suppresses inflammation and improves epidermal barrier markers in patients with atopic dermatitis. J Allergy Clin Immunol 2019; 144:1011-1024. [DOI: 10.1016/j.jaci.2019.07.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022]
|
11
|
Matsumoto I, Kurata I, Ohyama A, Kawaguchi H, Ebe H, Osada A, Kondo Y, Tsuboi H, Sumida T. Revisit of autoimmunity to glucose-6-phosphate isomerase in experimental and rheumatoid arthritis. Mod Rheumatol 2019; 30:232-238. [PMID: 31441345 DOI: 10.1080/14397595.2019.1659539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an inflammatory disorder characterized by synovial inflammation in multiple joints. Autoantibodies (Abs) are the hallmark of RA, and as disease-specific and diagnostic markers, rheumatoid factor and anti-citrullinated protein antibody (ACPA) are produced pre-clinically, but their pathogenic roles in RA remain elusive. In this review, we focus on one of the candidate autoantigens in RA; glucose-6-phosphate isomerase (GPI). The arthritogenic role of GPI has been confirmed in two different mouse models: the K/BxN- and GPI-induced arthritis models. Both anti-GPI Abs and citrullinated-GPI peptide Abs have been detected in human RA. Studies conducted in these rodent models have confirmed that the pathogenesis of arthritis involves the localization of autoantigens not only in the joints but also in the circulation. In this review, we revisit and summarize the arthritogenic relevance of GPI in animal RA models and in human RA, and extend the discussion to joint-specific inflammation.
Collapse
Affiliation(s)
- Isao Matsumoto
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Izumi Kurata
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ayako Ohyama
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hoshimi Kawaguchi
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ebe
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsumu Osada
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuya Kondo
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroto Tsuboi
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
12
|
Solouki S, August A, Huang W. Non-receptor tyrosine kinase signaling in autoimmunity and therapeutic implications. Pharmacol Ther 2019; 201:39-50. [PMID: 31082431 DOI: 10.1016/j.pharmthera.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases are characterized by impaired immune tolerance towards self-antigens, leading to enhanced immunity to self by dysfunctional B cells and/or T cells. The activation of these cells is controlled by non-receptor tyrosine kinases (NRTKs), which are critical mediators of antigen receptor and cytokine receptor signaling pathways. NRTKs transduce, amplify and sustain activating signals that contribute to autoimmunity, and are counter-regulated by protein tyrosine phosphatases (PTPs). The function of and interaction between NRTKs and PTPs during the development of autoimmunity could be key points of therapeutic interference against autoimmune diseases. In this review, we summarize the current state of knowledge of the functions of NRTKs and PTPs involved in B cell receptor (BCR), T cell receptor (TCR), and cytokine receptor signaling pathways that contribute to autoimmunity, and discuss their targeting for therapeutic approaches against autoimmune diseases.
Collapse
Affiliation(s)
- Sabrina Solouki
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
13
|
Kim Y, Hayashi M, Ono T, Yoda T, Takayanagi H, Nakashima T. Suppression of hematopoietic cell kinase ameliorates the bone destruction associated with inflammation. Mod Rheumatol 2019; 30:85-92. [PMID: 30486712 DOI: 10.1080/14397595.2018.1553266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objectives: To investigate the role of non-receptor tyrosine kinases (NRTKs) in inflammation-induced osteoclastogenesis.Methods: Microarray analyses of global mRNA expression during receptor activator of NF-κB ligand (RANKL) and RANKL plus tumor necrosis factor (TNF)-α-induced osteoclast differentiation were performed. The inhibitory effect on TNF-α-induced osteoclast differentiation of A-419259, a potent inhibitor of hematopoietic cell kinase (Hck), was examined. The in vivo therapeutic effect of A-419259 treatment on lipopolysaccharide (LPS)-induced inflammatory bone destruction was evaluated.Results: We confirmed that Hck expression was selectively increased among the NRTKs during the osteoclast differentiation induced by RANKL and TNF-α, but not by RANKL alone. RANKL and TNF-α-induced osteoclast differentiation and they were dose-dependently inhibited by A-419259 treatment through inhibition of the expression of key regulators of osteoclastogenesis, including Prdm1 and Nfatc1. Notably, LPS-induced inflammatory bone loss in murine calvarial bones was ameliorated by the administration of A-419259.Conclusions: Our results demonstrate that the administration of A-419259 is effective for the inhibition of osteoclast differentiation induced by TNF-α in the presence of RANKL. Therefore, an inhibitor of Hck may be useful as a potent anti-osteoclastogenic agent for the treatment of inflammatory bone destruction.
