1
|
Tang B, Zheng X, Lin J, Wu J, Lin R, Jiang H, Ji X, Yang H, Shen Z, Xia F. Prevalence of the phenicol resistance gene fexA in Campylobacter isolated from the poultry supply chain. Int J Food Microbiol 2022; 381:109912. [PMID: 36081243 DOI: 10.1016/j.ijfoodmicro.2022.109912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 10/31/2022]
Abstract
Florfenicol, an animal-specific broad-spectrum antibiotic, has been widely used in livestock and poultry breeding, which leads to the high antimicrobial resistance (AMR) of Campylobacter in food animals. Recently, a new florfenicol resistance gene, fexA, often located on various multidrug resistance genomic islands (MDRGIs) and confers resistance to various antimicrobial agents, was characterized in Campylobacter. However, the prevalence and genetic environments of fexA and its associated MDRGIs in Campylobacter in the poultry supply chain need further characterization. Here, a total of 111 (15.48 %) Campylobacter isolates (63 C. jejuni, 40 C. coli, 8 C. lari) were obtained from 717 samples from farms, slaughterhouses, and supermarkets. Both phenotypic and genotypic analyses indicated that the AMR of C. coli was significantly higher than that of C. jejuni. PCR amplification and whole genome sequencing showed that the fexA gene was present in 26 out of 35 florfenicol-resistant Campylobacter isolates. This gene was located in the tet(L)-fexA-tet(O) MDRGI. The fexA-harboring isolates detected in the above sources could be clustered into the same branch, indicating that they may have the same ancestor. In addition, the erm(B) gene was identified in 17 Campylobacter isolates, and the A2075G point mutation in the 23S rRNA gene occurred in 26 isolates, emphasizing the high resistance of Campylobacter to macrolides. In summary, these results indicate that fexA within the MDRGI of Campylobacter can be transmitted through bacteria in the animal-based food supply chain, and it is necessary to strengthen the monitoring of the prevalence and spread of fexA in foodborne Campylobacter spp.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xue Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China; College of Food and Bioengineering, Shaanxi University of Science and Technology, Xian, Shaanxi, China
| | - Jiahui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jing Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Rumeng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Han Jiang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhangqi Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Fei Xia
- College of Food and Bioengineering, Shaanxi University of Science and Technology, Xian, Shaanxi, China.
| |
Collapse
|
2
|
Ramatla T, Mileng K, Ndou R, Tawana M, Mofokeng L, Syakalima M, Lekota KE, Thekisoe O. Campylobacter jejuni from Slaughter Age Broiler Chickens: Genetic Characterization, Virulence, and Antimicrobial Resistance Genes. Int J Microbiol 2022; 2022:1713213. [PMID: 35634271 PMCID: PMC9135541 DOI: 10.1155/2022/1713213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni is a major cause of food-borne human gastroenteritis worldwide and is designated as a high priority antimicrobial-resistant pathogen by the World Health Organization (WHO). In this study, a total of 26 C. jejuni isolates from broiler chickens were screened for the presence of virulence and antimicrobial resistance genes by PCR. As a result, the study detected 11/26 (42.3%), 9/26 (34.6%), 8/26 (30.8%), 7/26 (26.9%), 6/26 (23.1%), and 6/26 (23.1%) of cdtC, pldA, cdtB, cdtA, cadF, and ciaB virulence genes, respectively, with seven of the isolates carrying more than two virulence genes. The majority of the isolates n = 25 (96.1%) were resistant to nalidixic acid, followed by n = 21 (80.7%), n = 22 (84.6%), and n = 5 (19.2%) for tetracycline, erythromycin, and ciprofloxacin, respectively. Most isolates were harboring catI (n = 16; 84.2%), catII (n = 15; 78.9%), catIII (n = 10; 52.6%), catIV (n = 2; 10.5%), floR (n = 10; 52.6%), ermB (n = 14; 73.7%), tetO (n = 13; 68.4%), tetA (n = 9; 47.4%), mcr-4 (n = 8; 42.1%), and ampC (n = 2; 10.5%). Meanwhile, mcr-1, mcr-2, mcr-3, mcr-5, tet(X), tet(P), and tet(W) genes were not detected in all isolates. Class I and Class II integrons were detected in 92.3% (n = 24) and 65.4% (n = 17) isolates, respectively. About 31% (8 of the 26 isolates) isolates were carrying more than two resistance genes. According to our knowledge, this is the first study to detect class II integrons in Campylobacter spp. (C. jejuni). The high prevalence of cdtA, cdtB, cdtC, cadF, pldA, and ciaB genes and antibiotic resistance genes in C. jejuni in this study indicates the pathogenic potential of these isolates. Majority of the isolates demonstrated resistance to nalidixic acid, tetracycline (tet), and erythromycin (ermB), which are the drugs of choice for treating Campylobacter infections. Therefore, these findings highlight the importance of implementing an efficient strategy to control Campylobacter in chickens and to reduce antimicrobial use in the poultry industry, which will help to prevent the spread of infections to humans.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Kealeboga Mileng
