1
|
Wen Y, Gan H, Zhong Q, Gong Y. Long noncoding RNA Gm4419 promotes mesangial cell proliferation and extracellular matrix accumulation via the miR-455-3p/histone deacetylase 2 axis. Heliyon 2025; 11:e38835. [PMID: 39758407 PMCID: PMC11699353 DOI: 10.1016/j.heliyon.2024.e38835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 01/07/2025] Open
Abstract
Long noncoding RNAs may function as competitive endogenous RNAs by sponging microRNAs, thereby contributing to the progression of diabetic nephropathy. In this study, a potential diabetic nephropathy-related long noncoding-microRNA-mRNA axis, Gm4419-miR-455-3p-Hdac2, was predicted using bioinformatics methods. To verify the role of the Gm4419-miR-455-3p-Hdac2 axis in diabetic nephropathy, an in vitro high glucose-induced mesangial cell model was established. The expression levels of Gm4419, miR-455-3p and Hdac2 were detected using reverse-transcription quantitative PCR. Protein levels of collagen IV, fibronectin and transforming growth factor-beta 1 were detected using western blotting. Cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine staining assay were adopted to assess cell proliferation. Cell transfection, fluorescence in situ hybridization, RNA immunoprecipitation, and dual luciferase reporter assay were also performed. Our results revealed significant cell proliferation and extracellular matrix accumulation in high glucose-treated mesangial cells. In addition, Gm4419 and Hdac2 levels were increased and miR-455-3p was decreased in high glucose-treated mesangial cells. The interaction between Gm4419 and miR-455-3p or miR-455-3p and Hdac2 was confirmed by reverse-transcription quantitative PCR and dual luciferase reporter assay. Gene silencing of Gm4419 inhibited mesangial cells proliferation and extracellular matrix accumulation. MiR-455-3p inhibitor counteracted the effects of Gm4419 gene silencing on cell proliferation and extracellular matrix accumulation, which was reversed again by Hdac2 gene silencing. In summary, our research indicates that gene silencing of Gm4419 can effectively inhibit high glucose-induced mesangial cells proliferation and extracellular matrix accumulation. This is achieved through the regulation of the miR-455-3p/Hdac2 axis, highlighting the potential of the Gm4419-miR-455-3p-Hdac2 axis as a promising therapeutic target for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Yang Wen
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qing Zhong
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ying Gong
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
2
|
Zhang L, Wang X. Hsa_circ_0008360 promotes high glucose-induced damage in HK-2 cells via miR-346/WNT2B axis. J Endocrinol Invest 2024; 47:2325-2337. [PMID: 38472721 DOI: 10.1007/s40618-024-02326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a leading cause of end-stage renal disease worldwide. Recent researches have shown that circular RNAs (circRNAs) could affect the progress of DN, but the mechanism is still indistinct. In this work, we explored the roles of hsa_circ_0008360 in DN. METHODS The levels of hsa_circ_0008360, microRNA-346 (miR-346) and Winglesstype family member 2B (WNT2B) were indicated by quantitative real-time polymerase chain reaction (qRT-PCR) in DN tissues and HK2 cells. Meanwhile, the protein level of WNT2B was quantified by Western blot analysis. Besides, the function of cells was examined by Cell Counting Kit-8 (CCK8) assay, flow cytometry assay, western blot, and ELISA kit. Furthermore, the interplay between miR-346 and hsa_circ_0008360 or WNT2B was detected by dual-luciferase reporter assay. RESULTS The levels of hsa_circ_0008360 and WNT2B were increased, and the miR-346 level was decreased in the serum of DN patients and HG-treated HK2 cells. For functional analysis, hsa_circ_0008360 deficiency promoted cell viability, inhibits cell apoptosis, inflammatory response, and the synthesis of related fibrotic proteins in HG-treated HK2 cells. Moreover, overexpression of miR-346 induced the proliferation and inhibit apoptosis of HG-induced HK2 cells by inhibiting WNT2B expression. In mechanism, hsa_circ_0008360 acted as a miR-346 sponge to regulate the level of WNT2B. CONCLUSION Hsa_circ_0008360 can regulate miR-346/WNT2B axis in HG-induced HK2 cells, providing an underlying targeted therapy for DN patients.