Collapse
Affiliation(s)
- Yusoon Kim
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mikihito Hayashi
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takehito Ono
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan
| |
Collapse
|
14
|
Kjelgaard-Petersen CF, Sharma N, Kayed A, Karsdal MA, Mobasheri A, Hägglund P, Bay-Jensen AC, Thudium CS. Tofacitinib and TPCA-1 exert chondroprotective effects on extracellular matrix turnover in bovine articular cartilage ex vivo. Biochem Pharmacol 2018; 165:91-98. [PMID: 30059674 DOI: 10.1016/j.bcp.2018.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/25/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Currently, there are no disease-modifying osteoarthritis drugs (DMOADs) approved for osteoarthritis. It is hypothesized that a subtype of OA may be driven by inflammation and may benefit from treatment with anti-inflammatory small molecule inhibitors adopted from treatments of rheumatoid arthritis. This study aimed to investigate how small molecule inhibitors of intracellular signaling modulate cartilage degradation and formation as a pre-clinical model for structural effects. DESIGN Bovine cartilage explants were cultured with oncostatin M (OSM) and tumour necrosis factor α (TNF-α) either alone or combined with the small molecule inhibitors: SB203580 (p38 inhibitor), R406 (Spleen tyrosine kinase (Syk) inhibitor), TPCA-1 (Inhibitor of κB kinase (Ikk) inhibitor), or Tofacitinib (Tofa) (Janus kinases (Jak) inhibitor). Cartilage turnover was assessed with the biomarkers of degradation (AGNx1 and C2M), and type II collagen formation (PRO-C2) using ELISA. Explant proteoglycan content was assessed by Safranin O/Fast Green staining. RESULTS R406, TPCA-1 and Tofa reduced the cytokine-induced proteoglycan loss and decreased AGNx1 release 3.7-, 43- and 32-fold, respectively. SB203580 showed no effect. All inhibitors suppressed C2M at a concentration of 3 µM. TPCA-1 and Tofa increased the cytokine reduced PRO-C2 3.5 and 3.7-fold, respectively. CONCLUSION Using a pre-clinical model we found that the inhibitors TPCA-1 and Tofa inhibited cartilage degradation and rescue formation of type II collagen under inflammatory conditions, while R406 and SB203580 only inhibited cartilage degradation, and SB203580 only partially. These pre-clinical data suggest that TPCA-1 and Tofa preserve and help maintain cartilage ECM under inflammatory conditions and could be investigated further as DMOADs for inflammation-driven osteoarthritis.
Collapse
Affiliation(s)
- Cecilie F Kjelgaard-Petersen
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark; Department of Bioengineering and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Neha Sharma
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | - Ashref Kayed
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | - Morten A Karsdal
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | - Ali Mobasheri
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences University of Surrey, Guildford GU2 7AL, United Kingdom.
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | | | - Christian S Thudium
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| |
Collapse
|
15
|
Qiao Y, Tian X, Men L, Li S, Chen Y, Xue M, Hu Y, Zhou P, Long G, Shi Y, Liu R, Liu Y, Qi Z, Cui Y, Shen Y. Spleen tyrosine kinase promotes NLR family pyrin domain containing 3 inflammasome‑mediated IL‑1β secretion via c‑Jun N‑terminal kinase activation and cell apoptosis during diabetic nephropathy. Mol Med Rep 2018; 18:1995-2008. [PMID: 29901140 PMCID: PMC6072182 DOI: 10.3892/mmr.2018.9164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/18/2018] [Indexed: 12/31/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes and can cause an increased mortality risk. It was previously reported that NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the pathogenesis of diabetes. However, the underlying mechanism is not clearly understood. In the present study, the effects of spleen tyrosine kinase (Syk) and c-Jun N-terminal kinase (JNK) on the NLRP3 inflammasome were examined in vivo and in vitro. Sprague-Dawley rats were injected intraperitoneally with streptozotocin (65 mg/kg) to induce diabetes. HK2 cells and rat glomerular mesangial cells (RGMCs) were examined to detect the expression of JNK and NLRP3 inflammasome-associated proteins following treatment with a Syk inhibitor or Syk-small interfering (si)RNA in a high glucose condition. In the present study, it was revealed that the protein and mRNA expression levels of NLRP3 inflammasome-associated molecules and the downstream mature interleukin (IL)-1β were upregulated in vivo and in vitro. The Syk inhibitor and Syk-siRNA suppressed high glucose-induced JNK activation, and subsequently downregulated the activation of the NLRP3 inflammasome and mature IL-1β in HK2 cells and RGMCs. Furthermore, high glucose-induced apoptosis of HK2 cells was reduced by the Syk inhibitor BAY61-3606. Therefore, the present results determined that high glucose-induced activation of the NLRP3 inflammasome is mediated by Syk/JNK activation, which subsequently increased the protein expression level of IL-1β and mature IL-1β. The present study identified that the Syk/JNK/NLRP3 signaling pathway may serve a vital role in the pathogenesis of DN.