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Rendani Ndou
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mpho Tawana
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Lehlohonolo Mofokeng
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Michelo Syakalima
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- University of Zambia, School of Veterinary Medicine, Department of Disease Control, P.O. Box 32379, Lusaka, Zambia
| | - Kgaugelo E. Lekota
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| |
Collapse
|
3
|
Emergence of erythromycin resistance methyltransferases in Campylobacter coli strains in France. Antimicrob Agents Chemother 2021; 65:e0112421. [PMID: 34370579 DOI: 10.1128/aac.01124-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance in Campylobacters is described worldwide. The emergence of multiresistant isolates, particularly among C. coli, is concerning. New resistance mechanisms appear frequently, and DNA-sequence-based methods such as whole genome sequencing (WGS) have become useful tools to monitor their emergence. The genomes of 51 multiresistant French Campylobacter sp. clinical strains from 2018 to 2019 were analyzed to identify associated resistance mechanisms. Analyses of erythromycin-resistant strains revealed 23S ribosomal RNA mutations among most of them and two different methyltransferases in 4 strains: Erm(B) and a novel methyltransferase, here named Erm(N). The erm(B) gene was found in multidrug-resistant genomic islands, whereas erm(N) was inserted within CRISPR arrays of the CRISPR-cas9 operon. Moreover, using PCR screening in erythromycin-resistant strains from our collection, we showed that erm(N) was already present in 3 French clinical strains 2 years before its first report in 2018 in Quebec. Bacterial transformations confirmed that insertion of erm(N) into a CRISPR-cas9 operon can confer macrolide resistance. Campylobacter species are easily able to adapt to their environment and acquire new resistance mechanisms, and the emergence of methyltransferases in Campylobacters in France is a matter of concern in the coming years.
Collapse
|
4
|
First Report of aacC5-aadA7Δ4 Gene Cassette Array and Phage Tail Tape Measure Protein on Class 1 Integrons of Campylobacter Species Isolated from Animal and Human Sources in Egypt. Animals (Basel) 2020; 10:ani10112067. [PMID: 33171625 PMCID: PMC7695199 DOI: 10.3390/ani10112067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Campylobacter species are among the major causes of bacterial foodborne infections. Here, we investigate, for the first time, class 1 integrons and associated gene cassettes among pan drug-resistant (PDR), extensively drug-resistant (XDR), and multidrug-resistant (MDR) Campylobacter species isolated from livestock animals and humans in Egypt. Our results revealed alarming PDR (2.55%) and inordinate XDR (68.94%) and MDR (28.5%) Campylobacter isolates. None of the examined isolates were pan-susceptible. The existence of a novel gene cassette array, namely aacC5-aadA7Δ4 and a putative phage tail tape measure protein on class 1 integrons of Campylobacter species is the most highlighted novelty of the current study. Evidence from this study showed the possibility of Campylobacter–bacteriophage interactions as well as treatment failure in animals and humans due to horizontal gene transfer mediated by class 1 integrons. Abstract Campylobacter species are common commensals in the gastrointestinal tract of livestock animals; thus, animal-to-human transmission occurs frequently. We investigated for the first time, class 1 integrons and associated gene cassettes among pan drug-resistant (PDR), extensively drug-resistant (XDR), and multidrug-resistant (MDR) Campylobacter species isolated from livestock animals and humans in Egypt. Campylobacter species were detected in 58.11% of the analyzed chicken samples represented as 67.53% Campylobacter jejuni(C. jejuni) and 32.47% Campylobacter coli (C. coli). C. jejuni isolates were reported in 51.42%, 74.28%, and 66.67% of examined minced meat, raw milk, and human stool samples, respectively. Variable antimicrobial resistance phenotypes; PDR (2.55%), XDR (68.94%), and MDR (28.5%) campylobacters were reported. Molecular analysis revealed that 97.36% of examined campylobacters were integrase gene-positive; all harbored the class 1 integrons, except one possessed an empty integron structure. DNA sequence analysis revealed the predominance of aadA (81.08%) and dfrA (67.56%) alleles accounting for resistance to aminoglycosides and trimethoprim, respectively. This is the first report of aacC5-aadA7Δ4 gene cassette array and a putative phage tail tape measure protein on class 1 integrons of Campylobacter isolates. Evidence from this study showed the possibility of Campylobacter–bacteriophage interactions and treatment failure in animals and humans due to horizontal gene transfer mediated by class 1 integrons.