Collapse
Affiliation(s)
- L Zhang
- Endocrinology Department, Tangdu Hospital of Air Force Medical University, No. 1 Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - X Wang
- Endocrinology Department, Tangdu Hospital of Air Force Medical University, No. 1 Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
3
|
Geng M, Liu W, Li J, Yang G, Tian Y, Jiang X, Xin Y. LncRNA as a regulator in the development of diabetic complications. Front Endocrinol (Lausanne) 2024; 15:1324393. [PMID: 38390204 PMCID: PMC10881719 DOI: 10.3389/fendo.2024.1324393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Diabetes is a metabolic disease characterized by hyperglycemia, which induces the production of AGEs, ROS, inflammatory cytokines, and growth factors, leading to the formation of vascular dysfunction and target organ damage, promoting the development of diabetic complications. Diabetic nephropathy, retinopathy, and cardiomyopathy are common complications of diabetes, which are major contributors to disability and death in people with diabetes. Long non-coding RNAs affect gene transcription, mRNA stability, and translation efficiency to influence gene expression for a variety of biological functions. Over the past decade, it has been demonstrated that dysregulated long non-coding RNAs are extensively engaged in the pathogenesis of many diseases, including diabetic complications. Thus, this review discusses the regulations of long non-coding RNAs on the primary pathogenesis of diabetic complications (oxidative stress, inflammation, fibrosis, and microvascular dysfunction), and some of these long non-coding RNAs may function as potential biomarkers or therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Mengrou Geng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Wei Liu
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
4
|
Sun L, Ding M, Chen F, Zhu D, Xie X. Long non‑coding RNA L13Rik promotes high glucose-induced mesangial cell hypertrophy and matrix protein expression by regulating miR-2861/CDKN1B axis. PeerJ 2023; 11:e16170. [PMID: 37868060 PMCID: PMC10586299 DOI: 10.7717/peerj.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/03/2023] [Indexed: 10/24/2023] Open
Abstract
Background Diabetic nephropathy (DN) is a frequent microvascular complication of diabetes. Glomerular mesangial cell (MC) hypertrophy occurs at the initial phase of DN and plays a critical role in the pathogenesis of DN. Given the role of long non coding RNA (lncRNA) in regulating MC hypertrophy and extracellular matrix (ECM) accumulation, our aim was to identify functional lncRNAs during MC hypertrophy. Methods Here, an lncRNA, C920021L13Rik (L13Rik for short), was identified to be up-regulated in DN progression. The expression of L13Rik in DN patients and diabetic mice was assessed using quantitative real-time PCR (qRT-PCR), and the function of L13Rik in regulating HG-induced MC hypertrophy and ECM accumulation was assessed through flow cytometry and western blotting analysis. Results The L13Rik levels were significantly increased while the miR-2861 levels were decreased in the peripheral blood of DN patients, the renal tissues of diabetic mice, and HG-treated MCs. Functionally, both L13Rik depletion and miR-2861 overexpression effectively reduced HG-induced cell hypertrophy and ECM accumulation. Mechanistically, L13Rik functioned as a competing endogenous RNA (ceRNA) to sponge miR-2861, resulting in the de-repression of cyclin-dependent kinase inhibitor 1B (CDKN1B), a gene known to regulate cell cycle and MC hypertrophy. Conclusions Collectively, the current results demonstrate that up-regulated L13Rik is correlated with DN and may be a hopeful therapeutic target for DN.