Collapse
Affiliation(s)
- Yingchun Qiao
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Xixi Tian
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Li Men
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Shengyu Li
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yufeng Chen
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Meiting Xue
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yahui Hu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Pengfei Zhou
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Guangfeng Long
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yue Shi
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Ruiqing Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yunde Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Zhi Qi
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Yujie Cui
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yanna Shen
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| |
Collapse
|
16
|
Presto JK, Okon LG, Feng R, Wallace DJ, Furie R, Fiorentino D, Werth VP. Computerized planimetry to assess clinical responsiveness in a phase II randomized trial of topical R333 for discoid lupus erythematosus. Br J Dermatol 2018; 178:1308-1314. [PMID: 29336019 DOI: 10.1111/bjd.16337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND R333 is a topical janus kinase and spleen tyrosine kinase inhibitor being evaluated for discoid lupus erythematosus (DLE) treatment. There is no validated measure to assess the area of active DLE lesions. OBJECTIVES To evaluate R333 efficacy and assess a technique to measure responsiveness. METHODS Fifty-four patients with DLE were randomized in a double-blind design to R333 or placebo. Primary end point was the proportion of patients achieving ≥ 50% decrease in erythema and scale based on lesional Cutaneous Lupus Erythematosus Disease Area and Severity IndexTM for all treated lesions at week 4. Two-dimensional (2D) area measurements for each lesion were recorded at baseline and weeks 1-6. Eighty-eight photographs (44 pre- and 44 post-treatment) were obtained from the trial and change in size of active areas was analysed by computerized planimetry and physician-assessed area change (PAAC). RESULTS Thirty-six patients were randomized to R333 and 18 patients were randomized to placebo. Primary end point was not achieved. There was a strong association between lesion activity and physician global assessment (P < 0·001). Photos of 42 patients assessed by computerized planimetry demonstrated excellent inter- and intra-rater reliability. Area change by computerized planimetry showed a strong correlation with PAAC (Spearman r = 0·72). Area change by 2D measurements showed a weak correlation with PAAC (Spearman r = 0·29). CONCLUSIONS Four weeks of R333 treatment did not result in significant improvement in lesion activity. Lesion activity and area change using computerized planimetry are better determinants of responsiveness than area change using 2D measurements.