Collapse
|
5
|
Wysok B, Wojtacka J, Hänninen ML, Kivistö R. Antimicrobial Resistance and Virulence-Associated Markers in Campylobacter Strains From Diarrheic and Non-diarrheic Humans in Poland. Front Microbiol 2020; 11:1799. [PMID: 32849410 PMCID: PMC7417443 DOI: 10.3389/fmicb.2020.01799] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Campylobacteriosis is one of the most common causes of bacterial gastroenteritis. However, the clinical course of the illness varies in symptoms and severity. The aim of this study was to characterize Campylobacter jejuni (34 isolates) and C. coli (9 isolates) from persons with diarrheal and non-diarrheal stools at the time of examination and fecal sampling, in Poland by using whole-genome sequencing (WGS). Multilocus sequence typing (MLST) analysis revealed a high diversity with a total of 20 sequence types (STs) among 26 Campylobacter isolates from diarrheic and 13 STs among 17 isolates from non-diarrheic persons. ST-50 and ST-257 were most common in both groups. The phenotypic resistance rate was 74.4% for ciprofloxacin, 67.4% for sulfamethoxazole/trimethoprim, 58.1% for amoxicillin, 48.8% for tetracycline, and 46.5% for ceftriaxone. Only single isolates were resistant to erythromycin, gentamicin, and amoxicillin/clavulanic acid. Overall genotypic resistance toward amoxicillin, fluoroquinolones, tetracyclines, and aminoglycosides was predicted to occur in 93.1, 67.4, 48.8, and 11.6% of the isolates, respectively. None of the isolates showed the presence of the erm(B) gene or mutation in 23S rRNA. Neither was variation found in the important target region in L4 and L22 ribosomal proteins. In regard to the CmeABC efflux pump, a set of variable mutations affecting the regulatory region was noted. All Campylobacter isolates possessed genes associated with adhesion (cadF, jlpA, porA, and pebA) and invasion (ciaB, pldA, and flaC). The type IV secretion system (T4SS) was found in isolates from both diarrheic (15.4%, CI 95%: 6.1–33.5%) and non-diarrheic (23.5%, CI 95%: 9.6–47.3%) persons. The rates of the presence of cytolethal distending toxin cdtABC gene cluster and type VI secretion system (T6SS) were higher in Campylobacter isolates obtained from persons with diarrhea (96.2%, CI 95%: 81.7–99.3% and 26.9%, CI 95%: 13.7–46.1%) compared to isolates from non-diarrheic persons (76.5%, CI 95%: 52.7–90.4% and 11.8%, CI 95%: 3.3–34.3%). The lack of statistically significant differences between two groups in tested virulence factors suggests that individual susceptibility of the host might play more determining role in the disease outcome than characteristics of the infecting strain.
