1
|
Atasoy-Zeybek A, Showel KK, Nagelli CV, Westendorf JJ, Evans CH. The intersection of aging and estrogen in osteoarthritis. NPJ WOMEN'S HEALTH 2025; 3:15. [PMID: 40017990 PMCID: PMC11860234 DOI: 10.1038/s44294-025-00063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by cartilage degradation, inflammation, and pain. While multiple factors contribute to OA development, age and sex are primary risk factors, particularly affecting postmenopausal women. The dramatic increase in OA risk after menopause suggests estrogen deficiency accelerates disease progression. This review explores the molecular mechanisms connecting aging and estrogen deficiency in OA development, focusing on key genes and pathways identified through RNA sequencing.
Collapse
Affiliation(s)
- Aysegul Atasoy-Zeybek
- Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN USA
| | - Kelly K. Showel
- Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN USA
- Department of Pharmacology, Mayo Clinic, Rochester, MN USA
| | - Christopher V. Nagelli
- Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN USA
| | | | - Christopher H. Evans
- Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
2
|
Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Cerri PS, Gil CD, de Jesus Simões M. Relationship between autophagy and NLRP3 inflammasome during articular cartilage degradation in oestrogen-deficient rats with streptozotocin-induced diabetes. Ann Anat 2025; 257:152318. [PMID: 39216675 DOI: 10.1016/j.aanat.2024.152318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Estrogen deficiency and Diabetes mellitus (DM) cause joint tissue deterioration, although the mechanisms are uncertain. This study evaluated the immunoexpression of autophagy and NLRP3-inflammasome markers, in rat articular cartilage with estrogen deficiency and DM. METHODS Twenty rats were sham-operated (SHAM) or ovariectomized (OVX) and equally allocated into four groups: SHAM and OVX groups administered with vehicle solution; SHAM and OVX groups treated with 60 mg/kg/body weight of streptozotocin, intraperitoneally, to induce DM (SHAM-DM and OVX-DM groups). After seven weeks, the rats were euthanized, and their joint knees were processed for paraffin embedding. Sections were stained with haematoxylin-eosin, toluidine blue, safranin-O/fast-green or subjected to picrosirius-red-polarisation method; immunohistochemistry to detect beclin-1 and microtubule-associated protein 1B-light chain 3 (autophagy markers), NLRP3 and interleukin-1β (IL-1β) (inflammasome activation markers), along with matrix metalloproteinase-9 (MMP-9), Nuclear factor-kappa B (NFκB), and Vascular endothelial growth factor A (VEGF-A) were performed. RESULTS Deterioration of articular cartilage and subchondral bone were greater in SHAM-DM and OVX-DM groups. Higher percentages of immunolabeled chondrocytes to NLRP3, IL-1β, MMP-9, NFκB, and VEGF-A, as well as lower percentages of chondrocytes immunolabeled to autophagy markers, were noticed in estrogen-deficient and diabetic groups. These differences were greater in the OVX-DM group. Percentages of immunolabeled chondrocytes showed negative correlation between autophagy markers v.s IL-1β, NLRP-3, MMP-9, NFκB, and VEGF-A, along with positive correlation between VEGF-A vs. MMP-9, NFκB, IL-1β, and NLRP3, and MMP-9 vs. NFκB. CONCLUSIONS In conclusion, autophagy reduction and NLRP3 inflammasome activation in chondrocytes may be implicated in articular cartilage degradation, under estrogen-deficient and DM conditions. Moreover, the combination of estrogen deficiency and DM may potentiate those effects.
Collapse
Affiliation(s)
- Rinaldo Florencio-Silva
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Ginecologia, São Paulo, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil.
| | - Gisela Rodrigues da Silva Sasso
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Paulo Sérgio Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Cristiane Damas Gil
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Manuel de Jesus Simões
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Ginecologia, São Paulo, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Faber BG, Macrae F, Jung M, Zucker BE, Beynon RA, Tobias JH. Sex differences in the radiographic and symptomatic prevalence of knee and hip osteoarthritis. Front Endocrinol (Lausanne) 2024; 15:1445468. [PMID: 39429735 PMCID: PMC11486651 DOI: 10.3389/fendo.2024.1445468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
Recognising sex differences in disease prevalence can lead to clues as to its pathogenesis, for example the role of hormonal factors and related influences such as body composition, as well as forming the basis for new treatments. However, if different methods are used to define the disorder it can be difficult to explore differences in prevalence, making it necessary to draw on multiple sources of evidence. This narrative review addresses sex differences in the prevalence of knee and hip osteoarthritis, which are the most common forms of large joint osteoarthritis. Females appear to have a higher prevalence of knee osteoarthritis across a wide range of disease definitions, while findings for the hip vary depending on how the disease is defined. Clinically or symptomatically defined hip osteoarthritis is more common in females, whereas radiographically defined hip osteoarthritis is more common in males. Therefore, understanding sex differences in large joint arthritis requires consideration that osteoarthritis, as defined structurally, more commonly affects females at the knee, whereas the opposite is true at the hip. Furthermore, despite structural changes in hip osteoarthritis being more common in males, symptomatic hip osteoarthritis is more common in females. The basis for these disparities is currently unclear, but may reflect a combination of hormonal, biomechanical and behavioural factors.
Collapse
Affiliation(s)
- Benjamin G. Faber
- Musculoskeletal Research Unit, University of Bristol, Bristol, United Kingdom
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Fiona Macrae
- Cardiology Department, Gloucester Royal Hospital, Gloucester, United Kingdom
| | - Mijin Jung
- Musculoskeletal Research Unit, University of Bristol, Bristol, United Kingdom
| | - Benjamin E. Zucker
- Musculoskeletal Research Unit, University of Bristol, Bristol, United Kingdom
| | - Rhona A. Beynon
- Musculoskeletal Research Unit, University of Bristol, Bristol, United Kingdom
| | - Jonathan H. Tobias
- Musculoskeletal Research Unit, University of Bristol, Bristol, United Kingdom
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
4
|
Fang Z, Zhao J, Zhang Y, Hua X, Li J, Zhang X. Relationship Between Osteoarthritis and Postmenopausal Osteoporosis: An Analysis Based on the National Health and Nutrition Examination Survey. Cureus 2024; 16:e71734. [PMID: 39559617 PMCID: PMC11571265 DOI: 10.7759/cureus.71734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction Due to the increased prevalence of osteoarthritis (OA) and osteoporosis (OP) in women, urgent interventions are needed to reduce the risk of postmenopausal fractures in female OA patients. Moreover, the relationship between OA and OP remains contentious, emphasizing the need for further research to deepen our understanding. This study aimed to investigate the relationship between OA and postmenopausal OP using data from the National Health and Nutrition Examination Survey (NHANES). Methods We conducted a cross-sectional analysis using NHANES summary data from 2005 to 2010, 2013 to 2014, and 2017 to 2020. Multivariable logistic regression was employed to evaluate the association between OA and the risk of postmenopausal OP. Adjustments were made for potential confounding factors. Additionally, we conducted stratified analyses, which provided further insights into the association between OA and postmenopausal OP across various subgroups. Results The analysis revealed a significant correlation between OA and an increased risk of postmenopausal OP, with an odds ratio (OR) of 1.12 (95% confidence interval (CI): 1.07-1.17, P < 0.001) after adjusting for confounders. Stratified analyses revealed a significant association between OA and postmenopausal OP in obese and overweight individuals (OR 1.14, 95% CI 1.06-1.22, P < 0.001; OR 1.18, 95% CI 1.04-1.32, P = 0.008) and among former or current smokers (OR 1.20, 95% CI 1.08-1.33, P < 0.001). Conclusions The study underscores a significant association between OA and postmenopausal OP, particularly in obese, overweight, and smoking populations. Given the higher prevalence of OA and OP among women, understanding these associations could lead to improved strategies for reducing postmenopausal fracture risks. The study offers valuable insights and potential directions for future therapeutic approaches.
Collapse
Affiliation(s)
- Zheyu Fang
- Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, CHN
| | - Jiaxin Zhao
- Surgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, CHN
| | - Yuan Zhang
- Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, CHN
| | - Xin Hua
- Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, CHN
| | - Jia Li
- Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, CHN
| | - Xu Zhang
- Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, CHN
| |
Collapse
|
5
|
Hu YC, Huang TC, Huang LW, Cheng HL, Hsieh BS, Chang KL. S-Equol Ameliorates Menopausal Osteoarthritis in Rats through Reducing Oxidative Stress and Cartilage Degradation. Nutrients 2024; 16:2364. [PMID: 39064807 PMCID: PMC11280421 DOI: 10.3390/nu16142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease leading to articular cartilage destruction. Menopausal and postmenopausal women are susceptible to both OA and osteoporosis. S-equol, a soy isoflavone-derived molecule, is known to reduce osteoporosis in estrogen-deficient mice, but its role in OA remains unknown. This study aimed to explore the effect of S-equol on different degrees of menopausal OA in female Sprague-Dawley (SD) rats induced by estrogen deficiency caused by bilateral ovariectomy (OVX) combined with intra-articular injection of mono-iodoacetate (MIA). Knee joint histopathological change; serum biomarkers of bone turnover, including N-terminal propeptide of type I procollagen (PINP), C-terminal telopeptide of type I collagen (CTX-I) and N-terminal telopeptide of type I collagen (NTX-I); the cartilage degradation biomarkers hyaluronic acid (HA) and N-terminal propeptide of type II procollagen (PIINP); and the matrix-degrading enzymes matrix metalloproteinases (MMP)-1, MMP-3 and MMP-13, as well as the oxidative stress-inducing molecules nitric oxide (NO) and hydrogen peroxide (H2O2), were assessed for evaluation of OA progression after S-equol supplementation for 8 weeks. The results showed that OVX without or with MIA injection induced various severity levels of menopausal OA by increasing pathological damage, oxidative stress, and cartilage matrix degradation to various degrees. Moreover, S-equol supplementation could significantly reduce these increased biomarkers in different severity levels of OA. This indicates that S-equol can lessen menopausal OA progression by reducing oxidative stress and the matrix-degrading enzymes involved in cartilage degradation.
Collapse
Affiliation(s)
- Yu-Chen Hu
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Tzu-Ching Huang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Li-Wen Huang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Hsiao-Ling Cheng
- Department of Pharmacy, Kaohsiung Municipal Min-Sheng Hospital, Kaohsiung 802511, Taiwan;
| | - Bau-Shan Hsieh
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Kee-Lung Chang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
6
|
Gou Y, Li H, Sun X, Chen D, Tian F. Parathyroid hormone (1-34) retards the lumbar facet joint degeneration and activates Wnt/β-catenin signaling pathway in ovariectomized rats. J Orthop Surg Res 2024; 19:352. [PMID: 38877549 PMCID: PMC11177467 DOI: 10.1186/s13018-024-04817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
PURPOSE Facet joint degeneration (FJD) is a major cause of low back pain. Parathyroid hormone (PTH) (1-34) is commonly used to treat osteoporosis. However, little is known about its effects on FJD induced by estrogen deficiency. This study aims to investigate the effects of PTH (1-34) on FJD induced by estrogen deficiency and the underlying pathogenesis of the disease. METHODS Forty 3-month-old female Sprague-Dawley rats were randomly divided into four groups: 30 received bilateral ovariectomy (OVX) followed by 12 weeks of treatment with normal saline, PTH (1-34) or 17β-estradiol (E2), and 10 received sham surgery followed by administration of normal saline. Status and Wnt/β-catenin signaling activity in the cartilage and subchondral bone of the L4-L5 FJs and serum biomarkers were analyzed. RESULTS Administration of PTH (1-34) and E2 ameliorated cartilage lesions, and significantly decreased MMP-13 and caspase-3 levels and chondrocyte apoptosis. PTH (1-34) but not E2 significantly increased cartilage thickness, number of chondrocytes, and the expression of aggrecan. PTH (1-34) significantly improved microarchitecture parameters of subchondral bone, increased the expression of collagen I and osteocalcin, and decreased RANKL/OPG ratio. E2 treatment significantly increased the OPG level and decreased the RANKL/OPG ratio in the subchondral bone of ovariectomized rats, but it did not significantly improve the microarchitecture parameters of subchondral bone. Wnt3a and β-catenin expression was significantly reduced in the articular cartilage and subchondral bone in OVX rats, but PTH (1-34) could increase the expression of these proteins. E2 significantly increased the activity of Wnt/β-catenin pathway only in cartilage, but not in subchondral bone. The restoration of Wnt/β-catenin signaling had an obvious correlation with the improvement of some parameters associated with the FJs status. CONCLUSION Wnt/β-catenin signaling may be a potential therapeutic target for FJD induced by estrogen deficiency. PTH (1-34) is effective in treating this disease with better efficacy than 17β-estradiol, and the efficacy may be attributed to its restoration of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yu Gou
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Hetong Li
- Department of Orthopaedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xun Sun
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Desheng Chen
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China.
