1
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
2
|
Zhai J, Wang C, Jin L, Liu M, Chen Y. Research progress on the relationship between epilepsy and circRNA. Brain Res 2024; 1830:148823. [PMID: 38403039 DOI: 10.1016/j.brainres.2024.148823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE This review aims to provide a comprehensive summary of the latest research progress regarding the relationship between epilepsy and circular RNA (circRNA). METHODS Relevant literature from the PubMed database was meticulously searched and reviewed. The selected articles focused on investigating the association between epilepsy and circRNA, including studies on expression patterns, diagnostic markers, therapeutic targets, and functional mechanisms. RESULTS Epilepsy, characterized by recurrent seizures, is a neurological disorder. Numerous studies have demonstrated significant alterations in the expression profiles of circRNA in epileptic brain tissues, animal models, and peripheral blood samples. These differential expressions of circRNA are believed to be closely linked with the occurrence and development of epilepsy. Moreover, circRNA has shown promising potential as diagnostic markers for epilepsy, as well as prognostic indicators for predicting disease outcomes. Furthermore, circRNA has emerged as a potential therapeutic target for epilepsy treatment, offering prospects for gene therapy interventions. CONCLUSION The dysregulation of circRNA expression in epilepsy suggests its potential involvement in the pathogenesis and progression of this disorder. Identifying specific circRNA molecules associated with epilepsy may pave the way for novel diagnostic approaches and therapeutic strategies. However, further investigations are imperative to elucidate the precise functional mechanisms of circRNA in epilepsy and validate its clinical utility.
Collapse
Affiliation(s)
- Jinxia Zhai
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chao Wang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liang Jin
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mingjie Liu
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongjun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
3
|
Benitez MBM, Navarro YP, Azuara-Liceaga E, Cruz AT, Flores JV, Lopez-Canovas L. Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review). Int J Mol Med 2024; 53:44. [PMID: 38516776 PMCID: PMC10998718 DOI: 10.3892/ijmm.2024.5368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Circular RNAs (circRNAs) are non‑coding single‑stranded covalently closed RNA molecules that are considered important as regulators of gene expression at the transcriptional and post‑transcriptional levels. These molecules have been implicated in the initiation and progression of multiple human diseases, ranging from cancer to inflammatory and metabolic diseases, including diabetes mellitus and its vascular complications. The present article aimed to review the current knowledge on the biogenesis and functions of circRNAs, as well as their role in cell processes associated with diabetic nephropathy. In addition, novel potential interactions between circRNAs expressed in renal cells exposed to high‑glucose concentrations and the transcription factors c‑Jun and c‑Fos are reported.
Collapse
Affiliation(s)
- Maximo Berto Martinez Benitez
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Yussel Pérez Navarro
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Elisa Azuara-Liceaga
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Angeles Tecalco Cruz
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Jesús Valdés Flores
- Biochemistry Department, Center for Research and Advanced Studies, National Polytechnic Institute of Mexico, Mexico City, CP 07360, Mexico
| | - Lilia Lopez-Canovas
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| |
Collapse
|
4
|
Xing C, Huo L, Tang H, Lu Y, Liu G, Chen F, Hou Z. The predictive value of miR-377 and phospholipase A2 in the early diagnosis of diabetic kidney disease and their relationship with inflammatory factors. Immunobiology 2024; 229:152792. [PMID: 38401467 DOI: 10.1016/j.imbio.2024.152792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/02/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVE The value of novel biomarkers for DKD has received increasing attention, and there is an urgent need for novel biomarkers with sensitivity, specificity and ability to detect kidney damage.miR-377 regulates many basic biological processes, plays a key role in tumor cell proliferation, migration and inflammation, and can also increase the expression of matrix proteins and fibronectin, leading to renal tubulointerstitial inflammation and renal fibrosis. Lipoprotein-associated phospholipase A2, as an inflammatory marker, is involved in the pathological process of microalbuminuria production and renal function decline, and is a predictive factor of microalbuminuria production and renal function decline, and can be used