1
|
Bao X, Wu J. Natural anti-adhesive components against pathogenic bacterial adhesion and infection in gastrointestinal tract: case studies of Helicobacter pylori, Salmonella enterica, Clostridium difficile, and diarrheagenic Escherichia coli. Crit Rev Food Sci Nutr 2024:1-46. [PMID: 39666022 DOI: 10.1080/10408398.2024.2436139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Antimicrobial resistance (AMR) poses a global public health concern. Recognizing the critical role of bacterial adhesion in pathogenesis of infection, anti-adhesive therapy emerges as a promising approach to impede initial bacterial attachment, thus preventing pathogenic colonization and infection. Natural anti-adhesive agents derived from food sources are generally safe and have the potential to inhibit the emergence of resistant bacteria. This comprehensive review explored diverse natural dietary components exhibiting anti-adhesive activities against several model enteric pathogens, including Helicobacter pylori, Salmonella enterica, Clostridium difficile, and three key diarrheagenic Escherichia coli (i.e., enterotoxigenic E. coli, enteropathogenic E. coli, and enterohemorrhagic E. coli). Investigating various anti-adhesive products will advance our understanding of current research of the field and inspire further development of these agents as potential nutraceuticals or adjuvants to improve the efficacy of conventional antibiotics.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Ke A, Parreira VR, Farber JM, Goodridge L. Selection of a Potential Synbiotic against Cronobacter sakazakii. J Food Prot 2022; 85:1240-1248. [PMID: 35435968 DOI: 10.4315/jfp-22-048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/10/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cronobacter sakazakii is an opportunistic foodborne pathogen that can be fatal to infants; it is commonly associated with powdered infant formula due to contamination during manufacturing processes or during preparation in hospitals or homes. This project aimed to select a potential synbiotic, a combination of probiotic strains with a prebiotic product, to inhibit the growth of C. sakazakii in an in vitro dynamic infant gut model (Simulator of the Human Intestinal Microbial Ecosystem). A total of 16 lactic acid bacteria (LAB) were tested for their inhibitory properties against four different C. sakazakii strains by a zone of inhibition test. Lactobacillus and Pediococcus species were able to inhibit the growth (>15-mm inhibition zones) of all C. sakazakii strains tested, and only one strain from the two genera exhibited atypical resistance to tetracycline. All C. sakazakii strains and the selected LAB strains, which inhibited C. sakazakii and did not exhibit atypical antibiotic resistance, were grown in Luria-Bertani or de Man Rogosa Sharpe broth, respectively, containing 1% dextrose or 1% commercial prebiotic (w/v) to compare their ability to metabolize the prebiotic product. Overall, based on the growth inhibition of C. sakazakii, antibiotic susceptibility, and prebiotic metabolism, 6 of the 16 LAB were chosen to be part of a potential synbiotic. This study has provided valuable information that will help with the development of a synbiotic that can be used in powdered infant formula to reduce the potential for C. sakazakii-related illnesses in infants. HIGHLIGHTS
Collapse
Affiliation(s)
- Alfred Ke
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Valeria R Parreira
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Jeffrey M Farber
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
3
|
Ke A, Parreira VR, Farber JM, Goodridge L. Inhibition of Cronobacter sakazakii in an infant simulator of the human intestinal microbial ecosystem using a potential synbiotic. Front Microbiol 2022; 13:947624. [PMID: 35910651 PMCID: PMC9335077 DOI: 10.3389/fmicb.2022.947624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Powdered infant formula (PIF) can be contaminated with Cronobacter sakazakii, which can cause severe illnesses in infants. Synbiotics, a combination of probiotics and prebiotics, could act as an alternative control measure for C. sakazakii contamination in PIF and within the infant gut, but synbiotics have not been well studied for their ability to inhibit C. sakazakii. Using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) inoculated with infant fecal matter, we demonstrated that a potential synbiotic, consisting of six lactic acid bacteria (LAB) strains and Vivinal GOS, can inhibit the growth of C. sakazakii in an infant possibly through either the production of antimicrobial metabolites like acetate, increasing species diversity within the SHIME compartments to compete for nutrients or a combination of mechanisms. Using a triple SHIME set-up, i.e., three identical SHIME compartments, the first SHIME (SHIME 1) was designated as the control SHIME in the absence of a treatment, whereas SHIME 2 and 3 were the treated SHIME over 2, 1-week treatment periods. The addition of the potential synbiotic (LAB + VGOS) resulted in a significant decrease in C. sakazakii levels within 1 week (p < 0.05), but in the absence of a treatment the significant decline took 2 weeks (p < 0.05), and the LAB treatment did not decrease C. sakazakii levels (p ≥ 0.05). The principal component analysis showed a distinction between metabolomic profiles for the control and LAB treatment, but similar profiles for the LAB + VGOS treatment. The addition of the potential synbiotic (LAB + VGOS) in the first treatment period slightly increased species diversity (p ≥ 0.05) compared to the control and LAB, which may have had an effect on the survival of C. sakazakii throughout the treatment period. Our results also revealed that the relative abundance of Bifidobacterium was negatively correlated with Cronobacter when no treatments were added (ρ = −0.96; p < 0.05). These findings suggest that C. sakazakii could be inhibited by the native gut microbiota, and inhibition can be accelerated by the potential synbiotic treatment.