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
7
|
Ho WC, Chang CC, Wu WT, Lee RP, Yao TK, Peng CH, Yeh KT. Effect of Osteoporosis Treatments on Osteoarthritis Progression in Postmenopausal Women: A Review of the Literature. Curr Rheumatol Rep 2024; 26:188-195. [PMID: 38372871 PMCID: PMC11063098 DOI: 10.1007/s11926-024-01139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE OF REVIEW The purpose of this literature review was to determine if medications used to treat osteoporosis are also effective for treating osteoarthritis (OA). RECENT FINDINGS A total of 40 relevant articles were identified. Studies were categorized into those (1) discussing estrogen and selective estrogen receptor modulators (SERMs), (2) bisphosphonates, (3) parathyroid hormone (PTH) analogs, and (4) denosumab, and (5) prior review articles. A large amount of evidence suggests that estrogen and SERMs are effective at reducing OA symptoms and disease progression. Evidence suggests that bisphosphonates, the most common medications used to treat osteoporosis, can reduce OA symptoms and disease progression. In vivo studies suggest that PTH analogs may improve the cartilage destruction associated with OA; however, few human trials have examined its use for OA. Denosumab is approved to treat osteoporosis, bone metastases, and certain types of breast cancer, but little study has been done with respect to its effect on OA. The current evidence indicates that medications used to treat osteoporosis are also effective for treating OA. Estrogen, SERMs, and bisphosphonates have the most potential as OA therapies. Less is known regarding the effectiveness of PTH analogs and denosumab in OA, and more research is needed.
Collapse
Affiliation(s)
- Wang-Chun Ho
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | - Wen-Tien Wu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ru-Ping Lee
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ting-Kuo Yao
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kuang-Ting Yeh
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Graduate Institute of Clinical Pharmacy, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
8
|
Zhao Z, Niu S, Chen J, Zhang H, Liang L, Xu K, Dong C, Su C, Yan T, Zhang Y, Long H, Yang L, Zhao M. G protein-coupled receptor 30 activation inhibits ferroptosis and protects chondrocytes against osteoarthritis. J Orthop Translat 2024; 44:125-138. [PMID: 38318490 PMCID: PMC10839561 DOI: 10.1016/j.jot.2023.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 02/07/2024] Open
Abstract
Background Osteoarthritis (OA) is the most common joint disease worldwide, but its cause remains unclear. Oestrogen protects against OA, but its clinical use is limited. G protein-coupled receptor 30 (GPR30) is a receptor that binds oestrogen, and GPR30 treatment has benefitted patients with some degenerative diseases. However, its effects on OA prevention and treatment remain unclear. Moreover, several studies have found that activation of estrogen receptors exerting anti-ferroptosis effects, which plays an important role in chondrocyte survival. Therefore, this study explored the general and ferroptosis-related effects and mechanisms of GPR30 in OA. Methods Genome-wide RNA sequencing, western blotting, and immunohistochemistry were used to evaluate GPR30 expression and ferroptosis-related indicators in cartilage tissues from clinical patients. Next, we investigated the effects of G1 (a GPR30 receptor agonist) on the function and pathology of OA in an animal model. We also treated chondrocytes with erastin (ferroptosis agonist) plus G1, G15 (GPR30 receptor antagonist), GPR30 short hairpin RNA, or ferrostatin-1 (ferroptosis inhibitor), then measured cell viability and ferroptosis-related indices and performed proteomics analyses. Finally, western blotting and reverse transcription-polymerase chain reaction were used to assess the effects of G1 on yes-associated protein 1 (YAP1) and ferritin heavy chain 1 (FTH1) expression. Results GPR30 expression was lower in the OA cartilage tissues than in the normal tissues, and G1 treatment significantly improved the locomotor ability of mice. Moreover, chondrocyte cell viability significantly decreased after erastin treatment, but G1 treatment concentration-dependently mitigated this effect. Furthermore, G1 treatment decreased phosphorylated YAP1 expression, increased activated YAP1 expression, and increased FTH1 transcription and protein expression, protecting against ferroptosis. Conclusion GPR30 activation inhibited ferroptosis in chondrocytes by suppressing YAP1 phosphorylation, which regulates FTH1 expression.The Translational Potential of this Article: These results provide a novel potential target for therapeutic OA interventions.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Orthopedics, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi, China
| | - Shun Niu
- Department of Orthopedics, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi, China
| | - Jun Chen
- Department of Osteology, Xi'an People's Hospital (Xi'an No. 4 Hospital), Xi'an, 710100, China
| | - Hongtao Zhang
- Department of Orthopedics, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi, China
| | - Lizuo Liang
- Department of Orthopedics, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi, China
| | - Kui Xu
- Department of Orthopedics, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi, China
| | - Chuan Dong
- Department of Orthopedics, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi, China
| | - Chang Su
- Department of Pharmacy, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi, China
| | - Tao Yan
- Department of Pharmacy, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi, China
| | - Yongqiang Zhang
- Department of Pharmacy, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi, China
| | - Hua Long
- Department of Orthopedics, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi, China
| | - Le Yang
- Department of Pharmacy, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi, China
| | - Minggao Zhao
- Department of Pharmacy, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Cheng L, Wang S. Lower serum testosterone is associated with increased likelihood of arthritis. Sci Rep 2023; 13:19241. [PMID: 37935765 PMCID: PMC10630339 DOI: 10.1038/s41598-023-46424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Studies have suggested that serum testosterone levels may be strongly correlated with the pathogenesis of arthritis. Therefore, the aim of this study was to assess the relationship between serum testosterone levels and arthritis in US adults using the National Health and Nutrition Examination Survey (NHANES). We used the database from NHANES, 2013-2016 to perform a cross-sectional study. This study investigated the relationship between serum testosterone and arthritis using multivariate logistic regression models and also used smoothed curve fitting and generalized additivity models. A total of 10,439 adults were included in this analysis. A significant negative association between serum testosterone and arthritis was found in a linear regression analysis. The study showed that the arthritis group had lower testosterone levels than the non-arthritis group. The univariate multivariate analyses of Q4, using Q1 as a reference, all showed a significantly lower risk of developing arthritis. In subgroup analyses, the negative correlation between serum testosterone levels and arthritis was more significant in women and those with a body mass index (BMI) ≥ 30 kg/m2. After controlling for various variables, we found a significant association between serum testosterone and arthritis in this analysis. Further study of the relationship between testosterone and arthritis is necessary to clarify the specific mechanism of serum testosterone action on arthritis.
Collapse
Affiliation(s)
- Lulu Cheng
- College of Acupuncture-Moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Graduate School, Wuhan Sports University, Wuhan, 430079, China.
| | - Siyu Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| |
Collapse
|
10
|
Gulati M, Dursun E, Vincent K, Watt FE. The influence of sex hormones on musculoskeletal pain and osteoarthritis. THE LANCET. RHEUMATOLOGY 2023; 5:e225-e238. [PMID: 38251525 DOI: 10.1016/s2665-9913(23)00060-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 03/22/2023]
Abstract
The association of female sex with certain rheumatic symptoms and diseases is now indisputable. Some of the most striking examples of this association occur in individuals with musculoskeletal pain and osteoarthritis, in whom sex-dependent changes in incidence and prevalence of disease are seen throughout the lifecourse. Joint and muscle pain are some of the most common symptoms of menopause, and there is increasingly compelling evidence that changes in or loss of sex hormones (be it natural, autoimmune, pharmacological, or surgical) influence musculoskeletal pain propensity and perhaps disease. However, the effects of modulation or replacement of sex hormones in this context are far less established, particularly whether these approaches could represent a preventative or therapeutic opportunity once symptoms have developed. In this Review, we present evidence for the association of changes in sex hormones with musculoskeletal pain and painful osteoarthritis, discussing data from diverse natural, therapeutic, and experimental settings in humans and relevant animal models relating to hormone loss or replacement and the consequent effects on health, pain, and disease. We also postulate mechanisms by which sex hormones could mediate these effects. Further research is needed; however, increased scientific understanding of this complex area could lead to real benefits in musculoskeletal and women's health.
Collapse
Affiliation(s)
- Malvika Gulati
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Eren Dursun
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Katy Vincent
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Fiona E Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK; Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK; Rheumatology Department, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
11
|
Gilmer G, Bean AC, Iijima H, Jackson N, Thurston RC, Ambrosio F. Uncovering the "riddle of femininity" in osteoarthritis: a systematic review and meta-analysis of menopausal animal models and mathematical modeling of estrogen treatment. Osteoarthritis Cartilage 2023; 31:447-457. [PMID: 36621591 PMCID: PMC10033429 DOI: 10.1016/j.joca.2022.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Post-menopausal women are disproportionately affected by osteoarthritis (OA). As such, the purpose of this study was to (1) summarize the state-of-the-science aimed at understanding the effects of menopause on OA in animal models and (2) investigate how dosage and timing of initiation of estrogen treatment affect cartilage degeneration. DESIGN A systematic review identified articles studying menopausal effects on cartilage in preclinical models. A meta-analysis was performed using overlapping cartilage outcomes in conjunction with a rigor and reproducibility analysis. Ordinary differential equation models were used to determine if a relationship exists between cartilage degeneration and the timing of initiation or dosage of estrogen treatment. RESULTS Thirty-eight manuscripts were eligible for inclusion. The most common menopause model used was ovariectomy (92%), and most animals were young at the time of menopause induction (86%). Most studies did not report inclusion criteria, animal monitoring, protocol registration, or data accessibility. Cartilage outcomes were worse in post-menopausal animals compared to age-matched, non-menopausal animals, as evidenced by cartilage histological scoring [0.75, 1.72], cartilage thickness [-4.96, -0.96], type II collagen [-4.87, -0.56], and c-terminal cross-linked telopeptide of type II collagen (CTX-II) [2.43, 5.79] (95% CI of Effect Size (+greater in menopause, -greater in non-menopause)). Moreover, modeling suggests that cartilage health may be improved with early initiation and higher doses of estrogen treatment. CONCLUSIONS To improve translatability, animal models that consider aging and natural menopause should be utilized, and more attention to rigor and reproducibility is needed. Timing of initiation and dosage may be important factors modulating therapeutic effects of estrogen on cartilage.