as an indicator to evaluate the progression of DKD.The aim of this study was to investigate the effects of miR-377 and phospholipase A2 on the development of diabetic kidney disease through regulation of inflammatory factors and the mechanism of action. METHODS 80 diabetic patients were divided into two groups according to urinary albumin-to-creatinine ratio (UACR): diabetic normal proteinuria group (n = 42) and diabetic proteinuria group (n = 38). Forty-three healthy people were selected as the normal control group. The serum levels of TGF-β, IL-6, and IL-18 were measured by ELISA, miR-377 was detected by qPCR, and the serum levels of phospholipase A2 were detected by electrochemiluminescence. Analyze the correlation of study group indicators, ROC curve was used to evaluate the diagnostic efficacy of miR-377 and phospholipase A2 in diabetic kidney disease. RESULTS The average levels of serum TGF-β, IL-6, IL-18, miR-377 and phospholipase A2 in diabetic proteinuria group were significantly higher than those in normal control group and diabetic proteinuria normal group(P < 0.05). miR-377, phospholipase A2 were significantly correlated with inflammatory factors such as glomerular filtration rate and TGF-β. miR-377 and phospholipase A2 are independent predictors of diabetic kidney disease. The area under the curve of miR-377 and phospholipase A2 in the normal diabetic proteinuria group and the diabetic proteinuria group were 0.731 and 0.744, respectively. CONCLUSION miR-377 and phospholipase A2 have good diagnostic efficiency for the early diagnosis of diabetic kidney disease. They can be used as early biomarkers.miR-377 and phospholipase A2 were positively correlated with inflammatory factors and involved in the occurrence and development of diabetic kidney disease.
Collapse
Affiliation(s)
- Chenhao Xing
- Hebei North University, Zhang Jiakou 075000, Hebei province, China
| | - Lijing Huo
- Clinical laboratory of Hebei General Hospital, Shijiazhuang 050051, Hebei province, China
| | - Hongyue Tang
- Hebei North University, Zhang Jiakou 075000, Hebei province, China
| | - Yamin Lu
- Department of Nuclear Medicine of Hebei General Hospital, Shijiazhuang 050051, Hebei province, China.
| | - Guangxia Liu
- Department of Nuclear Medicine of Hebei General Hospital, Shijiazhuang 050051, Hebei province, China
| | - Fang Chen
- Department of Nuclear Medicine of Hebei General Hospital, Shijiazhuang 050051, Hebei province, China
| | - Zhan Hou
- Department of Nuclear Medicine of Hebei General Hospital, Shijiazhuang 050051, Hebei province, China
| |
Collapse
|
5
|
Xing C, Lu Y, Liu G, Chen F, Hou Z, Zhang Y. The Expression of miR-377-3p in Patients with DKD and the Regulatory Mechanism of miR-377-3p on the Inflammatory Response of HK-2 Cells Through TGF-β. Diabetes Metab Syndr Obes 2024; 17:903-911. [PMID: 38414866 PMCID: PMC10898490 DOI: 10.2147/dmso.s449791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Objective The purpose of the study was to investigate the expression levels and correlation of inflammatory factors such as miR-377-3p and TGF-β in patients with diabetic kidney disease (DKD), and to investigate the regulatory mechanism of transfection of miR-377-3p on the inflammatory response of HK-2 cell induced by high glucose. Methods According to UACR, patients were divided into normal albuminuria group (Con, n = 29), microalbuminuria group (Micro, n = 31) and macroalbuminuria group (Macro, n = 30), analyzed the correlation and influencing factors between DKD and inflammatory factor. HK-2 cells were randomly divided into four groups: normal control group (NC), high glucose group (HG), miR-377-3p overexpression group (MIN), and miR-377-3p inhibition group (IN). After transfection of miR-377-3p mimics and inhibitors, the contents of TGF-β, IL-6 and IL-18 were detected by RT-PCR and Western blot. Results The levels of miR-377-3p, TGF-β, IL-6 and IL-18 in both Micro group and Macro group were significantly higher than those in Con group (P < 0.05); Pearson correlation analysis showed that miR-377-3p was positively correlated with UACR, TG, TGF-β, IL-6 and IL-18, and negatively correlated with GFR (P < 0.05). Cell experiment: RT-PCR and Western blot results showed that miR-377-3p, TGF-β, IL-6 and IL-18 in HG group were significantly higher than those in NC group (P < 0.05). After transfection with miR-377-3p inhibitor, the levels of miR-377-3p, TGF-β, IL-6 and IL-18 in IN group were significantly decreased compared with HG group and MIN group. Conclusion miR-377-3p expression was elevated both in serum of DKD patients and in HK-2 cells with high glucose induced injury, overexpression of miR-377-3p exacerbates the damage to HK-2 cells and promotes the progression of DKD. Silencing miR-377-3p can potentially regulate the levels of inflammatory factors in HK-2 cells by targeting downregulation of TGF-β expression, thereby mitigating the damage to HK-2 cells and delaying the development of diabetic kidney disease.