Collapse
Affiliation(s)
- Linlin Sun
- Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Ding
- Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Chen
- Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingyu Zhu
- Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinmiao Xie
- Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Miao RF, Tu J. LncRNA CDKN2B-AS1 interacts with LIN28B to exacerbate sepsis-induced acute lung injury by inducing HIF-1α/NLRP3-mediated pyroptosis. Kaohsiung J Med Sci 2023; 39:883-895. [PMID: 37265187 DOI: 10.1002/kjm2.12697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Sepsis-associated acute lung injury (ALI) is a life-threatening condition in intensive care units with high mortality. LncRNAs have been confirmed to participate in the underlying pathogenesis of septic ALI. This study investigated the biological functions of lncRNA CDKN2B-AS1 in septic ALI and its potential mechanism.BEAS-2B cells were challenged with lipopolysaccharide (LPS) and mice were subjected to caecal ligation and puncture (CLP) to induce septic ALI in vitro and in vivo. The expression levels of CDKN2B-AS1, LIN28B, HIF-1α, and pyroptosis-related molecules were assessed by qRT-PCR or Western blotting. The production of IL-1β and IL-18 was detected by ELISA. BEAS-2B cell pyroptosis was examined by flow cytometry. The interaction between LIN28B and CDKN2B-AS1/HIF-1α was validated by RIP and RNA pull-down assays. Colocalization of CDKN2B-AS1 and LIN28B was observed by FISH. ALI was determined by HE staining, the lung wet-to-dry (W/D) weight ratio, inflammatory cell numbers, and total protein concentration in bronchoalveolar lavage fluid (BALF). Caspase-1 expression in the lung tissues was examined by immunohistochemical staining.CDKN2B-AS1 was upregulated in BEAS-2B cells after LPS stimulation. CDKN2B-AS1 knockdown inhibited pyroptosis in LPS-exposed BEAS-2B cells in vitro and the lung tissues of septic mice in vivo. Mechanistically, CDKN2B-AS1 interacted with LIN28B to enhance HIF-1α stability. Rescue experiments showed that HIF-1α overexpression counteracted the inhibitory effect of sh-CDKN2B-AS1 on LPS-induced pyroptosis. CDKN2B-AS1 bound to LIN28B to trigger NLRP3-mediated pyroptosis by stabilizing HIF-1α, which promoted sepsis-induced ALI. CDKN2B-AS1 might be a novel therapeutic target for this disease.
Collapse
Affiliation(s)
- Run-Feng Miao
- Department of Emergency, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - Jing Tu
- Department of Emergency, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
6
|
Sun L, Ding M, Chen F, Zhu D, Xie X. Breviscapine alleviates podocyte injury by inhibiting NF-κB/NLRP3-mediated pyroptosis in diabetic nephropathy. PeerJ 2023; 11:e14826. [PMID: 36815984 PMCID: PMC9933739 DOI: 10.7717/peerj.14826] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
Podocyte injury is a critical factor in the pathogenesis of diabeticnephropathy (DN). Emerging evidence has demonstrated that breviscapine (Bre) exerts a renoprotective effect on diabetic rats. However, the effects of Bre on regulating podocyte injury under high glucose (HG) conditions remain unclear. In this study, an experimental mouse model of DN was induced by intraperitoneal injections of streptozotocin (STZ) in vivo. The effects of Bre on podocyte injury were assessed using cell counting kit-8 (CCK-8) assay, TdT-mediated dUTPnick-endlabelling (TUNEL) staining, quantitative real-time PCR (qRT‒PCR) and western blot analysis. We found that renal function was significantly decreased in diabetic mice, and this effect was blocked by Bre treatment. Bre effectively increased podocyte viability and inhibited HG-induced cell apoptosis. Furthermore, Bre ameliorated HG-induced podocyte injury, as evidenced by decreased α-smooth muscle actin (α-SMA) expression and increased podocin and synaptopodin expression. Mechanistically, Bre inhibited HG-induced nuclear factorkappaB (NF-κB) signalling activation and subsequently decreased NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, resulting in a decrease in pyroptosis. Pharmacological inhibition of NLRP3 decreased HG-induced podocyte injury, whereas the NLRP3 agonist abrogated the effects of Bre on inhibiting podocyte injury. In summary, these results demonstrate that Bre alleviates HG-induced podocyte injury and improves renal function in diabetic mice, at least in part by inhibiting NF-κB/NLRP3-mediated pyroptosis.
Collapse
|
7
|
Advanced glycation end products induce Aβ 1-42 deposition and cognitive decline through H19/miR-15b/BACE1 axis in diabetic encephalopathy. Brain Res Bull 2022; 188:187-196. [PMID: 35961529 DOI: 10.1016/j.brainresbull.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Diabetic encephalopathy (DE), a chronic complication of diabetes, is characterized by decline of cognitive function. The molecular mechanism of DE remains unclear. The purpose of this study is to evaluate the roles of advanced glycation end products (AGEs) in the pathogenesis of DE and investigate its underlying mechanisms in this process. METHODS DE rats were developed by incorporating a high-fat diet and streptozotocin injection followed by the Morris Water Maze test. HT-22 cells were used to mimic the in vitro neuronal injuries of DE. Expression levels of long non-coding RNA H19, miR-15b and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) mRNA in the hippocampus of DE rats or HT-22 cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The levels of BACE1 proteins were analyzed by western blotting or immunohistochemical staining. The contents of Aβ1-42 in supernatant of the cell culture were analyzed by enzyme-linked immu-nosorbent assay (ELISA). The relationship between H19 or BACE1 and miR-15b was verified with dual-luciferase reporter assay. RESULTS We found that the accumulation of Aβ1-42 and the phosphorylation of Tau (Ser404) were increased in the hippocampus CA3 regionof DE rats. MiR-15b was downregulated while H19 and BACE1 were upregulated in the hippocampus CA3 regionof DE rats and AGEs-treated HT-22 cells. The expression of BACE1 protein was negatively regulated by miR-15b at the post-transcriptional level in HT-22 cells. In vivo, administration of miR-15b mimics by the intranasal delivery markedly decreased the BACE1 protein in hippocampal CA3 region and improved the cognitive decline in DE rats. Besides, the luciferase activity assay confirmed the binding site of miR-15b to both the 3'-untranslated region (3'-UTR) of BACE1 mRNA and H19. Then, miR-15b inhibitor reversed H19 knockdown-mediated decrease of Aβ1-42 level in AGEs-treated HT-22 cells. CONCLUSION These results suggested that AGEs induced Aβ1-42 deposition andcognitive decline through H19/miR-15b/ BACE1 axis in DE.