Collapse
Affiliation(s)
- G Gilmer
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Cellular and Molecular Pathology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA; Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Rehabilitation Hospital, Boston, MA, USA; Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA.
| | - A C Bean
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - H Iijima
- Institute for Advanced Research, Nagoya University, Nagoya University, Nagoya, Japan.
| | - N Jackson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - R C Thurston
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - F Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Rehabilitation Hospital, Boston, MA, USA; Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Mechanotransduction pathways in articular chondrocytes and the emerging role of estrogen receptor-α. Bone Res 2023; 11:13. [PMID: 36869045 PMCID: PMC9984452 DOI: 10.1038/s41413-023-00248-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 03/05/2023] Open
Abstract
In the synovial joint, mechanical force creates an important signal that influences chondrocyte behavior. The conversion of mechanical signals into biochemical cues relies on different elements in mechanotransduction pathways and culminates in changes in chondrocyte phenotype and extracellular matrix composition/structure. Recently, several mechanosensors, the first responders to mechanical force, have been discovered. However, we still have limited knowledge about the downstream molecules that enact alterations in the gene expression profile during mechanotransduction signaling. Recently, estrogen receptor α (ERα) has been shown to modulate the chondrocyte response to mechanical loading through a ligand-independent mechanism, in line with previous research showing that ERα exerts important mechanotransduction effects on other cell types, such as osteoblasts. In consideration of these recent discoveries, the goal of this review is to position ERα into the mechanotransduction pathways known to date. Specifically, we first summarize our most recent understanding of the mechanotransduction pathways in chondrocytes on the basis of three categories of actors, namely mechanosensors, mechanotransducers, and mechanoimpactors. Then, the specific roles played by ERα in mediating the chondrocyte response to mechanical loading are discussed, and the potential interactions of ERα with other molecules in mechanotransduction pathways are explored. Finally, we propose several future research directions that may advance our understanding of the roles played by ERα in mediating biomechanical cues under physiological and pathological conditions.
Collapse
|
13
|
Mitoma T, Maki J, Ooba H, Eto E, Takahashi K, Kondo T, Ikeda T, Sakamoto Y, Mitsuhashi T, Masuyama H. Protocol for a randomised, placebo-controlled, double-blinded clinical trial on the effect of oestrogen replacement on physical performance to muscle resistance exercise for older women with osteoarthritis of knee joint: the EPOK trial. BMC Geriatr 2023; 23:104. [PMID: 36800940 PMCID: PMC9938988 DOI: 10.1186/s12877-023-03828-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/15/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is highly prevalent in older women, and previous studies suggest the involvement of hormonal factors play a role in the pathogenesis of osteoarthritis. KOA causes musculoskeletal impairment, resulting in decreased physical activity, muscle mass, and strength, which leads to sarcopenia and further increases the burden on healthcare systems. Oestrogen replacement therapy (ERT) improves joint pain and muscle performance in early menopausal women. Muscle resistance exercise (MRE) is a non-pharmacological method that preserves the physical functions of patients with KOA. However, data on short-term oestrogen administration combined with MRE in postmenopausal women, especially in those aged > 65 years, are limited. Therefore, this study presents a protocol of a trial aimed to examine the synergistic effect of ERT and MRE on lower-limb physical performance in older women with KOA. METHODS We will conduct a double-blinded, randomised placebo-controlled trial in 80 Japanese women aged > 65 years living independently with knee pain. The participants will be randomly categorised into two groups: (1) 12-week MRE programme with transdermal oestrogen gel containing 0.54 mg oestradiol per push and (2) 12-week MRE programme with placebo gel. The primary outcome measured using the 30-s chair stand test, and secondary outcomes (body composition, lower-limb muscle strength, physical performance, self-reported measure of knee pain, and quality of life) will be measured at baseline, 3 months, and 12 months, and these outcomes will be analysed based on the intention-to-treat. DISCUSSION The EPOK trial is the first study to focus on the efficacy of ERT on MRE among women aged > 65 years with KOA. This trial will provide an effective MRE to prevent KOA-induced lower-limb muscle weakness, confirming the benefit of short-term oestrogen administration. TRIAL REGISTRATION Japan Registry of Clinical Trials: jRCTs061210062. Registered 17th December 2021, https://jrct.niph.go.jp/en-latest-detail/jRCTs061210062 .
Collapse
Affiliation(s)
- Tomohiro Mitoma
- Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jota Maki
- Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hikaru Ooba
- Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Eriko Eto
- Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kasumi Takahashi
- Department of Obstetrics and Gynecology, Ochiai Hospital, Okayama, Japan
| | - Tsunemasa Kondo
- Department of Obstetrics and Gynecology, Ochiai Hospital, Okayama, Japan
| | - Tomohiro Ikeda
- Department of Rehabilitation Medicine, Okayama University, Okayama, Japan
| | - Yoko Sakamoto
- Center for Innovative Clinical Medicine, Okayama University, Okayama, Japan
| | | | - Hisashi Masuyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
14
|
Zhang X, Xiang S, Zhang Y, Liu S, Lei G, Hines S, Wang N, Lin H. In vitro study to identify ligand-independent function of estrogen receptor-α in suppressing DNA damage-induced chondrocyte senescence. FASEB J 2023; 37:e22746. [PMID: 36622202 PMCID: PMC10369926 DOI: 10.1096/fj.202201228r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023]
Abstract
In osteoarthritis (OA), chondrocytes undergo many pathological alternations that are linked with cellular senescence. However, the exact pathways that lead to the generation of a senescence-like phenotype in OA chondrocytes are not clear. Previously, we found that loss of estrogen receptor-α (ERα) was associated with an increased senescence level in human chondrocytes. Since DNA damage is a common cause of cellular senescence, we aimed to study the relationship among ERα levels, DNA damage, and senescence in chondrocytes. We first examined the levels of ERα, representative markers of DNA damage and senescence in normal and OA cartilage harvested from male and female human donors, as well as from male mice. The influence of DNA damage on ERα levels was studied by treating human chondrocytes with doxorubicin (DOX), which is an often-used DNA-damaging agent. Next, we tested the potential of overexpressing ERα in reducing DNA damage and senescence levels. Lastly, we explored the interaction between ERα and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Results indicated that the OA chondrocytes contained DNA damage and displayed senescence features, which were accompanied by significantly reduced ERα levels. Overexpression of ERα reduced the levels of DNA damage and senescence in DOX-treated normal chondrocytes and OA chondrocytes. Moreover, DOX-induced the activation of NF-κB pathway, which was partially reversed by overexpressing ERα. Taken together, our results demonstrated the critical role of ERα in maintaining the health of chondrocytes by inhibiting DNA damage and senescence. This study also suggests that maintaining the ERα level may represent a new avenue to prevent and treat OA.
Collapse
Affiliation(s)
- Xiurui Zhang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiqi Xiang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yiqian Zhang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Guanghua Lei
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sophie Hines
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ning Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Wan X, Wang X, Pang R, Xu C, Shi W, Zhang H, Li H, Li Z. Mapping knowledge landscapes and emerging trends of the links between osteoarthritis and osteoporosis: A bibliometric analysis. Front Public Health 2022; 10:1019691. [PMID: 36600941 PMCID: PMC9806179 DOI: 10.3389/fpubh.2022.1019691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Osteoarthritis has the characteristics of degenerative changes in articular cartilage and secondary osteoporosis, and it is a common chronic irreversible joint disease. In addition to affecting articular cartilage, subchondral bone, joint capsule and synovial membrane also undergo pathological changes during the development of the disease. Multiple studies have revealed that patients with osteoarthritis were found to have a significantly increased risk of osteoporosis, which also contributes to the progression of osteoarthritis. However, in the current existing studies, we found that no scholars have used bibliometric analysis in the study of the relationship between osteoarthritis and osteoporosis. From the perspective of bibliometrics, this study summarizes in detail the degree of cooperation between countries, research institutions, authors, and related journals in the field of osteoarthritis and osteoporosis research and their respective influence. In this way, the evolution of knowledge structure, the change of research focus and the hot topics with research potential in the future can be further visualized and analyzed. Methods Search the Web of Science core collection in Science Citation Index Expanded for articles and reviews of research on osteoarthritis and osteoporosis from 1998 to 2021. Bibliometric tools such as VOSviewer, CiteSpace, were be frequently used in our study. They are mainly used to analyze collaborations between countries, research institutions, and publication authors. Meantime, co-citation analysis of journals, co-occurrence analysis of keywords and subject categories will also be reflected in the study. Results According to the search strategy, 1,078 publications were included during the period 1998-2021. And the number of annual publications on the relationship between osteoarthritis and osteoporosis is on the rise. The United States has achieved the most and contributed the most in this field and the Boston University was the most prolific institution. For the statistical analysis of published publications, Reginster JY had the highest number of publications, while Felson DT had the highest co-citation frequency. Respectively, Osteoarthritis And Cartilage was the most productive journal in this area of research. The keywords "inflammation," "expression," and "mesenchymal stem cells" may also be the development trend and research hotspot of the future research direction in this field. Conclusions In our study, the relationship between osteoarthritis and osteoporosis was analyzed by using literature measurement. These analysis results can lead researchers to learn more directly about the trend in this area and provide guidance for determining popular research directions.
Collapse
Affiliation(s)
- Xin Wan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuefei Wang
- The First Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ran Pang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunlei Xu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huafeng Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hui Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China,Department of Orthopedics, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China,*Correspondence: Hui Li
| | - Zhijun Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China,Zhijun Li
| |
Collapse
|
16
|
Ma Y, Chen X, He F, Li S, He R, Liu Q, Dong Q, Zhou S, Miao H, Lu Q, Li F, Yang H, Zhang M, Lin Y, Yu S. Low frequency pulsed electromagnetic fields exposure alleviate the abnormal subchondral bone remodeling at the early stage of temporomandibular joint osteoarthritis. BMC Musculoskelet Disord 2022; 23:987. [PMID: 36384557 PMCID: PMC9667650 DOI: 10.1186/s12891-022-05916-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Temporomandibular joint osteoarthritis (TMJOA) is characterized by abnormal subchondral bone remodeling and cartilage degeneration. As a non-invasive biophysical technology, pulsed electromagnetic field (PEMF) treatment has been proven to be efficient in promoting osteogenesis. However, the potential bone protective effect and mechanism of PEMF on abnormal subchondral bone remodeling in TMJOA are unknown. METHODS Unilateral anterior crossbite (UAC) was used to create TMJOA model in rats, and 17β-estradiol (E2) were injected daily to mimic patients with high-physiological levels of estrogen. Mouse osteoblast-like MC3T3-E1 cells treated with recombinant murine IL-1β was used to establish inflammatory environment in vitro. The treatment group were subjected to PEMF (2.0mT, 15 Hz, 2 h/d). Micro-CT scanning, histological staining, real-time PCR and western blotting assays were preformed to observe the changes in the subchondral bone. RESULTS Abnormal resorption of subchondral bone induced by UAC, characterized by decreased bone mineral density, increased osteoclast activity and expression of osteoclast-related factors (RANKL) and down-regulated expression of osteogenesis-related factors (OPG, ALP, Runx2 and OCN) at the early stage, could be reversed by PEMF exposure, which was similar to the effect of estrogen. In addition, PEMF exposure and E2 supplement may have a synergistic effect to some extent. Moreover, PEMF exposure could promote the ALP activity and osteogenic mineralization ability of MC3T3-E1 cells. PEMF promoted the expression of factors related to Wnt/β-Catenin signal pathway both in vivo and in vitro. CONCLUSIONS Appropriate PEMF exposure have a protective effect on subchondral bone in TMJOA at early stage, in which canonical Wnt/β-Catenin pathway may be involved. PEMF may be a promising biophysical approach for early intervention of TMJOA in clinic.