Collapse
Affiliation(s)
- Chenhao Xing
- Graduate School of Hebei North University, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Yamin Lu
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Guangxia Liu
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Fang Chen
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Zhan Hou
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Yiwen Zhang
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
6
|
Jeong A, Lim Y, Kook T, Kwon DH, Cho YK, Ryu J, Lee YG, Shin S, Choe N, Kim YS, Cho HJ, Kim JC, Choi Y, Lee SJ, Kim HS, Kee HJ, Nam KI, Ahn Y, Jeong MH, Park WJ, Kim YK, Kook H. Circular RNA circSMAD4 regulates cardiac fibrosis by targeting miR-671-5p and FGFR2 in cardiac fibroblasts. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102071. [PMID: 38046397 PMCID: PMC10690640 DOI: 10.1016/j.omtn.2023.102071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Heart failure is a leading cause of death and is often accompanied by activation of quiescent cardiac myofibroblasts, which results in cardiac fibrosis. In this study, we aimed to identify novel circular RNAs that regulate cardiac fibrosis. We applied transverse aortic constriction (TAC) for 1, 4, and 8 weeks in mice. RNA sequencing datasets were obtained from cardiac fibroblasts isolated by use of a Langendorff apparatus and then further processed by use of selection criteria such as differential expression and conservation in species. CircSMAD4 was upregulated by TAC in mice or by transforming growth factor (TGF)-β1 in primarily cultured human cardiac fibroblasts. Delivery of si-circSMAD4 attenuated myofibroblast activation and cardiac fibrosis in mice treated with isoproterenol (ISP). si-circSmad4 significantly reduced cardiac fibrosis and remodeling at 8 weeks. Mechanistically, circSMAD4 acted as a sponge against the microRNA miR-671-5p in a sequence-specific manner. miR-671-5p was downregulated during myofibroblast activation and its mimic form attenuated cardiac fibrosis. miR-671-5p mimic destabilized fibroblast growth factor receptor 2 (FGFR2) mRNA in a sequence-specific manner and interfered with the fibrotic action of FGFR2. The circSMAD4-miR-671-5p-FGFR2 pathway is involved in the differentiation of cardiac myofibroblasts and thereby the development of cardiac fibrosis.
Collapse
Affiliation(s)
- Anna Jeong
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Yongwoon Lim
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Taewon Kook
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Duk-Hwa Kwon
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Young Kuk Cho
- Department of Pediatrics, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Juhee Ryu
- Collage of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yun-Gyeong Lee
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Sera Shin
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Nakwon Choe
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Yong Sook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hye Jung Cho
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Jeong Chul Kim
- Department of Surgery, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Su-Jin Lee
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyung-Seok Kim
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Forensic Medicine, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Hae Jin Kee
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Kwang-Il Nam
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Youngkeun Ahn
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Myung Ho Jeong
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Woo Jin Park
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Young-Kook Kim
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Hyun Kook
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| |
Collapse
|
7
|
Shu H, Zhang Z, Liu J, Chen P, Yang C, Wu Y, Wu D, Cao Y, Chu Y, Li L. Circular RNAs: An emerging precise weapon for diabetic nephropathy diagnosis and therapy. Biomed Pharmacother 2023; 168:115818. [PMID: 37939612 DOI: 10.1016/j.biopha.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent chronic microvascular complication associated with diabetes mellitus and represents a major cause of chronic kidney disease and renal failure. Current treatment strategies for DN primarily focus on symptom alleviation, lacking effective approaches to halt or reverse DN progression. Circular RNA (circRNA), characterized by a closed-loop structure, has emerged as a novel non-coding RNA regulator of gene expression, attributed to its conservation, stability, specificity, and multifunctionality. Dysregulation of circRNA expression is closely associated with DN progression, whereby circRNA impacts kidney cell injury by modulating cell cycle, differentiation, cell death, as well as influencing the release of inflammatory factors and stromal fibronectin expression. Consequently, circRNA is considered a predictive biomarker and a potential therapeutic target for DN. This review provides an overview of the latest research progress in the classification, functions, monitoring methods, and databases related to circRNA. The paper focuses on elucidating the impact and underlying mechanisms of circRNA on kidney cells under diabetic conditions, aiming to offer novel insights into the prevention, diagnosis, and treatment of DN.