Collapse
Affiliation(s)
- Beata Wysok
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Wojtacka
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Tang Y, Jiang Q, Tang H, Wang Z, Yin Y, Ren F, Kong L, Jiao X, Huang J. Characterization and Prevalence of Campylobacter spp. From Broiler Chicken Rearing Period to the Slaughtering Process in Eastern China. Front Vet Sci 2020; 7:227. [PMID: 32426383 PMCID: PMC7203416 DOI: 10.3389/fvets.2020.00227] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
Campylobacter is one of the most important foodborne pathogens worldwide, and poultry is regarded as the main reservoir of Campylobacter. The contamination of Campylobacter in broiler chickens at the farm level is closely related to the transmission of Campylobacter in the poultry production chain. This study identified 464 Campylobacter isolates from 1,534 samples from broiler rearing period and slaughtering process including 233 Campylobacter jejuni isolates and 231 Campylobacter coli isolates. We have observed a dynamic distribution of Campylobacter during broiler chicken production, that 66.3% of Campylobacter isolates were C. jejuni during broiler rearing period, while C. coli occupied 60.4% of Campylobacter isolates during the broiler slaughtering process. A tag-label method allowed us to track the dynamic of Campylobacter in each broiler chicken from 31-day age at rearing to the partition step in the slaughterhouse. At the 31-day during rearing, 150 broiler chicken were labeled, and was tracked for Campylobacter positive from rearing period to slaughtering process. Among the labeled broiler, 11 of the tracking broiler samples were able to detect Campylobacter from rearing period to slaughtering. All Campylobacter isolates from the 11 tracking samples were sequenced and analyzed. C. jejuni isolates were divided into four STs and C. coli isolates were divided into six STs. Isolates with identical core genome were observed from the same tag-labeled samples at different stages indicating a vertical transmission of Campylobacter in the early broiler meat production. Meanwhile, the core genome analysis elucidated the cross-contamination of Campylobacter during the rearing period and the slaughtering process. The virulotyping analysis revealed that all C. jejuni isolates shared the same virulotypes, while C. coli isolates were divided into three different virulotypes. The antimicrobial resistance gene analysis demonstrated that all Campylobacter isolates contained at least two antibiotic resistance genes (ARGs), and the ARG profiles were well-corresponding to each ST type. Our study observed a high prevalence of Campylobacter during the early chicken meat production, and further studies will be needed to investigate the diversity and transmission of Campylobacter in the poultry production chain.
Collapse
Affiliation(s)
- Yuanyue Tang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Qidong Jiang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Haiyan Tang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
| | - Zhenyu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Yi Yin
- Lianshui Animal Husbandry and Veterinary Station, Lianyungang, China
| | - Fangzhe Ren
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Linghua Kong
- Department of Quality and Safety Control, Heyi Food Co. Ltd., Zaozhuang, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| |
Collapse
|
7
|
Lopes BS, Strachan NJC, Ramjee M, Thomson A, MacRae M, Shaw S, Forbes KJ. Nationwide Stepwise Emergence and Evolution of Multidrug-Resistant Campylobacter jejuni Sequence Type 5136, United Kingdom. Emerg Infect Dis 2019; 25:1320-1329. [PMID: 31211671 PMCID: PMC6590748 DOI: 10.3201/eid2507.181572] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We examined whole-genome–sequenced Campylobacter jejuni and C. coli from 2012–2015 isolated from birds and human stool samples in North East Scotland for the presence of antimicrobial resistance genes. We found that sequence type (ST) 5136 (clonal complex 464) was the most prevalent multidrug-resistant strain of C. jejuni exclusively associated with poultry host reservoirs and recovered from human cases of campylobacteriosis. Tetracycline resistance in ST5136 isolates was due to a tet(O/32/O) mosaic gene, ampicillin resistance was conferred by G → T transversion in the −10 promoter region of blaOXA-193, fluoroquinolone resistance was due to C257T change in gyrA, and aminoglycoside resistance was conferred by aac. Whole-genome analysis showed that the strain ST5136 evolved from ST464. The nationwide emergence of ST5136 was probably due to stepwise acquisition of antimicrobial resistance genes selected by high use of β-lactam, tetracycline, fluoroquinolone, and aminoglycoside classes of drugs in the poultry industry.