Collapse
Affiliation(s)
- Yuanjun Ma
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032 People’s Republic of China ,grid.417279.eDepartment of Stomatology, Chinese PLA General Hospital of Central Theater Command, Wuhan, 430070 People’s Republic of China
| | - Xiaohua Chen
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Feng He
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Shi Li
- grid.414252.40000 0004 1761 8894Department of Stomatology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700 People’s Republic of China
| | - Rui He
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Qian Liu
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Qingshan Dong
- grid.417279.eDepartment of Stomatology, Chinese PLA General Hospital of Central Theater Command, Wuhan, 430070 People’s Republic of China
| | - Shuncheng Zhou
- grid.417279.eDepartment of Stomatology, Chinese PLA General Hospital of Central Theater Command, Wuhan, 430070 People’s Republic of China
| | - Hui Miao
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Qian Lu
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Feifei Li
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Hongxu Yang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Mian Zhang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Yuan Lin
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Shibin Yu
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032 People’s Republic of China
| |
Collapse
|
17
|
Wang J, Fan J, Yang Y, Moazzen S, Chen D, Sun L, He F, Li Y. Vitamin D Status and Risk of All-Cause and Cause-Specific Mortality in Osteoarthritis Patients: Results from NHANES III and NHANES 2001-2018. Nutrients 2022; 14:nu14214629. [PMID: 36364891 PMCID: PMC9655488 DOI: 10.3390/nu14214629] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Objectives: The role of Vitamin D (VD) in calcium balance and bone health makes VD a vital factor in osteoarthritis (OA). Studies that have evaluated the effect of VD on OA patients have mainly been performed on a short-term basis. In this analysis, we aimed to evaluate whether VD was associated with mortality, a long-term outcome, in OA patients. Methods: Participants with self-reported OA from NHANES III and NHANES 2001−2018 were included. Associations of 25(OH)D concentrations with mortality risk were assessed continuously using restricted cubic splines and by categories (i.e., <25.0, 25.0−49.9, 50.0−74.9, and ≥75.0 nmol/L) using the Cox regression model. Sensitivity and stratified analyses were performed to evaluate the robustness of the results. Results: A total of 4570 patients were included, of which 1388 died by 31 December 2019. An L-shaped association was observed between 25(OH)D concentrations and all-cause mortality, whereas an inverse association was found for cardiovascular disease (CVD) mortality. The adjusted hazard ratios (95% confidence intervals) across four categories were 1.00 (reference), 0.49 (0.31, 0.75), 0.45 (0.29, 0.68), and 0.43 (0.27, 0.69) for all-cause mortality and 1.00 (reference), 0.28 (0.14, 0.59), 0.25 (0.12, 0.51), and 0.24 (0.11, 0.49) for CVD-specific mortality; no significant associations were found for cancer-specific mortality. Similar results were observed when stratified and sensitivity analyses were performed. Conclusions: Compared with patients with insufficient or deficient serum 25(OH)D, those with sufficient 25(OH)D concentrations had a lower risk of all-cause and CVD mortality, supporting a beneficial role of VD on a long-term basis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Jiayao Fan
- School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Ye Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Sara Moazzen
- Molecular Epidemiology Research Group, Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13125 Berlin, Germany
| | - Dingwan Chen
- Primary Health Research Center of Zhejiang Province, Hangzhou Medical College, Hangzhou 310053, China
| | - Lingling Sun
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Fan He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Correspondence: (F.H.); (Y.L.)
| | - Yingjun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
- Correspondence: (F.H.); (Y.L.)
| |
Collapse
|
18
|
Lei L, Meng L, Changqing X, Chen Z, Gang Y, Shiyuan F. Effect of cell receptors in the pathogenesis of osteoarthritis: Current insights. Open Life Sci 2022; 17:695-709. [PMID: 35859614 PMCID: PMC9267313 DOI: 10.1515/biol-2022-0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Osteoarthritis (OA) is a chronic arthritic disease characterized by cartilage degradation, synovial inflammation, and subchondral bone lesions. The studies on the pathogenesis of OA are complex and diverse. The roles of receptors signaling in chondrocyte anabolism, inflammatory factors expression of synovial fibroblast, and angiogenesis in subchondral bone are particularly important for exploring the pathological mechanism of OA and clinical diagnosis and treatment. By reviewing the relevant literature, this article elaborates on the abnormal expression of receptors and the signaling transduction pathways from different pathological changes of OA anatomical components, aiming to provide new research ideas and clinical therapeutic value for OA pathogenesis.
Collapse
Affiliation(s)
- Li Lei
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Li Meng
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Xu Changqing
- Department of Orthopaedics, Dongxihu District People's Hospital Affiliated to Huazhong University of Science and Technology, Wuhan, China
| | - Zhu Chen
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Yao Gang
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Fang Shiyuan
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| |
Collapse
|
19
|
|
20
|
Keita-Alassane S, Otis C, Bouet E, Guillot M, Frezier M, Delsart A, Moreau M, Bédard A, Gaumond I, Pelletier JP, Martel-Pelletier J, Beaudry F, Lussier B, Lecomte R, Marchand S, Troncy E. Estrogenic impregnation alters pain expression: analysis through functional neuropeptidomics in a surgical rat model of osteoarthritis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:703-715. [PMID: 35318491 DOI: 10.1007/s00210-022-02231-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE Several observational studies suggest that estrogens could bias pain perception. To evaluate the influence of estrogenic impregnation on pain expression, a prospective, randomized, controlled, blinded study was conducted in a Sprague-Dawley rat model of surgically induced osteoarthritis (OA). METHODS Female rats were ovariectomized and pre-emptive 17β-estradiol (0.025 mg, 90-day release time) or placebo pellets were installed subcutaneously during the OVX procedures. Thirty-five days after, OA was surgically induced on both 17β-estradiol (OA-E) and placebo (OA-P) groups. Mechanical hypersensitivity was assessed by static weight-bearing (SWB) and paw withdrawal threshold (PWT) tests. Mass spectrometry coupled with high-performance liquid chromatography (HPLC-MS) was performed to quantify the spinal pronociceptive neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), bradykinin (BK), somatostatin (SST), and dynorphin-A (Dyn-A). RESULTS Compared to control, ovariectomized rats presented higher SP (P = 0.009) and CGRP (P = 0.017) concentrations. OA induction increased the spinal level of SP (+ 33%, P < 0.020) and decreased the release of BK (- 20%, (P < 0.037)). The OA-E rats at functional assessment put more % body weight on the affected hind limb than OA-P rats at D7 (P = 0.027) and D56 (P = 0.033), and showed higher PWT at D56 (P = 0.009), suggesting an analgesic and anti-allodynic effect of 17β-estradiol. Interestingly, the 17β-estradiol treatment counteracted the increase of spinal concentration of Dyn-A (P < 0.016) and CGRP (P < 0.018). CONCLUSION These results clearly indicate that 17β-estradiol interfers with the development of central sensitization and confirm that gender dimorphism should be considered when looking at pain evaluation.
Collapse
Affiliation(s)
- Sokhna Keita-Alassane
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Colombe Otis
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Emilie Bouet
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Martin Guillot
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | - Marilyn Frezier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Aliénor Delsart
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Maxim Moreau
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Agathe Bédard
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | - Isabelle Gaumond
- Département de Chirurgie, Département d'anesthésie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Francis Beaudry
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Bertrand Lussier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
| | - Serge Marchand
- Département de Chirurgie, Département d'anesthésie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
| | - Eric Troncy
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada.
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada.
| |
Collapse
|
21
|
Dreier R, Ising T, Ramroth M, Rellmann Y. Estradiol Inhibits ER Stress-Induced Apoptosis in Chondrocytes and Contributes to a Reduced Osteoarthritic Cartilage Degeneration in Female Mice. Front Cell Dev Biol 2022; 10:913118. [PMID: 35669511 PMCID: PMC9163336 DOI: 10.3389/fcell.2022.913118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 01/29/2023] Open
Abstract
Gender differences are a common finding in osteoarthritis (OA). This may result from a differential response of males and females to endoplasmic reticulum (ER) stress in articular chondrocytes. We have previously described that ER stress in cartilage-specific ERp57 KO mice (ERp57 cKO) favors the development of knee OA, since this stress condition cannot be adequately compensated in articular chondrocytes with increasing age leading to the induction of apoptotic cell death and subsequent cartilage degeneration. The aim of this study was to enlighten gender-specific differences in ER stress, apoptosis, and OA development in ERp57 cKO mice. The analyses were extended by in vitro studies on the influence of estradiol in CRISPR/Cas9-generated C28/I2 ERp57 knock out (KO) and WT cells. ER stress was evaluated by immunofluorescence analysis of the ER stress markers calnexin (Cnx) and binding-immunoglobulin protein (BiP), also referred to as glucose-regulating protein 78 (GRP78) in vivo and in vitro. Apoptotic cell death was investigated by a commercially available cell death detection ELISA and TUNEL assay. OA development in mice was analyzed by toluidine blue staining of paraffin-embedded knee cartilage sections and quantified by OARSI-Scoring. Cell culture studies exhibited a reduction of ER stress and ER stress-induced apoptosis in C28/I2 cells in presence of physiological estradiol concentrations. This is consistent with a slower increase in age-related ER stress and a reduced number of apoptotic chondrocytes in female mice compared to male littermates contributing to a reduced osteoarthritic cartilage degeneration in female mice. Taken together, this study demonstrates that the female sex hormone estradiol can reduce ER stress and ER stress-induced apoptosis in articular chondrocytes, thus minimizing critical events favoring osteoarthritic cartilage degeneration. Therefore, the inhibition of ER stress through a modulation of effects induced by female sex hormones appears to be attractive for OA therapy.
Collapse
|
22
|
Tian Y, Cui S, Guo Y, Zhao N, Gan Y, Zhou Y, Wang X. Similarities and differences of estrogen in the regulation of temporomandibular joint osteoarthritis and knee osteoarthritis. Histol Histopathol 2022; 37:415-422. [PMID: 35194774 DOI: 10.14670/hh-18-442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Temporomandibular joint osteoarthritis (TMJOA) and knee osteoarthritis (knee OA) are two kinds of common osteoarthritis (OA) that are characterized by chronic degeneration of soft and hard tissues around joints. Their gender and age differences suggest that there are similarities and differences between the pathogenic mechanisms of TMJOA and knee OA. OBJECTIVE To review recent studies on the effect of estrogen on TMJOA and knee OA, and summarize their possible pathogenesis and molecular mechanisms. SOURCES Articles up to present reporting the relationship of estrogen and TMJOA or knee OA are included. An extensive electronic search was conducted of databases including PubMed, Web of science core collection. CONCLUSION According to epidemiological investigations, TMJOA primarily happens to females of puberty and childbearing age, while knee OA mainly affects postmenopausal women. Epidemiological investigation and experimental research suggest that estrogen may have a different effect on TMJ and on knee. Though estrogen regulates TMJOA and knee OA via estrogen-related receptors (ERR), their pathogenesis and pathway of estrogen regulation are different. To find out the accurate regulation of estrogen on TMJOA and knee OA, specific pathways and molecular mechanisms still need further exploration.