Collapse
Affiliation(s)
- Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Cao
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
8
|
Zheng H, Liu X, Song B. Circular RNA circADAM9 Promotes Inflammation, Oxidative Stress, and Fibrosis of Human Mesangial Cells via the Keap1-Nrf2 Pathway in Diabetic Nephropathy. Exp Clin Endocrinol Diabetes 2023; 131:491-499. [PMID: 37463596 DOI: 10.1055/a-2105-4921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
OBJECTIVE Circular RNAs (circRNAs) have been discovered as potential biomarkers for diabetic nephropathy (DN). In this study, the potential roles of circADAM9 in high glucose (HG)-induced cell injury of human mesangial cells (HMCs) were investigated, and the underlying mechanism was elucidated. METHODS DN cell model in vitro was simulated by HG treatment of HMCs. Endogenous expressions of circADAM9, miR-545-3p, and ubiquitin-specific protease 15 (USP15) were determined by real-time polymerase chain reaction. Cell proliferation and migration were evaluated using Cell Counting Kit-8 and wound healing assays. The inflammatory response was assessed by enzyme-linked immunosorbent assay. Oxidative stress was examined using commercially available kits. Dual-luciferase reporter and RNA pull-down assays were conducted to confirm the interaction among circADAM9, miR-545-3p, and USP15. RESULTS CircADAM9 was upregulated in DN samples and HG-treated HMCs, while its downregulation inhibited cell proliferation, inflammation, fibrosis, and oxidative stress. Further investigation revealed that circADAM9 exerted this influence by targeting the miR-545-3p/USP15 axis, thereby regulating the KELCH-like ECh-associated protein 1/nuclear factor erythroid 2 related factor 2 (Keap1/Nrf2) pathway. MiR-545-3p knockdown or USP15 overexpression reversed the effect of circADAM9 silencing in HG-induced HMCs. CONCLUSION These results indicate that the circADAM9/miR-545-3p/USP15/Keap1/Nrf2 signaling axis is critical for HG-induced cell injury in HMCs and might represent a novel therapeutic target for DN treatment.
Collapse
Affiliation(s)
- Hongwei Zheng
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
- Emergency Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xuezheng Liu
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Bing Song
- Administration department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
9
|
Liu Z, Liu J, Wang W, An X, Luo L, Yu D, Sun W. Epigenetic modification in diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1133970. [PMID: 37455912 PMCID: PMC10348754 DOI: 10.3389/fendo.2023.1133970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common microangiopathy in diabetic patients and the main cause of death in diabetic patients. The main manifestations of DKD are proteinuria and decreased renal filtration capacity. The glomerular filtration rate and urinary albumin level are two of the most important hallmarks of the progression of DKD. The classical treatment of DKD is controlling blood glucose and blood pressure. However, the commonly used clinical therapeutic strategies and the existing biomarkers only partially slow the progression of DKD and roughly predict disease progression. Therefore, novel therapeutic methods, targets and biomarkers are urgently needed to meet clinical requirements. In recent years, increasing attention has been given to the role of epigenetic modification in the pathogenesis of DKD. Epigenetic variation mainly includes DNA methylation, histone modification and changes in the noncoding RNA expression profile, which are deeply involved in DKD-related inflammation, oxidative stress, hemodynamics, and the activation of abnormal signaling pathways. Since DKD is reversible at certain disease stages, it is valuable to identify abnormal epigenetic modifications as early diagnosis and treatment targets to prevent the progression of end-stage renal disease (ESRD). Because the current understanding of the epigenetic mechanism of DKD is not comprehensive, the purpose of this review is to summarize the role of epigenetic modification in the occurrence and development of DKD and evaluate the value of epigenetic therapies in DKD.