Collapse
|
8
|
Kaushik M, Kumar S, Kapoor RK, Gulati P. Integrons and antibiotic resistance genes in water-borne pathogens: threat detection and risk assessment. J Med Microbiol 2019; 68:679-692. [DOI: 10.1099/jmm.0.000972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Megha Kaushik
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Sanjay Kumar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Rajeev Kr. Kapoor
- Enzyme Biotechnology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
9
|
Kayman T, Abay S, Aydin F, Şahin O. Antibiotic resistance of Campylobacter jejuni isolates recovered from humans with diarrhoea in Turkey. J Med Microbiol 2019; 68:136-142. [DOI: 10.1099/jmm.0.000890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tuba Kayman
- 1University of Health Sciences, Şişli Hamidiye Etfal Training and Research Hospital, Medical Microbiology Clinic, Istanbul, Turkey
| | - Seçil Abay
- 2Department of Microbiology, Erciyes University, Faculty of Veterinary Medicine, Kayseri, Turkey
| | - Fuat Aydin
- 2Department of Microbiology, Erciyes University, Faculty of Veterinary Medicine, Kayseri, Turkey
| | - Orhan Şahin
- 3Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, USA
| |
Collapse
|
10
|
Tien N, Lin TH, Hung ZC, Lin HS, Wang IK, Chen HC, Chang CT. Diagnosis of Bacterial Pathogens in the Urine of Urinary-Tract-Infection Patients Using Surface-Enhanced Raman Spectroscopy. Molecules 2018; 23:molecules23123374. [PMID: 30572659 PMCID: PMC6321215 DOI: 10.3390/molecules23123374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 02/02/2023] Open
Abstract
(1) Background: surface-enhanced Raman spectroscopy (SERS) is a novel method for bacteria identification. However, reported applications of SERS in clinical diagnosis are limited. In this study, we used cylindrical SERS chips to detect urine pathogens in urinary tract infection (UTI) patients. (2) Methods: Urine samples were retrieved from 108 UTI patients. A 10 mL urine sample was sent to conventional bacterial culture as a reference. Another 10 mL urine sample was loaded on a SERS chip for bacteria identification and antibiotic susceptibility. We concentrated the urine specimen if the intensity of the Raman spectrum required enhancement. The resulting Raman spectrum was analyzed by a recognition software to compare with spectrum-form reference bacteria and was further confirmed by principal component analysis (PCA). (3) Results: There were 97 samples with single bacteria species identified by conventional urine culture and, among them, 93 can be successfully identified by using SERS without sample concentration. There were four samples that needed concentration for bacteria identification. Antibiotic susceptibility can also be found by SERS. There were seven mixed flora infections found by conventional culture, which can only be identified by the PCA method. (4) Conclusions: SERS can be used in the diagnosis of urinary tract infection with the aid of the recognition software and PCA.
Collapse
Affiliation(s)
- Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, No. 2 Yu-Der Rd, North district, Taichung 40447, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 49, Hsueh-Shih Rd, North District, Taichung 40402, Taiwan.
| | - Tzu-Hsien Lin
- College of Medicine, China Medical University, Taiwan, No. 49, Hsueh-Shih Rd, North District, Taichung 40402, Taiwan.
| | - Zen-Chao Hung
- College of Medicine, China Medical University, Taiwan, No. 49, Hsueh-Shih Rd, North District, Taichung 40402, Taiwan.
| | - Hsiu-Shen Lin
- Department of Laboratory Medicine, China Medical University Hospital, No. 2 Yu-Der Rd, North district, Taichung 40447, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 49, Hsueh-Shih Rd, North District, Taichung 40402, Taiwan.
| | - I-Kuan Wang
- College of Medicine, China Medical University, Taiwan, No. 49, Hsueh-Shih Rd, North District, Taichung 40402, Taiwan.
- Division of Nephrology, China Medical University Hospital, No. 2 Yu-Der Rd, North district, Taichung 40447, Taiwan.
| | - Hung-Chih Chen
- College of Medicine, China Medical University, Taiwan, No. 49, Hsueh-Shih Rd, North District, Taichung 40402, Taiwan.
- Division of Nephrology, Asia University Hospital, No. 222, Fuxin Road, Wufeng District, Taichung 41354, Taiwan.
| | - Chiz-Tzung Chang
- College of Medicine, China Medical University, Taiwan, No. 49, Hsueh-Shih Rd, North District, Taichung 40402, Taiwan.
- Division of Nephrology, China Medical University Hospital, No. 2 Yu-Der Rd, North district, Taichung 40447, Taiwan.
| |
Collapse
|