Collapse
Affiliation(s)
- Yajing Tian
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shengjie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yanning Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ningrui Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yehua Gan
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Center for Temporomandibular Disorder and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xuedong Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
23
|
Mei Y, Williams JS, Webb EK, Shea AK, MacDonald MJ, Al-Khazraji BK. Roles of Hormone Replacement Therapy and Menopause on Osteoarthritis and Cardiovascular Disease Outcomes: A Narrative Review. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:825147. [PMID: 36189062 PMCID: PMC9397736 DOI: 10.3389/fresc.2022.825147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
Osteoarthritis (OA) is a highly prevalent condition characterized by degradation of the joints. OA and cardiovascular disease (CVD) are leading contributors to disease burden worldwide, with a high level of overlap between the risk factors and occurrence of both conditions. Chief among the risk factors that contribute to OA and CVD are sex and age, which are both independent and interacting traits. Specifically, the prevalence of both conditions is higher in older women, which may be mediated by the occurrence of menopause. Menopause represents a significant transition in a women's life, and the rapid decline in circulating sex hormones, estrogen and progesterone, leads to complex physiological changes. Declines in hormone levels may partially explain the increase in prevalence of OA and CVD in post-menopausal women. In theory, the use of hormone therapy (HT) may buffer adverse effects of menopause; however, it is unclear whether HT offers protective effects for the onset or progression of these diseases. Studies have shown mixed results when describing the influence of HT on disease risk among post-menopausal women, which warrants further exploration. The roles that increasing age, female sex, HT, and CVD play in OA risk demonstrate that OA is a multifaceted condition. This review provides a timely consolidation of current literature and suggests aims for future research directions to bridge gaps in the understanding of how OA, CVD, and HT interact in post-menopausal women.
Collapse
Affiliation(s)
- Yixue Mei
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Jennifer S. Williams
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Erin K. Webb
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Alison K. Shea
- Department of Obstetrics and Gynaecology, Faculty of Medicine, McMaster University, Hamilton, ON, Canada
| | - Maureen J. MacDonald
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Baraa K. Al-Khazraji
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON, Canada
- *Correspondence: Baraa K. Al-KhazrajiS
| |
Collapse
|
24
|
Lin Z, Deng Z, Liu J, Lin Z, Chen S, Deng Z, Li W. Chloride Channel and Inflammation-Mediated Pathogenesis of Osteoarthritis. J Inflamm Res 2022; 15:953-964. [PMID: 35177922 PMCID: PMC8846625 DOI: 10.2147/jir.s350432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Articular cartilage allows the human body to buffer and absorb stress during normal exercise. It is mainly composed of cartilage cells and the extracellular matrix and is surrounded by the extracellular microenvironment formed by synovial fluid and various factors in it. Studies have shown that chondrocytes are the metabolic center of articular cartilage. Under physiological conditions, the extracellular matrix is in a dynamic balance of anabolism and catabolism, and various factors and physical and chemical conditions in the extracellular microenvironment are also in a steady state. This homeostasis depends on the normal function of proteins represented by various ion channels on chondrocytes. In mammalian chondrocyte species, ion channels are mainly divided into two categories: cation channels and anion channels. Anion channels such as chloride channels have become hot research topics in recent years. These channels play an extremely important role in various physiological processes. Recently, a growing body of evidence has shown that many pathological processes, abnormal concentration of mechanical stress and chloride channel dysfunction in articular cartilage lead to microenvironment disorders, matrix and bone metabolism imbalances, which cause partial aseptic inflammation. These pathological processes initiate extracellular matrix degradation, abnormal chondrocyte death, hyperplasia of inflammatory synovium and bony. Osteoarthritis (OA) is a common clinical disease in orthopedics. Its typical manifestations are joint inflammation and pain caused by articular cartilage degeneration, but its pathogenesis has not been fully elucidated. Focusing on the physiological functions and pathological changes of chloride channels and pathophysiology of aseptic inflammation furthers the understanding of OA pathogenesis and provides possible targets for subsequent medication development.
Collapse
Affiliation(s)
- Zicong Lin
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Jianquan Liu
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhongshi Lin
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), Shenzhen, Guangdong, 518057, People’s Republic of China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email
| | - Wencui Li
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Wencui Li, Department of Hand and Foot Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13923750767, Email
| |
Collapse
|
25
|
Abstract
Aims Deciphering the genetic relationships between major depressive disorder (MDD) and osteoarthritis (OA) may facilitate an understanding of their biological mechanisms, as well as inform more effective treatment regimens. We aim to investigate the mechanisms underlying relationships between MDD and OA in the context of common genetic variations. Methods Linkage disequilibrium score regression was used to test the genetic correlation between MDD and OA. Polygenic analysis was performed to estimate shared genetic variations between the two diseases. Two-sample bidirectional Mendelian randomization analysis was used to investigate causal relationships between MDD and OA. Genomic loci shared between MDD and OA were identified using cross-trait meta-analysis. Fine-mapping of transcriptome-wide associations was used to prioritize putatively causal genes for the two diseases. Results MDD has a significant genetic correlation with OA (rg = 0.29) and the two diseases share a considerable proportion of causal variants. Mendelian randomization analysis indicates that genetic liability to MDD has a causal effect on OA (bxy = 0.24) and genetic liability to OA conferred a causal effect on MDD (bxy = 0.20). Cross-trait meta-analyses identified 29 shared genomic loci between MDD and OA. Together with fine-mapping of transcriptome-wide association signals, our results suggest that Estrogen Receptor 1 (ESR1), SRY-Box Transcription Factor 5 (SOX5), and Glutathione Peroxidase 1 (GPX1) may have therapeutic implications for both MDD and OA. Conclusion The study reveals substantial shared genetic liability between MDD and OA, which may confer risk for one another. Our findings provide a novel insight into phenotypic relationships between MDD and OA. Cite this article: Bone Joint Res 2022;11(1):12–22.
Collapse
Affiliation(s)
- Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, Virginia, USA.,Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
26
|
Lv Z, Yang YX, Li J, Fei Y, Guo H, Sun Z, Lu J, Xu X, Jiang Q, Ikegawa S, Shi D. Molecular Classification of Knee Osteoarthritis. Front Cell Dev Biol 2021; 9:725568. [PMID: 34513847 PMCID: PMC8429960 DOI: 10.3389/fcell.2021.725568] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/09/2021] [Indexed: 01/15/2023] Open
Abstract
Knee osteoarthritis (KOA) is the most common form of joint degeneration with increasing prevalence and incidence in recent decades. KOA is a molecular disorder characterized by the interplay of numerous molecules, a considerable number of which can be detected in body fluids, including synovial fluid, urine, and blood. However, the current diagnosis and treatment of KOA mainly rely on clinical and imaging manifestations, neglecting its molecular pathophysiology. The mismatch between participants' molecular characteristics and drug therapeutic mechanisms might explain the failure of some disease-modifying drugs in clinical trials. Hence, according to the temporal alteration of representative molecules, we propose a novel molecular classification of KOA divided into pre-KOA, early KOA, progressive KOA, and end-stage KOA. Then, progressive KOA is furtherly divided into four subtypes as cartilage degradation-driven, bone remodeling-driven, inflammation-driven, and pain-driven subtype, based on the major pathophysiology in patient clusters. Multiple clinical findings of representatively investigated molecules in recent years will be reviewed and categorized. This molecular classification allows for the prediction of high-risk KOA individuals, the diagnosis of early KOA patients, the assessment of therapeutic efficacy, and in particular, the selection of homogenous patients who may benefit most from the appropriate therapeutic agents.
Collapse
Affiliation(s)
- Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yannick Xiaofan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiawei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuxiang Fei
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hu Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science (IMS, RIKEN), Tokyo, Japan
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
27
|
Boer CG, Hatzikotoulas K, Southam L, Stefánsdóttir L, Zhang Y, Coutinho de Almeida R, Wu TT, Zheng J, Hartley A, Teder-Laving M, Skogholt AH, Terao C, Zengini E, Alexiadis G, Barysenka A, Bjornsdottir G, Gabrielsen ME, Gilly A, Ingvarsson T, Johnsen MB, Jonsson H, Kloppenburg M, Luetge A, Lund SH, Mägi R, Mangino M, Nelissen RRGHH, Shivakumar M, Steinberg J, Takuwa H, Thomas LF, Tuerlings M, Babis GC, Cheung JPY, Kang JH, Kraft P, Lietman SA, Samartzis D, Slagboom PE, Stefansson K, Thorsteinsdottir U, Tobias JH, Uitterlinden AG, Winsvold B, Zwart JA, Davey Smith G, Sham PC, Thorleifsson G, Gaunt TR, Morris AP, Valdes AM, Tsezou A, Cheah KSE, Ikegawa S, Hveem K, Esko T, Wilkinson JM, Meulenbelt I, Lee MTM, van Meurs JBJ, Styrkársdóttir U, Zeggini E. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 2021; 184:4784-4818.e17. [PMID: 34450027 PMCID: PMC8459317 DOI: 10.1016/j.cell.2021.07.038] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/26/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation.
Collapse
Affiliation(s)
- Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Tian T Wu
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - April Hartley
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Musculoskeletal Research Unit, Translation Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Eleni Zengini
- 4(th) Psychiatric Department, Dromokaiteio Psychiatric Hospital, 12461 Athens, Greece
| | - George Alexiadis
- 1(st) Department of Orthopaedics, KAT General Hospital, 14561 Athens, Greece
| | - Andrei Barysenka
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Thorvaldur Ingvarsson
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland; Department of Orthopedic Surgery, Akureyri Hospital, 600 Akureyri, Iceland
| | - Marianne B Johnsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway; Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0424 Oslo, Norway
| | - Helgi Jonsson
- Department of Medicine, Landspitali The National University Hospital of Iceland, 108 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Margreet Kloppenburg
- Departments of Rheumatology and Clinical Epidemiology, Leiden University Medical Center, 9600, 23OORC Leiden, the Netherlands
| | - Almut Luetge
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - Rob R G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, 9600, 23OORC Leiden, the Netherlands
| | - Manu Shivakumar
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 1340, Australia
| | - Hiroshi Takuwa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan; Department of Orthopedic Surgery, Shimane University, Shimane 693-8501, Japan
| | - Laurent F Thomas
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; BioCore-Bioinformatics Core Facility, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - George C Babis
- 2(nd) Department of Orthopaedics, National and Kapodistrian University of Athens, Medical School, Nea Ionia General Hospital Konstantopouleio, 14233 Athens, Greece
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jae Hee Kang
- Department of Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA 02115, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Steven A Lietman
- Musculoskeletal Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Jonathan H Tobias
- Musculoskeletal Research Unit, Translation Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK; MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | - Bendik Winsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - John-Anker Zwart
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Pak Chung Sham
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester M13 9LJ, UK
| | - Ana M Valdes
- Faculty of Medicine and Health Sciences, School of Medicine, University of Nottingham, Nottingham, Nottinghamshire NG5 1PB, UK
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa 411 10, Greece
| | - Kathryn S E Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7600 Levanger, Norway
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - J Mark Wilkinson
- Department of Oncology and Metabolism and Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2RX, UK
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Ming Ta Michael Lee
- Genomic Medicine Institute, Geisinger Health System, Danville, PA 17822, USA; Institute of Biomedical Sciences, Academia Sinica, 115 Taipei, Taiwan
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | | | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, 81675 Munich, Germany.
| |
Collapse
|
28
|
Sun Y, Leng P, Guo P, Gao H, Liu Y, Li C, Li Z, Zhang H. G protein coupled estrogen receptor attenuates mechanical stress-mediated apoptosis of chondrocyte in osteoarthritis via suppression of Piezo1. Mol Med 2021; 27:96. [PMID: 34454425 PMCID: PMC8403401 DOI: 10.1186/s10020-021-00360-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apoptosis of chondrocyte is involved in osteoarthritis (OA) pathogenesis, and mechanical stress plays a key role in this process by activation of Piezo1. However, the negative regulation of signal conduction mediated by mechanical stress is still unclear. Here, we elucidate that the critical role of G protein coupled estrogen receptor (GPER) in the regulation of mechanical stress-mediated signal transduction and chondrocyte apoptosis. METHODS The gene expression profile was detected by gene chip upon silencing Piezo1. The expression of GPER in cartilage tissue taken from the clinical patients was detected by RT-PCR and Western blot as well as immunohistochemistry, and the correlation between GPER expression and OA was also investigated. The chondrocytes exposed to mechanical stress were treated with estrogen, G-1, G15, GPER-siRNA and YAP (Yes-associated protein)-siRNA. The cell viability of chondrocytes was measured. The expression of polymerized actin and Piezo1 as well as the subcellular localization of YAP was observed under laser confocal microscope. Western blot confirmed the changes of YAP/ Rho GTPase activating protein 29 (ARHGAP29) /RhoA/LIMK /Cofilin pathway. The knee specimens of osteoarthritis model were stained with safranin and green. OARSI score was used to evaluate the joint lesions. The expressions of GPER and YAP were detected by immunochemistry. RESULTS Expression profiles of Piezo1- silenced chondrocytes showed that GPER expression was significantly upregulated. Moreover, GPER was negatively correlated with cartilage degeneration during OA pathogenesis. In addition, we uncovered that GPER directly targeted YAP and broadly restrained mechanical stress-triggered actin polymerization. Mechanism studies revealed that GPER inhibited mechanical stress-mediated RhoA/LIMK/cofilin pathway, as well as the actin polymerization, by promoting expression of YAP and ARHGAP29, and the YAP nuclear localization, eventually causing the inhibition of Piezo1. YAP was obviously decreased in degenerated cartilage. Silencing YAP caused significantly increased actin polymerization and activation of Piezo1, and an increase of chondrocyte apoptosis. In addition, intra-articular injection of G-1 to OA rat effectively attenuated cartilage degeneration. CONCLUSION We propose a novel regulatory mechanism underlying mechanical stress-mediated apoptosis of chondrocyte and elucidate the potential application value of GPER as therapy targets for OA.