Collapse
Affiliation(s)
- Zhe Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiahui Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wanning Wang
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Zhang JL, Du C, Poon CCW, He MC, Wong MS, Wang NN, Zhang Y. Structural characterization and protective effect against renal fibrosis of polysaccharide from Ligustrum lucidum Ait. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115898. [PMID: 36372193 DOI: 10.1016/j.jep.2022.115898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/01/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Ligustri Lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a traditional Chinese medicine that has been used for tonifying the kidney and liver for decades. AIM OF THE STUDY This study aimed to explore and identify polysaccharides from FLL and elucidate its protective effect against renal fibrosis. MATERIALS AND METHODS Polysaccharides were extracted and isolated from FLL. The purified fraction was identified by serial phytochemical work, such as gel-permeation chromatography, ion chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance. Mice with unilateral ureteral obstruction (UUO) were applied as a renal fibrosis model. The male UUO mice were pretreated with heteropolysaccharide (Poly) 1 week prior to surgery and continuously treated for 7 days after the operation. Renal fibrosis was assessed by Periodic Acid-Schiff (PAS) staining and Masson's trichrome staining in paraffin-embedded slides. The murine mesangial cells SV40-MES13 upon angiotensin II (Ang II) treatment were developed as an in vitro fibrotic model. The cells were treated by Poly in the presence of Ang II. Molecular expression was detected by RT-PCR, immunoblotting, and immunofluorescence staining. RESULTS We identified a heteropolysaccharide composed of arabinose and galactose (molar ratio, 0.73:0.27) with a predicted chemical structure characterized by a backbone composed of 1,5-α-Araf, 1,3,5-α-Araf, 1,6-α-Galp, and 1,3,6-β-Galp and side chains comprised of T-α-Araf, T-α-Arap, and 1,3-α-Araf. Pretreatment of UUO mice with Poly effectively alleviated glomerulosclerosis and tubulointerstitial fibrosis. Moreover, Poly pretreatment down-regulated the expression of extracellular matrix (ECM) protein fibronectin (FN), profibrotic factor VEGF, proinflammatory cytokines MCP-1 and Rantes in the obstructed kidney. Similarly, the incubation of SV40-MES13 cells with Poly significantly inhibited Ang II-induced elevation in accumulation and expression level of FN and attenuated Ang II-evoked up-regulation in protein expression of MCP-1 and Rantes. CONCLUSIONS Our study isolated and identified a naturally occurring heteropolysaccharide in FLL and revealed its potential in protecting the kidneys from fibrosis.
Collapse
Affiliation(s)
- Jia-Li Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Chen Du
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Christina Chui-Wa Poon
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Ming-Chao He
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Na-Ni Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, China.