Collapse
|
4
|
Helmy YA, Kathayat D, Deblais L, Srivastava V, Closs G, Tokarski RJ, Ayinde O, Fuchs JR, Rajashekara G. Evaluation of Novel Quorum Sensing Inhibitors Targeting Auto-Inducer 2 (AI-2) for the Control of Avian Pathogenic Escherichia coli Infections in Chickens. Microbiol Spectr 2022; 10:e0028622. [PMID: 35583333 PMCID: PMC9241644 DOI: 10.1128/spectrum.00286-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) associated with colibacillosis results in high morbidity and mortality, and severe economic losses to the poultry industry. APEC is a zoonotic pathogen and can infect humans through contaminated poultry products. Vaccination and antibiotic treatment are currently used to control APEC infections; however, the limited effect of vaccines and the emergence of antibiotic-resistant strains have necessitated the development of novel therapeutics. Here, we evaluated seven quorum sensing inhibitors (QSI) identified in our previous study, in APEC-infected chickens. QSIs were administered orally (~92 to 120 μg/bird) and chickens were challenged subcutaneously with APEC. Among them, QSI-5 conferred the best protection (100% reduction in mortality, 82% to 93% reduction in lesions [airsacculitis, perihepatitis, lung congestion, pericarditis] severity, and 5.2 to 6.1 logs reduction in APEC load). QSI-5 was further tested in chickens raised on built-up floor litter using an optimized dose (1 mg/L) in drinking water. QSI-5 reduced the mortality (88.4%), lesion severity (72.2%), and APEC load (2.8 logs) in chickens, which was better than the reduction observed with currently used antibiotic sulfadimethoxine (SDM; mortality 35.9%; lesion severity up to 36.9%; and APEC load up to 2.4 logs). QSI-5 was detected in chicken's blood after 0.5 h with no residues in muscle, liver, and kidney. QSI-5 increased the body weight gain with no effect on the feed conversion ratio and cecal microbiota of the chickens. Metabolomic studies revealed reduced levels of 5'-methylthioadenosine in QSI-5-treated chicken serum. In conclusion, QSI-5 displayed promising effects in chickens and thus, represents a novel anti-APEC therapeutic. IMPORTANCE Avian pathogenic Escherichia coli (APEC), a subgroup of ExPEC, is a zoonotic pathogen with public health importance. Quorum sensing is a mechanism that regulates virulence, biofilm formation, and pathogenesis in bacteria. Here, we identified a novel quorum sensing autoinducer-2 inhibitor, QSI-5, which showed higher anti-APEC efficacy in chickens compared to the currently used antibiotic, sulfadimethoxine at a much lower dose (up to 4,500 times). QSI-5 is readily absorbed with no residues in the tissues. QSI-5 also increased the chicken's body weight gain and did not impact the cecal microbiota composition. Overall, QSI-5 represents a promising lead compound for developing novel anti-virulence therapies with significant implications for treating APEC infections in chickens as well as other ExPEC associated infections in humans. Further identification of its target(s) and understanding the mechanism of action of QSI-5 in APEC will add to the future novel drug development efforts that can overcome the antimicrobial resistance problem.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Dipak Kathayat
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Loic Deblais
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Vishal Srivastava
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Gary Closs
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Robert J. Tokarski
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Oluwatosin Ayinde
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - James R. Fuchs
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
5
|