Collapse
|
8
|
Li J, Min Y, Zhao Q. Circ_0000064 knockdown attenuates high glucose-induced proliferation, inflammation and extracellular matrix deposition of mesangial cells through miR-424-5p-mediated WNT2B inhibition in cell models of diabetic nephropathy. Clin Exp Nephrol 2022; 26:943-954. [PMID: 35678923 DOI: 10.1007/s10157-022-02241-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Circular RNA (circRNA) is widely shown to be associated with the development of diabetic nephropathy (DN). Our study aimed to further explore the role of circ_0000064 and provide a new mechanism for its action in DN. METHODS Cell models of DN in vitro were constructed by treating human renal mesangial cells (HRMCs) with high glucose (HG). The expression of circ_0000064, microRNA-424-5p (miR-424-5p) and Wnt family member 2B (WNT2B) mRNA was detected by quantitative real-time PCR (qPCR). Cell proliferation was assessed by CCK-8 assay and EdU assay. Cell cycle was characterized by DNA content using flow cytometry. The releases of pro-inflammatory factors were checked using commercial ELISA kits. The expression of cell cycle- and fibrosis-associated proteins was detected by western blot. The interplays between miR-424-5p and circ_0000064 or WNT2B were verified by dual-luciferase reporter assay and RIP assay. RESULTS Circ_0000064 and WNT2B were upregulated, while miR-424-5p was downregulated in HG-treated HRMCs. Circ_0000064 knockdown largely attenuated HG-induced proliferation, inflammatory responses and extracellular matrix (ECM) accumulation in HRMCs, and miR-424-5p deficiency reversed the role of circ_0000064 knockdown. MiR-424-5p was a target of circ_0000064, and miR-424-5p directly bound to WNT2B. MiR-424-5p restoration alleviated HG-induced proliferation, inflammatory responses and ECM accumulation in HRMCs, and WNT2B overexpression partially abolished the effects of miR-424-5p. CONCLUSION Circ_0000064 knockdown ameliorated HG-induced HRMC dysfunctions through miR-424-5p enrichment-mediated WNT2B inhibition, hinting that circ_0000064 contributed to DN development.
Collapse
Affiliation(s)
- Jianfei Li
- Department of Nephrology, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Yan Min
- Department of Nephrology, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Qin Zhao
- Department of Geriatrics, Liuzhou People's Hospital, Wenchang No. 8 Road, Liuzhou, 545006, Guangxi, China.