Collapse
Affiliation(s)
- Yi Sun
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ping Leng
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Pengcheng Guo
- Department of Joint Orthopedics, Weifang Hospital of Traditional Chinese Medicine, Weifang, 261000, China
| | - Huanshen Gao
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yikai Liu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chenkai Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zhenghui Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Haining Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
29
|
Li H, Li X, Yang B, Su J, Cai S, Huang J, Hu T, Chen L, Xu Y, Li Y. The retinoid X receptor α modulator K-80003 suppresses inflammatory and catabolic responses in a rat model of osteoarthritis. Sci Rep 2021; 11:16956. [PMID: 34417523 PMCID: PMC8379249 DOI: 10.1038/s41598-021-96517-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022] Open
Abstract
Osteoarthritis (OA), a most common and highly prevalent joint disease, is closely associated with dysregulated expression and modification of RXRα. However, the role of RXRα in the pathophysiology of OA remains unknown. The present study aimed to investigate whether RXRα modulator, such as K-80003 can treat OA. Experimental OA was induced by intra-articular injection of monosodium iodoacetate (MIA) in the knee joint of rats. Articular cartilage degeneration was assessed using Safranin-O and fast green staining. Synovial inflammation was measured using hematoxylin and eosin (H&E) staining and enzyme-linked immunosorbent assay (ELISA). Expressions of MMP-13, ADAMTS-4 and ERα in joints were analyzed by immunofluorescence staining. Western blot, RT-PCR and co-Immunoprecipitation (co-IP) were used to assess the effects of K-80003 on RXRα-ERα interaction. Retinoid X receptor α (RXRα) modulator K-80003 prevented the degeneration of articular cartilage, reduced synovial inflammation, and alleviated osteoarthritic pain in rats. Furthermore, K-80003 markedly inhibited IL-1β-induced p65 nuclear translocation and IκBα degradation, and down-regulate the expression of HIF-2α, proteinases (MMP9, MMP13, ADAMTS-4) and pro-inflammatory factors (IL-6 and TNFα) in primary chondrocytes. Additionally, knockdown of ERα with siRNA blocked these effects of K-80003 in chondrocytes. In conclusion, RXRα modulators K-80003 suppresses inflammatory and catabolic responses in OA, suggesting that targeting RXRα-ERα interaction by RXRα modulators might be a novel therapeutic approach for OA treatment.
Collapse
Affiliation(s)
- Hua Li
- The Department of Science and Education, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xiaofan Li
- Hematopoietic Stem Cell Transplantation Center, Fujian Institute of Hematology, Fujian Provincial Key Laboratory On Hematology, Department of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Gulou District, Fuzhou, 350001, China
| | - Boyu Yang
- The Department of Orthopedics, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Junnan Su
- The Department of Hematology and Rheumatology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Shaofang Cai
- The Department of Science and Education, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Jinmei Huang
- The Department of Hematology and Rheumatology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Tianfu Hu
- Department of Traditional Chinese Medicine, Community Health Service Center of Qiaoying Street, Xiamen, China
| | - Lijuan Chen
- Department of Traditional Chinese Medicine, Community Health Service Center of Qiaoying Street, Xiamen, China
| | - Yaping Xu
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Yuhang Li
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China.
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research On the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.
- Xiamen Institute of Rare-Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, 361005, China.
| |
Collapse
|
30
|
Genome-Wide Differential Methylation Profiles from Two Terpene-Rich Medicinal Plant Extracts Administered in Osteoarthritis Rats. PLANTS 2021; 10:plants10061132. [PMID: 34199631 PMCID: PMC8227118 DOI: 10.3390/plants10061132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022]
Abstract
Extracts from the plants Phlomis umbrosa and Dipsacus asperoides—which are widely used in Korean and Chinese traditional medicine to treat osteoarthritis and other bone diseases—were used to treat experimental osteoarthritis (OA) rats. Genome-wide differential methylation regions (DMRs) of these medicinal-plant-treated rats were profiled as therapeutic evidence associated with traditional medicine, and they need to be investigated further using detailed molecular research to extrapolate traditional practices to modern medicine. In total, 49 protein-encoding genes whose expression is differentially regulated during disease progression and recovery have been discovered via systematic bioinformatic analysis and have been approved/proposed as druggable targets for various bone diseases by the US food and drug administration. Genes encoding proteins involved in the PI3K/AKT pathway were found to be enriched, likely as this pathway plays a crucial role during OA progression as well as during the recovery process after treatment with the aforementioned plant extracts. The four sub-networks of PI3K/AKT were highly regulated by these plant extracts. Overall, 29 genes were seen in level 2 (51–75%) DMRs and were correlated highly with OA pathogenesis. Here, we propose that these genes could serve as targets to study OA; moreover, the iridoid and triterpenoid phytochemicals obtained from these two plants may serve as potential therapeutic agents.
Collapse
|
31
|
Tandon N, Luxami V, Tandon R, Paul K. Recent Advances in the Synthesis of Tamoxifen and Analogues in Medicinal Chemistry. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nitin Tandon
- School of Chemical Engineering and Physical Sciences Lovely Professional University Phagwara 144411 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147 001 India
| | - Runjhun Tandon
- School of Chemical Engineering and Physical Sciences Lovely Professional University Phagwara 144411 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147 001 India
| |
Collapse
|
32
|
Genetic estrogen receptor alpha gene PvuII polymorphism in susceptibility to knee osteoarthritis in a Chinese Han population: A southern Jiangsu study. Knee 2020; 27:803-808. [PMID: 32144005 DOI: 10.1016/j.knee.2020.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/10/2020] [Accepted: 02/05/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Knee osteoarthritis (KOA) is the most prevalent type of arthritis and genetic factors play an important role in KOA pathogenesis. Some studies have reported the association of estrogen receptor alpha (ESRα) gene polymorphism and KOA susceptibility in different populations. This study was designed to verify whether ESRα gene polymorphism (rs2234693) was associated with primary KOA in a Chinese Han population living in the south of Jiangsu. METHODS A case-control association study on single nucleotide polymorphism (SNP) rs2234693 was performed, and a total of 1953 subjects (1033 OA cases and 920 controls) were genotyped. Allele and genotype frequencies were compared between KOA cases and control participants. RESULTS SNP rs2234693 was significantly associated with KOA in the dominant genetic model (TT + TC vs. CC) in all the subjects (odds ratio (OR) = 1.30; 95% confidence interval (CI) = 1.02-1.66; P = .03), and T allele frequency was also higher compared with allele C (OR = 1.38; 95% CI = 1.06-1.80; P = .02). After stratification by gender, there was no evident difference between the two groups in female and male subjects (P > .05). With a stratification for KOA severity, the combined genotype (TT + TC) (OR = 1.47; 95% CI = 1.12-1.94; P < .01) and T allele (OR = 1.61; 95% CI = 1.19-2.19; P < .01) were evidently associated with mild KOA, but not with severe KOA. CONCLUSIONS ESRα gene is of considerable importance in the pathogenesis of early-stage KOA in a Chinese Han population living in southern Jiangsu.