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
11
|
Ren N, Shi S, Zhao N, Zhang L. Dual specificity phosphatase 22 suppresses mesangial cell hyperproliferation, fibrosis, inflammation and the MAPK signaling pathway in diabetic nephropathy. Exp Ther Med 2022; 24:744. [PMID: 36561966 PMCID: PMC9748649 DOI: 10.3892/etm.2022.11680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Dual specificity phosphatase 22 (DUSP22) regulates fibrosis and inflammation, which may be implicated in the development of diabetic nephropathy (DN). Hence, the current study aimed to assess the effect of DUSP22 on cell proliferation, apoptosis, fibrosis and inflammation in mouse mesangial cell line (SV40-MES13) under both high glucose (HG) and low glucose (LG) conditions. SV40-MES13 cells were treated with HG and LG, then HG-group cells were transfected with DUSP22 overexpression and control plasmids, meanwhile LG-group cells were transfected with DUSP22 and control siRNAs. Then, cell proliferation using Cell Counting Kit-8, cell apoptosis by TUNEL assay, protein expression using western blotting, inflammatory cytokines using ELISA and RNA using reverse transcription-quantitative PCR were determined. DUSP22 mRNA and protein were decreased in SV40-MES13 cells under the HG condition compared with those under the LG condition. Under the HG condition, DUSP22 overexpression suppressed SV40-MES13 cell proliferation at 48 and 72 h as well as Bcl2, but it facilitated TUNEL-reflected apoptotic rate and cleaved-caspase-3; besides, DUSP22 overexpression restrained proteins of fibronectin 1, collagen I, transforming growth factor beta 1, and their corresponding mRNAs. As to the inflammation, DUSP22 overexpression downregulated TNF-α, IL-1β, IL-6 and IL-12 under the HG condition. By contrast, DUSP22 siRNA promoted SV40-MES13 cell proliferation, fibrosis and inflammation, but attenuated apoptosis in SV40-MES13 cells under the LG condition. Additionally, DUSP22 overexpression inactivated phosphorylated (p)-ERK, p-JNK, and p-P38 in HG-treated SV40-MES13 cells; differently, DUSP22 small interfering RNA facilitated them under the LG condition. In conclusion, DUSP22 suppresses HG-induced mesangial cell hyperproliferation, fibrosis, inflammation and the MAPK pathway, implying its potency in DN treatment.
Collapse
Affiliation(s)
- Na Ren
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, P.R. China
| | - Shanshan Shi
- General Medical Ward, Harbin Institute of Technology Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Na Zhao
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, P.R. China
| | - Lingyan Zhang
- General Medical Ward, Harbin Institute of Technology Hospital, Harbin, Heilongjiang 150000, P.R. China,Correspondence to: Professor Lingyan Zhang, General Medical Ward, Harbin Institute of Technology Hospital, 2 Xiaowai Street, Nangang, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
12
|
Yin W, Zhang Z, Xiao Z, Li X, Luo S, Zhou Z. Circular RNAs in diabetes and its complications: Current knowledge and future prospects. Front Genet 2022; 13:1006307. [PMID: 36386812 PMCID: PMC9643748 DOI: 10.3389/fgene.2022.1006307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
A novel class of non-coding RNA transcripts called circular RNAs (circRNAs) have been the subject of significant recent studies. Accumulating evidence points that circRNAs play an important role in the cellular processes, inflammatory expression, and immune responses through sponging miRNA, binding, or translating in proteins. Studies have found that circRNAs are involved in the physiologic and pathologic processes of diabetes. There has been an increased focus on the relevance of between abnormal circRNA expression and the development and progression of various types of diabetes and diabetes-related diseases. These circRNAs not only serve as promising diagnostic and prognostic molecular biomarkers, but also have important biological roles in islet cells, diabetes, and its complications. In addition, many circRNA signaling pathways have been found to regulate the occurrence and development of diabetes. Here we comprehensively review and discuss recent advances in our understanding of the physiologic function and regulatory mechanisms of circRNAs on pancreatic islet cells, different subtypes in diabetes, and diabetic complications.
Collapse
|
13
|
Fan W, Pang H, Xie Z, Huang G, Zhou Z. Circular RNAs in diabetes mellitus and its complications. Front Endocrinol (Lausanne) 2022; 13:885650. [PMID: 35979435 PMCID: PMC9376240 DOI: 10.3389/fendo.2022.885650] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is an endocrine disorder characterized by a relative or absolute lack of insulin due to the dysfunction or destruction of β-cells. DM is one of the fastest growing challenges to global health in the 21st century and places a tremendous burden on affected individuals and their families and countries. Although insulin and antidiabetic drugs have been used to treat DM, a radical cure for the disease is unavailable. The pathogenesis of DM remains unclear. Emerging roles of circular RNAs (circRNAs) in DM have become a subject of global research. CircRNAs have been verified to participate in the onset and progression of DM, implying their potential roles as novel biomarkers and treatment tools. In the present review, we briefly introduce the characteristics of circRNAs. Next, we focus on specific roles of circRNAs in type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus and diabetes-associated complications.
Collapse
|