| |
Collapse
|
9
|
Significance of lncRNA CDKN2B-AS1 in Interventional Therapy of Liver Cancer and the Mechanism under Its Participation in Tumour Cell Growth via miR-199a-5p. JOURNAL OF ONCOLOGY 2022; 2022:2313416. [PMID: 36081669 PMCID: PMC9448535 DOI: 10.1155/2022/2313416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Methods Totally 34 LC patients admitted to our hospital between January 2020 and March 2021 (Obs group) and 32 healthy individuals over the same time span (Con group) were enrolled. CDKN2B-AS1 and miR-199a-5p in the two groups were PCR quantified, and their association and value for the diagnosis and therapy of LC were analyzed. In addition, purchased LC cells were adopted for in vitro assays, and the influences of CDKN2B-AS1 and miR-199a-5p on biological behaviours of LC cells were assessed through CCK-8, Transwell, and flow cytometry experiment, and their regulatory association was verified by the dual luciferase reporter (DLR) assay and rescue assay. And the autophagic protein expression was tested by the western blot to confirm the effect of both on the autophagic capacity of LC cells. Results CDKN2B-AS1 in LC cases presented high expression and dropped after therapy (P < 0.05), and the opposite situation of miR-199a-5p was found in the LC cases (P < 0.05). In vitro assays, after silencing of CDKN2B-AS1 and upregulation of miR-199a-5p, LC cells presented weaker viability, invasion and migration activities, and stronger apoptotic activity (all P < 0.05). The DLR assay revealed suppressed fluorescence activity of CDKN2B-AS1-WT by miR-199a-5p (P < 0.05). Moreover, according to the rescue assay, the impacts of silencing CDKN2B-AS1 on LC cells could be completely offset by silencing miR-199a-5p (P < 0.05). According to the clone formation and WB assay, the growth and autophagy of LC cells were under the regulation of CDKN2B-AS1 targeting miR-199a-5p (P < 0.05). Conclusion With high expression in LC cases, CDKN2B-AS1 is implicated in the development and progression of LC by suppressing cell autophagy through targeting miR-199a-5p.
Collapse
|
10
|
Wang W, Lu H. High Glucose-Induced Human Kidney Cell Apoptosis and Inflammatory Injury Are Alleviated by Circ_0008529 Knockdown via Circ_0008529-Mediated miR-485-5p/WNT2B Signaling. Appl Biochem Biotechnol 2022; 194:6287-6301. [DOI: 10.1007/s12010-022-04088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
|
11
|
lncRNA MALAT1 Promotes Diabetic Nephropathy Progression via miR-15b-5p/TLR4 Signaling Axis. J Immunol Res 2022; 2022:8098001. [PMID: 35910856 PMCID: PMC9334040 DOI: 10.1155/2022/8098001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Objective The long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) are closely associated with the pathogenesis of diabetic nephropathy (DN). But a complete mechanism for MALAT1 in DN has yet to be identified. This study investigated the effect of MALAT1 on DN through the regulation of miR-15b-5p/TLR4 signaling. Method Renal tissues were collected from DN patients. Human renal tubular epithelial cells (HK-2) were used as a model of DN induced by high glucose (HG). We then measured the viability, apoptosis, and inflammatory cytokine levels of HK-2 cells using the corresponding assays. Following transfections of si-MALAT1, si-MALAT1+miR-15b-5p inhibitor, or si-MALAT1+vector TLR4 into HG-stimulated HK-2 cells, cell viability, apoptosis, and inflammatory cytokines were again measured. Furthermore, dual-luciferase reporter assay validated the interactions of MALAT1/miR-15b-5p and miR-15b-5p/TLR4. In addition, the interaction between MALAT1 and miR-15b-5p was investigated by RNA immunoprecipitation (RIP). Results A significant upregulation of MALAT1 was observed in DN kidney tissues, as well as in HG-stimulated HK-2 cells. MALAT1 knockdown attenuates the inhibition of cell viability, apoptosis, and inflammatory response induced by HG in HK-2 cells. Moreover, a miR-15b-5p inhibitor or TLR4 overexpression reversed the above effects induced by MALAT1 knockdown. Conclusion These results indicate that reduced MALAT1 ameliorates HG-stimulated HK-2 cell damage through an inhibition of the miR-15b-5p/TLR4 axis. MALAT1 may serve as a biomarker and potential therapeutic target for DN.