Collapse
|
33
|
Trivedi S, Fang W, Ayyalasomayajula I, Vangsness CT. Pharmacotherapeutic considerations and options for the management of osteoarthritis in women. Expert Opin Pharmacother 2020; 21:557-566. [DOI: 10.1080/14656566.2020.1718649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sunny Trivedi
- University of Florida College of Medicine, Gainesville, FL, USA
| | - William Fang
- Department of Orthopaedic Surgery, Keck School of Medicine USC, Los Angeles, CA, USA
| | | | - C. Thomas Vangsness
- Department of Orthopaedic Surgery, Keck School of Medicine USC, Los Angeles, CA, USA
| |
Collapse
|
34
|
Mei R, Lou P, You G, Jiang T, Yu X, Guo L. 17β-Estradiol Induces Mitophagy Upregulation to Protect Chondrocytes via the SIRT1-Mediated AMPK/mTOR Signaling Pathway. Front Endocrinol (Lausanne) 2020; 11:615250. [PMID: 33613450 PMCID: PMC7888342 DOI: 10.3389/fendo.2020.615250] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence reveals that estrogen, especially 17β-estradiol (17β-E2), is associated with articular cartilage metabolism disorder and postmenopausal osteoarthritis (OA). SIRT1, AMPK, and mTOR are regarded as critical mitophagy regulators. Recent studies have shown that mitophagy displays a protective effect against OA, but the molecular mechanism is not well known. This study aimed to investigate the effect of 17β-E2 on Sirtuin-1 (SIRT1) expression and the induction of mitophagy upregulation by 17β-E2 via the SIRT1-mediated AMP-activated protein kinase (AMPK)/mammalian target of the rapamycin (mTOR) signaling pathway to protect chondrocytes. ATDC5 chondrocytes were treated with different concentrations of 17β-E2 (0 M, 1 × 10-9 M, 1 × 10-8 M, and 1 × 10-7 M) for 24 h or pretreatment with or without NAM (SIRT1 inhibitor), Compound C (AMPK inhibitor) and S1842 (mTOR inhibitor) for 30 min prior to treatment with 17β-E2 (1 × 10-7 M) for 24 in each groups. Expression of SIRT1 was evaluated by real-time PCR, Western blotting and confocal immunofluorescence staining. Then, the mitophagosomes in cells were observed under a transmission electron microscopy (TEM), and the AMPK/mTOR signaling pathway was detected by Western blotting. The mitophagy-related proteins, p-AMPK, p-mTOR, p-JNK, and p-p38 were also identified by Western blot analysis. The chondrocytes viability and proliferation were determined by MTT and 5-Bromo-2'-deoxyuridine (BrdU) assay. These experiments were independently repeated 3 times The study found that 17β-E2 increased the expression level of SIRT1, p-AMPK, and mitophagy-related proteins but decreased p-mTOR expression, and then induced mitophagy upregulation in chondrocytes. More mitochondrial autophagosomes were observed in 17β-E2-treated chondrocytes under a transmission electron microscope. Also, 17β-E2 improved cell viability and proliferation with the higher expression of SIRT1 and activation of the AMPK/mTOR signaling pathway. However, SIRT1 inhibitor nicotinamide (NAM) and AMPK inhibitor Compound C blocked the beneficial effect of 17β-E2. In summary, this study was novel in demonstrating that 17β-E2 induced mitophagy upregulation to protect chondrocytes via the SIRT1-mediated AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Runhong Mei
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Peng Lou
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Guanchao You
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Tianlong Jiang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Xuefeng Yu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xuefeng Yu, ; Lei Guo,
| | - Lei Guo
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Xuefeng Yu, ; Lei Guo,
| |
Collapse
|
35
|
Abstract
Osteoarthritis (OA) is a degenerative disease of the articular cartilage with subchondral bone lesions. Osteoarthritis etiologies are mainly related to age, obesity, strain, trauma, joint congenital anomalies, joint deformities, and other factors. Osteoarthritis seriously affects the quality of life; however, there is no effective way to cure osteoarthritis. Aerobic exercise refers to a dynamic rhythmic exercise involving the large muscle groups of the body with aerobic metabolism. More and more evidence shows that exercise has become a useful tool for the treatment of osteoarthritis. This chapter will discuss the role of exercise in the prevention and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Subchondral bone dysplasia mediates susceptibility to osteoarthritis in female adult offspring rats induced by prenatal caffeine exposure. Toxicol Lett 2019; 321:122-130. [PMID: 31874197 DOI: 10.1016/j.toxlet.2019.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022]
Abstract
Our previous studies confirmed that prenatal caffeine exposure (PCE) could induce susceptibility to osteoarthritis in adult offspring rats due to poor chondrocyte differentiation, but its mechanism remains to be further investigated. This study aimed to explore whether subchondral bone dysplasia mediates susceptibility to osteoarthritis in adult offspring rats induced by PCE. Pregnant Wistar rats were treated with caffeine (120 mg/kg.d) or saline from gestational day (GD) 9 to 20. The female offspring were euthanized to collect femurs at GD20, postnatal week (PW) 6, and PW28 (non-ovariectomy and ovariectomy groups) to detect osteoarthritis-like phenotype, subchondral bone mass, ossification center development, and other evidence. The results showed that PCE increased the Mankin score of pathological articular cartilage, but decreased articular cartilage thickness and subchondral bone mass, which were more obvious after ovariectomy. Meanwhile, the correlation analysis results demonstrated that the Mankin score of articular cartilage was significantly negatively correlated with subchondral bone mass, and the thickness of articular cartilage was significantly positively correlated with subchondral bone mass. Further, the length and area of the primary and secondary ossification centers, the number of osteoblasts, and the related genes' expression of osteogenic differentiation (e.g., Runx2, BSP, ALP, and OCN) were all significantly decreased in the PCE group before and after birth. Taken together, PCE induced susceptibility to osteoarthritis in adult female offspring, which was likely related to the subchondral bone dysplasia and reduction of subchondral bone mass production due to developmental disorder of primary and secondary ossification centers caused by osteoblast differentiation disability before and after birth.
Collapse
|
37
|
Niarakis A, Giannopoulou E, Syggelos SA, Panagiotopoulos E. Effects of proteasome inhibitors on cytokines, metalloproteinases and their inhibitors and collagen type-I expression in periprosthetic tissues and fibroblasts from loose arthroplasty endoprostheses. Connect Tissue Res 2019; 60:555-570. [PMID: 30931650 DOI: 10.1080/03008207.2019.1601186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objective: Aseptic loosening is a major problem in total joint replacement. Implant wear debris provokes a foreign body host response and activates cells to produce a variety of mediators and ROS, leading to periprosthetic osteolysis. Elevated ROS levels can harm proteasome function. Proteasome inhibitors have been reported to alter the secretory profile of cells involved in inflammation and also to induce ROS production. In this work, we aimed to document the effects of proteasome inhibitors MG-132 and Epoxomicin, on the production of factors involved in aseptic loosening, in periprosthetic tissues and fibroblasts, and investigate the role of proteasome impairment in periprosthetic osteolysis. Materials and methods: IL-6 levels in tissue cultures were determined by sandwich ELISA. MMP-1, -3, -13, -14 and TIMP-1 levels in tissue or cell cultures were determined by indirect ELISA. Results for MMP-1 and TIMP-1 in tissue cultures were confirmed by Western blotting. MMP-2 and MMP-9 levels were determined by gelatin zymography. Gene expression of IL-6, MMP-1,-3,-14, TIMP-1 and collagen type-I was determined by RT-PCR. Results: Results show that proteasome inhibition induces the expression of ΜΜΡ-1, -2, -3, -9 and suppresses that of IL-6, MMP-14, -13, TIMP-1 and collagen type I, enhancing the collagenolytic and gelatinolytic activity already present in periprosthetic tissues, as documented in various studies. Conclusions: These findings suggest that proteasome impairment could be a contributing factor to aseptic loosening. Protection and enhancement of proteasome efficacy could thus be considered as an alternative strategy toward disease treatment.
Collapse
Affiliation(s)
- Anna Niarakis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece.,GenHotel EA3886, Univ Evry, Université Paris-Saclay , Evry , France
| | | | - Spyros A Syggelos
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras , Patras , Greece
| | - Elias Panagiotopoulos
- Department of Orthopaedics, School of Medicine, University of Patras , Patras , Greece
| |
Collapse
|
38
|
García-Couce J, Almirall A, Fuentes G, Kaijzel E, Chan A, Cruz LJ. Targeting Polymeric Nanobiomaterials as a Platform for Cartilage Tissue Engineering. Curr Pharm Des 2019; 25:1915-1932. [DOI: 10.2174/1381612825666190708184745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023]
Abstract
Articular cartilage is a connective tissue structure that is found in anatomical areas that are important for the movement of the human body. Osteoarthritis is the ailment that most often affects the articular cartilage. Due to its poor intrinsic healing capacity, damage to the articular cartilage is highly detrimental and at present the reconstructive options for its repair are limited. Tissue engineering and the science of nanobiomaterials are two lines of research that together can contribute to the restoration of damaged tissue. The science of nanobiomaterials focuses on the development of different nanoscale structures that can be used as carriers of drugs / cells to treat and repair damaged tissues such as articular cartilage. This review article is an overview of the composition of articular cartilage, the causes and treatments of osteoarthritis, with a special emphasis on nanomaterials as carriers of drugs and cells, which reduce inflammation, promote the activation of biochemical factors and ultimately contribute to the total restoration of articular cartilage.
Collapse
Affiliation(s)
- Jomarien García-Couce
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Amisel Almirall
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Gastón Fuentes
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Eric Kaijzel
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Alan Chan
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| |
Collapse
|
39
|
Does menopausal hormonal therapy have a role in treatment of knee osteoarthritis? Menopause 2019; 26:576-577. [DOI: 10.1097/gme.0000000000001336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Peng X, Qiao Z, Wang Y, Li H, Xie Y, Xin M, Qiao Z, Wang Z. Estrogen reverses nicotine-induced inflammation in chondrocytes via reducing the degradation of ECM. Int J Rheum Dis 2019; 22:666-676. [PMID: 30746895 DOI: 10.1111/1756-185x.13476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023]
Abstract
PROBLEM Osteoarthritis (OA) is a chronic disease with a very high incidence and the pathology of which is quite complex. Epidemiological investigation showed that OA may be related to smoking and estrogen levels, but there are few studies focused on the cross-effect of these two factors. This research aims to investigate the molecular mechanism of nicotine and estrogen effects on chondrocytes to study the effect of smoking on the incidence of osteoarthritis in women. METHOD OF THE STUDY Nicotine was added to obtain inflammatory supernatants of macrophages, which were used to induce chondrocyte inflammation. Toluidine staining and immunohistochemistry were used to detect the extracellular matrix (ECM) of chondrocytes, while the important proteins in the metabolism of chondrocytes were detected by Western blot. RESULTS Nicotine-induced inflammatory supernatant promoted the degradation of ECM, such as type II collagen, aggrecan and proteoglycan 4. While in the presence of physiological concentrations of estrogen, this destructive effect is reversed. On the molecular level, estrogen (17β-estradiol, 1 nmol/L) can inhibit the matrix degrading enzymes and promote the transforming growth factor (TGF)-β1 pathway which is involved in matrix synthesis. However, in the presence of inflammatory induction, although estrogen could still inhibit the expression of matrix degrading enzymes, it inhibited the TGF-β1 pathway. Moreover, the different inflammatory factors in the inflammatory supernatant, mainly tumor necrosis factor-α, interleukin-1β, had different effects on the metabolic processes of chondrocytes. CONCLUSION Estrogen reverses nicotine-induced inflammation mainly via reducing the degradation of ECM. The cross-effect of estrogen and inflammatory factor inhibitors can be a potential clinical reference for OA patients.
Collapse
Affiliation(s)
- Xiaoyun Peng
- School of Life-Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiguang Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - You Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huiqin Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yilin Xie
- School of Life-Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Xin
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongdong Qiao
- School of Life-Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoxia Wang
- Laboratory Animal Center of Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
41
|
|
42
|
Zhu Z, Li J, Ruan G, Wang G, Huang C, Ding C. Investigational drugs for the treatment of osteoarthritis, an update on recent developments. Expert Opin Investig Drugs 2018; 27:881-900. [PMID: 30345826 DOI: 10.1080/13543784.2018.1539075] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Osteoarthritis (OA) is the leading cause of pain, loss of function, and disability among elderly, with the knee the most affected joint. It is a heterogeneous condition characterized by complex and multifactorial etiologies which contribute to the broad variation in symptoms presentation and treatment responses that OA patients present. This poses a challenge for the development of effective treatment on OA. AREAS COVERED This review will discuss recent development of agents for the treatment of OA, updating our previous narrative review published in 2015. They include drugs for controlling local and systemic inflammation, regulating articular cartilage, targeting subchondral bone, and relieving pain. EXPERT OPINION Although new OA drugs such as monoclonal antibodies have shown marked effects and favorable tolerance, current treatment options for OA remain limited. The authors believe there is no miracle drug that can be used for all OA patients'; treatment and disease stage is crucial for the effectiveness of drugs. Therefore, early diagnosis, phenotyping OA patients and precise therapy would expedite the development of investigational drugs targeting at symptoms and disease progression of OA.
Collapse
Affiliation(s)
- Zhaohua Zhu
- a Clinical Research Centre, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Jia Li
- a Clinical Research Centre, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Guangfeng Ruan
- a Clinical Research Centre, Zhujiang Hospital, Southern Medical University , Guangzhou , China.,b Department of Rheumatology and Immunology , Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Guoliang Wang
- c Menzies Institute for Medical Research, University of Tasmania , Hobart , Australia
| | - Cibo Huang
- d Department of Rheumatology & Immunology , Beijing Hospital , Beijing , China
| | - Changhai Ding
- a Clinical Research Centre, Zhujiang Hospital, Southern Medical University , Guangzhou , China.,b Department of Rheumatology and Immunology , Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University , Hefei , China.,c Menzies Institute for Medical Research, University of Tasmania , Hobart , Australia
| |
Collapse
|
43
|
Ye T, Sun D, Mu T, Chu Y, Miao H, Zhang M, Yang H, Liu Q, Lu L, Xing X, Yu S. Differential effects of high-physiological oestrogen on the degeneration of mandibular condylar cartilage and subchondral bone. Bone 2018. [PMID: 29530720 DOI: 10.1016/j.bone.2018.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The striking predilection of temporomandibular disorders (TMD) in women, especially during gonad-intact puberty or reproductive years, indicates that oestrogen plays an important role in the progression of TMD, but the underlying mechanism remains unclear. In this study, unilateral anterior crossbite (UAC) was used to create temporomandibular joint osteoarthritis (TMJ OA) models in rats, while 17β-estradiol (E2) injections were applied to mimic patients with high-physiological levels of oestrogen. Micro-CT scanning, histological staining and real-time PCR assays were preformed to observe the degenerative changes in the mandibular condylar cartilage and subchondral bone. The results showed that obvious degradation was found in the condylar cartilage and subchondral bone of rats with UAC procedure, including decreased cartilage thickness, loss of extracellular matrix, increased apoptotic chondrocytes and expression of pro-inflammatory and catabolic factors, decreased bone mineral density and increased osteoclast activity. E2 supplements aggravated the condylar cartilage degradation but reversed the abnormal bone resorption in the subchondral bone induced by UAC. Our results revealed that high-physiological oestrogen plays a destructive role in condylar cartilage but a protective role in subchondral bone at the early stage of TMJ OA. These dual and distinct effects should be given serious consideration in future OA treatments.