Collapse
Affiliation(s)
- J K Presto
- Corporal Michael J. Crescenz Veterans Affairs Medical Center (Philadelphia), Philadelphia, PA, U.S.A.,Department of Dermatology at the Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, PA, U.S.A
| | - L G Okon
- Corporal Michael J. Crescenz Veterans Affairs Medical Center (Philadelphia), Philadelphia, PA, U.S.A.,Department of Dermatology at the Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, PA, U.S.A
| | - R Feng
- Biostatistics and Epidemiology at the Hospital of the University of Pennsylvania, Pennsylvania, PA, U.S.A
| | - D J Wallace
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, U.S.A
| | - R Furie
- Division of Rheumatology, Northwell Health, Great Neck, NY, U.S.A
| | - D Fiorentino
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - V P Werth
- Corporal Michael J. Crescenz Veterans Affairs Medical Center (Philadelphia), Philadelphia, PA, U.S.A.,Department of Dermatology at the Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, PA, U.S.A
| |
Collapse
|
17
|
Lee DE, Clark AK, Tran KA, Shi VY. New and emerging targeted systemic therapies: a new era for atopic dermatitis. J DERMATOL TREAT 2017; 29:364-374. [PMID: 28853956 DOI: 10.1080/09546634.2017.1373736] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE This is a review of emerging targeted, systemic therapies for atopic dermatitis (AD). The information presented aims to provide dermatologists with updated therapeutic options, stimulate academic interest, and spark future research. MATERIAL AND METHODS Extensive search of ClinicalTrials.gov, the National Eczema Association, and PubMed was performed for clinical trials examining the effect of emerging targeted, systemic therapies in patients with AD. Results were included if they demonstrated efficacy in reversing AD symptoms. Studies that did not demonstrate clinical benefit were excluded. RESULTS A number of emerging systemic agents targeting specific mediators involved in the pathogenesis of AD were found. These targets include IL-4, IL-13, IgE, B-cells, IL-5, IL-31, JAK-STAT, SYK, IL-6, PDE-4, IL-12, IL-17, IL-23, IL-22, H4R, NKR1, κOR, TSLP, PPAR-γ, and DGLA. Treatment of AD patients with these therapies has, in many cases, led to statistically significant improvements in clinical severity scores and patient-reported outcomes. CONCLUSIONS While multiple agents have demonstrated efficacy, only dupilumab is currently approved for adults with AD. Large-scale, randomized, placebo-controlled, double-blind trials, especially in children, are needed. As we enter the dawn of targeted therapy for AD, a comprehensive clinical trial registry is needed to facilitate data pooling and comparison among international registries.
Collapse
Affiliation(s)
- Dylan E Lee
- a Creighton University School of Medicine , Omaha , NE , USA
| | - Ashley K Clark
- b University of California Davis School of Medicine , Sacramento , CA , USA
| | - Khiem A Tran
- c University of Arizona College of Medicine , Tucson , AZ , USA
| | - Vivian Y Shi
- d Division of Dermatology, Department of Medicine , University of Arizona College of Medicine , Tucson , AZ , USA
| |
Collapse
|
18
|
Gertel S, Mahagna H, Karmon G, Watad A, Amital H. Tofacitinib attenuates arthritis manifestations and reduces the pathogenic CD4 T cells in adjuvant arthritis rats. Clin Immunol 2017; 184:77-81. [PMID: 28461107 DOI: 10.1016/j.clim.2017.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/27/2017] [Indexed: 12/20/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by pronounced inflammation and leukocyte infiltration in affected joints. Tofacitinib is new agent, a selective inhibitor of Janus kinase (JAK) signaling pathways mediated by JAK1 and JAK3 and inhibits the key transcription factors STAT1 and STAT3. We investigated the action mechanisms of tofacitinib in rats with adjuvant-induced-arthritis (AIA). AIA-rats were treated orally with tofacitinib or with methotrexate. Arthritis severity and serum C-reactive protein (CRP) levels were evaluated, splenic cells were examined by flow cytometry and cytokines were analyzed by real-time PCR. Tofacitinib markedly reduced the clinical status of treated rats in comparison to control group. Reduced joints inflammation and down-regulated serum CRP levels reflected the clinical manifestations of the treated rats. Tofacitinib down-regulated significantly the frequency of CD4+IFN-γ+ T cells and reduced IL-1β mRNA expression levels in the spleen of the treated rats. These results show that tofacitinib attenuated arthritis severity, modified splenic populations and cytokine imbalance.
Collapse
Affiliation(s)
- Smadar Gertel
- Zabludowicz Center For Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5262100, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel.
| | - Hussein Mahagna
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer 5262100, Israel
| | - Gidi Karmon
- Zabludowicz Center For Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5262100, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Abdulla Watad
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer 5262100, Israel
| | - Howard Amital
- Zabludowicz Center For Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5262100, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer 5262100, Israel
| |
Collapse
|
19
|
Zhou W, Bi X, Gao G, Sun L. miRNA-133b and miRNA-135a induce apoptosis via the JAK2/STAT3 signaling pathway in human renal carcinoma cells. Biomed Pharmacother 2016; 84:722-729. [DOI: 10.1016/j.biopha.2016.09.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/08/2016] [Accepted: 09/20/2016] [Indexed: 01/15/2023] Open
|