Collapse
|
12
|
Giordo R, Gulsha R, Kalla S, Calin GA, Lipovich L. LncRNA-Associated Genetic Etiologies Are Shared between Type 2 Diabetes and Cancers in the UAE Population. Cancers (Basel) 2022; 14:3313. [PMID: 35884374 PMCID: PMC9313416 DOI: 10.3390/cancers14143313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Numerous epidemiological studies place patients with T2D at a higher risk for cancer. Many risk factors, such as obesity, ageing, poor diet and low physical activity, are shared between T2D and cancer; however, the biological mechanisms linking the two diseases remain largely unknown. The advent of genome wide association studies (GWAS) revealed large numbers of genetic variants associated with both T2D and cancer. Most significant disease-associated variants reside in non-coding regions of the genome. Several studies show that single nucleotide polymorphisms (SNPs) at or near long non-coding RNA (lncRNA) genes may impact the susceptibility to T2D and cancer. Therefore, the identification of genetic variants predisposing individuals to both T2D and cancer may help explain the increased risk of cancer in T2D patients. We aim to investigate whether lncRNA genetic variants with significant diabetes and cancer associations overlap in the UAE population. We first performed an annotation-based analysis of UAE T2D GWAS, confirming the high prevalence of variants at or near non-coding RNA genes. We then explored whether these T2D SNPs in lncRNAs were relevant to cancer. We highlighted six non-coding genetic variants, jointly reaching statistical significance in T2D and cancer, implicating a shared genetic architecture between the two diseases in the UAE population.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| | - Rida Gulsha
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| | - Sarah Kalla
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leonard Lipovich
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| |
Collapse
|
13
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Jamal HH, Taheri M, Hajiesmaeili M. A Comprehensive Review on Function of miR-15b-5p in Malignant and Non-Malignant Disorders. Front Oncol 2022; 12:870996. [PMID: 35586497 PMCID: PMC9108330 DOI: 10.3389/fonc.2022.870996] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
miR-15b-5p is encoded by MIR15B gene. This gene is located on cytogenetic band 3q25.33. This miRNA participates in the pathogenesis of several cancers as well as non-malignant conditions, such as abdominal aortic aneurysm, Alzheimer’s and Parkinson’s diseases, cerebral ischemia reperfusion injury, coronary artery disease, dexamethasone induced steatosis, diabetic complications and doxorubicin-induced cardiotoxicity. In malignant conditions, both oncogenic and tumor suppressor impacts have been described for miR-15b-5p. Dysregulation of miR-15b-5p in clinical samples has been associated with poor outcome in different kinds of cancers. In this review, we discuss the role of miR-15b-5p in malignant and non-malignant conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Hazha Hadayat Jamal
- Department of Biology, College of Education, Salahaddin University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Mohammadreza Hajiesmaeili,
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Critical Care Fellowship, Department of Anesthesiology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Mohammadreza Hajiesmaeili,
| |
Collapse
|
14
|
Xu J, Wang Q, Song YF, Xu XH, Zhu H, Chen PD, Ren YP. Long noncoding RNA X-inactive specific transcript regulates NLR family pyrin domain containing 3/caspase-1-mediated pyroptosis in diabetic nephropathy. World J Diabetes 2022; 13:358-375. [PMID: 35582664 PMCID: PMC9052004 DOI: 10.4239/wjd.v13.i4.358] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology. Long noncoding RNAs (lncRNAs) are active participators of diabetic nephropathy (DN). X inactive specific transcript (XIST) expression has been reported to be elevated in the serum of DN patients.
AIM To evaluate the mechanism of lncRNA XIST in renal tubular epithelial cell (RTEC) pyroptosis in DN.
METHODS A DN rat model was established through streptozotocin injection, and XIST was knocked down by tail vein injection of the lentivirus LV sh-XIST. Renal metabolic and biochemical indices were detected, and pathological changes in the renal tissue were assessed. The expression of indicators related to inflammation and pyroptosis was also detected. High glucose (HG) was used to treat HK2 cells, and cell viability and lactate dehydrogenase (LDH) activity were detected after silencing XIST. The subcellular localization and downstream mechanism of XIST were investigated. Finally, a rescue experiment was carried out to verify that XIST regulates NLR family pyrin domain containing 3 (NLRP3)/caspase-1-mediated RTEC pyroptosis through the microRNA-15-5p (miR-15b-5p)/Toll-like receptor 4 (TLR4) axis.
RESULTS XIST was highly expressed in the DN models. XIST silencing improved renal metabolism and biochemical indices and mitigated renal injury. The expression of inflammation and pyroptosis indicators was significantly increased in DN rats and HG-treated HK2 cells; cell viability was decreased and LDH activity was increased after HG treatment. Silencing XIST inhibited RTEC pyroptosis by inhibiting NLRP3/caspase-1. Mechanistically, XIST sponged miR-15b-5p to regulate TLR4. Silencing XIST inhibited TLR4 by promoting miR-15b-5p. miR-15b-5p inhibition or TLR4 overexpression averted the inhibitory effect of silencing XIST on HG-induced RTEC pyroptosis.
CONCLUSION Silencing XIST inhibits TLR4 by upregulating miR-15b-5p and ultimately inhibits renal injury in DN by inhibiting NLRP3/caspase-1-mediated RTEC pyroptosis.