Collapse
Affiliation(s)
- Tao Ye
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Dongliang Sun
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Tong Mu
- China Meitan General Hospital, Beijing 100028, PR China
| | - Yi Chu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Hui Miao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Hongxu Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Qian Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Lei Lu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Xianghui Xing
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Shibin Yu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
44
|
Abstract
The 2017 Hormone Therapy Position Statement of The North American Menopause Society (NAMS) updates the 2012 Hormone Therapy Position Statement of The North American Menopause Society and identifies future research needs. An Advisory Panel of clinicians and researchers expert in the field of women's health and menopause was recruited by NAMS to review the 2012 Position Statement, evaluate new literature, assess the evidence, and reach consensus on recommendations, using the level of evidence to identify the strength of recommendations and the quality of the evidence. The Panel's recommendations were reviewed and approved by the NAMS Board of Trustees.Hormone therapy (HT) remains the most effective treatment for vasomotor symptoms (VMS) and the genitourinary syndrome of menopause (GSM) and has been shown to prevent bone loss and fracture. The risks of HT differ depending on type, dose, duration of use, route of administration, timing of initiation, and whether a progestogen is used. Treatment should be individualized to identify the most appropriate HT type, dose, formulation, route of administration, and duration of use, using the best available evidence to maximize benefits and minimize risks, with periodic reevaluation of the benefits and risks of continuing or discontinuing HT.For women aged younger than 60 years or who are within 10 years of menopause onset and have no contraindications, the benefit-risk ratio is most favorable for treatment of bothersome VMS and for those at elevated risk for bone loss or fracture. For women who initiate HT more than 10 or 20 years from menopause onset or are aged 60 years or older, the benefit-risk ratio appears less favorable because of the greater absolute risks of coronary heart disease, stroke, venous thromboembolism, and dementia. Longer durations of therapy should be for documented indications such as persistent VMS or bone loss, with shared decision making and periodic reevaluation. For bothersome GSM symptoms not relieved with over-the-counter therapies and without indications for use of systemic HT, low-dose vaginal estrogen therapy or other therapies are recommended.This NAMS position statement has been endorsed by Academy of Women's Health, American Association of Clinical Endocrinologists, American Association of Nurse Practitioners, American Medical Women's Association, American Society for Reproductive Medicine, Asociación Mexicana para el Estudio del Climaterio, Association of Reproductive Health Professionals, Australasian Menopause Society, Chinese Menopause Society, Colegio Mexicano de Especialistas en Ginecologia y Obstetricia, Czech Menopause and Andropause Society, Dominican Menopause Society, European Menopause and Andropause Society, German Menopause Society, Groupe d'études de la ménopause et du vieillissement Hormonal, HealthyWomen, Indian Menopause Society, International Menopause Society, International Osteoporosis Foundation, International Society for the Study of Women's Sexual Health, Israeli Menopause Society, Japan Society of Menopause and Women's Health, Korean Society of Menopause, Menopause Research Society of Singapore, National Association of Nurse Practitioners in Women's Health, SOBRAC and FEBRASGO, SIGMA Canadian Menopause Society, Società Italiana della Menopausa, Society of Obstetricians and Gynaecologists of Canada, South African Menopause Society, Taiwanese Menopause Society, and the Thai Menopause Society. The American College of Obstetricians and Gynecologists supports the value of this clinical document as an educational tool, June 2017. The British Menopause Society supports this Position Statement.
Collapse
|
45
|
Sun MMG, Beier F, Ratneswaran A. Nuclear receptors as potential drug targets in osteoarthritis. Curr Opin Pharmacol 2018; 40:81-86. [PMID: 29626714 DOI: 10.1016/j.coph.2018.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022]
Abstract
Osteoarthritis is amongst the major causes of disability worldwide, but no medications that can slow or stop progression of this disorder have been identified. Recent evidence suggests roles for a variety of members of the nuclear receptor family of ligand-activated transcription factors in various forms of osteoarthritis. Since nuclear receptors are amongst the major classes of drug targets, these studies suggest that modulators of nuclear receptor activity might provide novel strategies to treat osteoarthritis. This review focuses on recent advances in our understanding of the role of nuclear receptors in osteoarthritis onset and progression, as well as their therapeutic implications. Future studies should continue to examine the possible roles of additional nuclear receptors in the pathophysiology of different types of osteoarthritis.
Collapse
Affiliation(s)
- Margaret Man-Ger Sun
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada N6A 5C1; Bone & Joint Institute, The University of Western Ontario, London, ON, Canada N6A 5C1
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada N6A 5C1; Bone & Joint Institute, The University of Western Ontario, London, ON, Canada N6A 5C1.
| | - Anusha Ratneswaran
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada N6A 5C1; Bone & Joint Institute, The University of Western Ontario, London, ON, Canada N6A 5C1
| |
Collapse
|
46
|
Hussain SM, Cicuttini FM, Alyousef B, Wang Y. Female hormonal factors and osteoarthritis of the knee, hip and hand: a narrative review. Climacteric 2018; 21:132-139. [PMID: 29378442 DOI: 10.1080/13697137.2017.1421926] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Osteoarthritis is a leading cause of disability with no cure. The incidence of osteoarthritis is sexually dimorphic: women have a higher rate of osteoarthritis than men after the age of 50. Research has investigated the contribution of sex hormones, reproductive factors and hormone supplementation to osteoarthritis. It has been recognized that different joints are susceptible to different risk factors for osteoarthritis. We reviewed the evidence for the effect of endogenous sex hormones, reproductive factors and hormone supplementation on joint-specific osteoarthritis of the knee, hip and hand. Although the role of these hormonal factors in the pathogenesis of osteoarthritis is complex, data suggest that endogenous hormones and reproductive factors have a role in the pathogenesis of osteoarthritis, especially knee osteoarthritis, with uncertainty for the effect of exogenous hormones. From the available data, it is hard to conclude whether this is a direct effect of hormonal factors, or whether other factors related to these hormonal factors, i.e. obesity and inflammation, have a role in this association. Further studies should consider the mediation effect of body weight and inflammation, change in body weight throughout life, circulatory levels of all endogenous hormones and circulatory levels of hormones after hormone supplementation in this complex relationship.
Collapse
Affiliation(s)
- S M Hussain
- a School of Public Health and Preventive Medicine , Monash University , Melbourne , VIC , Australia
| | - F M Cicuttini
- a School of Public Health and Preventive Medicine , Monash University , Melbourne , VIC , Australia
| | - B Alyousef
- a School of Public Health and Preventive Medicine , Monash University , Melbourne , VIC , Australia
| | - Y Wang
- a School of Public Health and Preventive Medicine , Monash University , Melbourne , VIC , Australia
| |
Collapse
|
47
|
Chang BY, Kim DS, Kim HS, Kim SY. Evaluation of estrogenic potential by herbal formula, HPC 03 for in vitro and in vivo. Reproduction 2018; 155:105-115. [PMID: 29326134 DOI: 10.1530/rep-17-0530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/29/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
HPC 03 is herbal formula that consists of extracts from Angelica gigas, Cnidium officinale Makino and Cinnamomum cassia Presl. The present study evaluated the estrogenic potential of HPC 03 by using in vitro and in vivo models. The regulatory mechanisms of HPC 03 in estrogen-dependent MCF-7 cells were assessed. HPC 03 induced the proliferation of estrogen receptor-positive MCF-7 cells, and the proliferation was blocked by the addition of the estrogen antagonist tamoxifen. The estrogen receptorα/β luciferase activities were significantly increased by HPC 03 treatment, which also increased the mRNA expression of the estrogen-responsive genes Psen2, Pgr and Ctsd Also, we evaluated the ameliorative effects of HPC 03 on menopausal symptoms in ovariectomized rats. HPC 03 treatment in OVX rats significantly affected the uterine weight, increased the expression of estrogen-responsive genes Pgr and Psen2 in uterus, increased bone mineral density loss in the femur and inhibited body weight increase. Serum E2, collagen type 1 and osteocalcin were significantly increased, while serum LH, FSH and ALP were decreased compared with OVX rats. HPC 03 may be a promising candidate for the treatment of menopause, but further research is necessary to determine whether the observed effects also occur in humans.
Collapse
Affiliation(s)
- Bo Yoon Chang
- Institute of Pharmaceutical Research and DevelopmentCollege of Pharmacy, Wonkwang University, Iksan, Jeonbuk, South Korea
| | - Dae Sung Kim
- Hanpoong Pharm. Co. LtdJeonju-si, Jeonbuk, South Korea
| | - Hye Soo Kim
- Hanpoong Pharm. Co. LtdJeonju-si, Jeonbuk, South Korea
| | - Sung Yeon Kim
- Institute of Pharmaceutical Research and DevelopmentCollege of Pharmacy, Wonkwang University, Iksan, Jeonbuk, South Korea
| |
Collapse
|
48
|
Shagufta, Ahmad I. Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. Eur J Med Chem 2018; 143:515-531. [DOI: 10.1016/j.ejmech.2017.11.056] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/25/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
|
49
|
Synthesis of strontium chondroitin sulfate and the evaluation of its capability to attenuate osteoarthritis. Carbohydr Polym 2017; 170:217-225. [DOI: 10.1016/j.carbpol.2017.04.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/14/2017] [Accepted: 04/23/2017] [Indexed: 11/22/2022]
|
50
|
Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis. Sci Rep 2017; 7:2029. [PMID: 28515465 PMCID: PMC5435729 DOI: 10.1038/s41598-017-01905-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/03/2017] [Indexed: 12/19/2022] Open
Abstract
The pathogenesis of osteoarthritis (OA) is poorly understood, and therapeutic approaches are limited to preventing progression of the disease. Recent studies have shown that exosomes play a vital role in cell-to-cell communication, and pathogenesis of many age-related diseases. Molecular profiling of synovial fluid derived exosomal miRNAs may increase our understanding of OA progression and may lead to the discovery of novel biomarkers and therapeutic targets. In this article we report the first characterization of exosomes miRNAs from human synovial fluid. The synovial fluid exosomes share similar characteristics (size, surface marker, miRNA content) with previously described exosomes in other body fluids. MiRNA microarray analysis showed OA specific exosomal miRNA of male and female OA. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified gender-specific target genes/signaling pathways. These pathway analyses showed that female OA specific miRNAs are estrogen responsive and target TLR (toll-like receptor) signaling pathways. Furthermore, articular chondrocytes treated with OA derived extracellular vesicles had decreased expression of anabolic genes and elevated expression of catabolic and inflammatory genes. In conclusion, synovial fluid exosomal miRNA content is altered in patients with OA and these changes are gender specific.
Collapse
|