Collapse
Affiliation(s)
- Jia Xu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Qin Wang
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Yi-Fan Song
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Xiao-Hui Xu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - He Zhu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Pei-Dan Chen
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Ye-Ping Ren
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| |
Collapse
|
15
|
Wang X, Wang W, HuangFu W, Liu Z, Zhao F. LncRNA HOTAIR facilitates high glucose-induced mesangial cell proliferation, fibrosis and oxidative stress in diabetic nephropathy via regulating miR-147a/WNT2B axis. Diabetol Metab Syndr 2022; 14:33. [PMID: 35193668 PMCID: PMC8864868 DOI: 10.1186/s13098-022-00802-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been shown to be involved in the regulation of many disease progression. However, the role of lncRNA HOX transcript antisense RNA (HOTAIR) in diabetic nephropathy (DN) remains unclear. METHODS High glucose (HG)-induced human mesangial cells (HMC) was used to construct DN cell models in vitro. HMC proliferation was evaluated by CCK8 assay and EDU staining. Protein levels of proliferation markers, fibrosis markers, and wingless-type family member 2B (WNT2B) were measured using western blot analysis. HMC oxidative stress was assessed by determining the levels of oxygen species and malondialdehyde, as well as superoxide dismutase activity. Relative expression levels of lncRNA HOTAIR, microRNA (miR)-147a, and WNT2B were examined using quantitative real-time PCR. The interaction between miR-147a and lncRNA HOTAIR or WNT2B was confirmed by dual-luciferase reporter assay and RIP assay. RESULTS Our data showed that lncRNA HOTAIR knockdown could inhibit the proliferation, fibrosis, and oxidative stress in HG-induced HMC. LncRNA HOTAIR could serve as a sponge of miR-147a. The inhibition effect of lncRNA HOTAIR silencing on the biological functions of HG-induced HMC could be reversed by miR-147a inhibitor. WNT2B was targeted by miR-147a, and its overexpression also overturned the suppressive effect of miR-147a on the proliferation, fibrosis, and oxidative stress of HG-induced HMC. CONCLUSION In total, our research pointed out that lncRNA HOTAIR could mediate miR-147a/WNT2B axis to promote DN progression.
Collapse
Affiliation(s)
- Xin Wang
- Department of General, Affiliated Hospital of Inner Mongolia Medical University, Mengrong Central Home, Donghongqiao Street, Hohhot, 010010, China.
| | - Wei Wang
- Department of Orthopaedics, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Weizhong HuangFu
- Department of General, Affiliated Hospital of Inner Mongolia Medical University, Mengrong Central Home, Donghongqiao Street, Hohhot, 010010, China
| | - Zhonghua Liu
- Department of General, Affiliated Hospital of Inner Mongolia Medical University, Mengrong Central Home, Donghongqiao Street, Hohhot, 010010, China
| | - Feng Zhao
- Department of General, Affiliated Hospital of Inner Mongolia Medical University, Mengrong Central Home, Donghongqiao Street, Hohhot, 010010, China
| |
Collapse
|
16
|
Nie X, Wei X, Ma H, Fan L, Chen WD. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications. J Cell Mol Med 2021; 25:6479-6495. [PMID: 34042263 PMCID: PMC8278111 DOI: 10.1111/jcmm.16663] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the major chronic diseases, whose prevalence is increasing dramatically worldwide and can lead to a range of serious complications. Wnt ligands (Wnts) and their activating Wnt signalling pathways are closely involved in the regulation of various processes that are important for the occurrence and progression of T2DM and related complications. However, our understanding of their roles in these diseases is quite rudimentary due to the numerous family members of Wnts and conflicting effects via activating the canonical and/or non-canonical Wnt signalling pathways. In this review, we summarize the current findings on the expression pattern and exact role of each human Wnt in T2DM and related complications, including Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11 and Wnt16. Moreover, the role of main antagonists (sFRPs and WIF-1) and coreceptor (LRP6) of Wnts in T2DM and related complications and main challenges in designing Wnt-based therapeutic approaches for these diseases are discussed. We hope a deep understanding of the mechanistic links between Wnt signalling pathways and diabetic-related diseases will ultimately result in a better management of these diseases.
Collapse
Affiliation(s)
- Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China
| | - Xiaoyun Wei
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China
| | - Han Ma
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China
| | - Lili Fan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China.,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|