Ke A, Parreira VR, Goodridge L, Farber JM. Current and Future Perspectives on the Role of Probiotics, Prebiotics, and Synbiotics in Controlling Pathogenic Cronobacter Spp. in Infants. Front Microbiol 2021; 12:755083. [PMID: 34745060 PMCID: PMC8567173 DOI: 10.3389/fmicb.2021.755083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Cronobacter species, in particular C. sakazakii, is an opportunistic bacterial pathogen implicated in the development of potentially debilitating illnesses in infants (<12months old). The combination of a poorly developed immune system and gut microbiota put infants at a higher risk of infection compared to other age groups. Probiotics and prebiotics are incorporated in powdered infant formula and, in addition to strengthening gut physiology and stimulating the growth of commensal gut microbiota, have proven antimicrobial capabilities. Postbiotics in the cell-free supernatant of a microbial culture are derived from probiotics and can also exert health benefits. Synbiotics, a mixture of probiotics and prebiotics, may provide further advantages as probiotics and gut commensals degrade prebiotics into short-chain fatty acids that can provide benefits to the host. Cell-culture and animal models have been widely used to study foodborne pathogens, but sophisticated gut models have been recently developed to better mimic the gut conditions, thus giving a more accurate representation of how various treatments can affect the survival and pathogenicity of foodborne pathogens. This review aims to summarize the current understanding on the connection between Cronobacter infections and infants, as well as highlight the potential efficacy of probiotics, prebiotics, and synbiotics in reducing invasive Cronobacter infections during early infancy.
Collapse
|
6
|
Islam MR, Hassan YI, Das Q, Lepp D, Hernandez M, Godfrey DV, Orban S, Ross K, Delaquis P, Diarra MS. Dietary organic cranberry pomace influences multiple blood biochemical parameters and cecal microbiota in pasture-raised broiler chickens. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
7
|
Plant-polyphenols based second-generation synbiotics: Emerging concepts, challenges, and opportunities. Nutrition 2020; 77:110785. [PMID: 32283341 DOI: 10.1016/j.nut.2020.110785] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
There is a growing interest in identifying alternatives to traditional oligosaccharide-based prebiotic agents owing to their undesirable attributes, such as a lack of microbial growth specificity and limited inherent bioactivity. In addition, a novel concept of second-generation synbiotic agents is currently emerging, which argues that prebiotic agents could be best defined on the basis of their physiological effects or functional capacities in the host rather than their specific microbial targets. Plant polyphenols are rapidly emerging as suitable prebiotic and synbiotic candidates that may fulfil these criteria. As we begin to understand the intricate interrelationship between dietary polyphenols and the gut microbiome, a functional synergy can be observed that suggests the appropriateness of the amalgamation of polyphenols and probiotic agents to develop second-generation synbiotic agents. In the present review, we study evidence pertaining to the prebiotic and synbiotic attributes of polyphenols, as well as their relationship with probiotic bacteria, and discuss their efficacy, suitability, and strategies to develop second-generation synbiotic agents. We provide a perspective that polyphenol-based synbiotic agents are fundamentally superior to the traditional carbohydrate-based synbiotic agents and could therefore offer health benefits of both polyphenols and probiotic agents in a synergistic manner.
Collapse
|
8
|
Pinkerton L, Linton M, Kelly C, Ward P, Gradisteanu Pircalabioru G, Pet I, Stef L, Sima F, Adamov T, Gundogdu O, Corcionivoschi N. Attenuation of Vibrio parahaemolyticus Virulence Factors by a Mixture of Natural Antimicrobials. Microorganisms 2019; 7:microorganisms7120679. [PMID: 31835728 PMCID: PMC6956168 DOI: 10.3390/microorganisms7120679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 01/19/2023] Open
Abstract
Reducing acute mortality in aquatic crustaceans using natural alternatives to antibiotics has become a necessity, firstly for its positive impact on the aquaculture industry and, secondly, because the extensive use of antibiotics may lead to increased levels of drug resistance in pathogenic microorganisms. This study aimed to investigate the effect of a mixture of natural antimicrobials on the in vitro and in vivo virulence abilities of Type VI secretion system (T6SS)-positive Vibrio parahaemolyticus (A3 and D4), strains known as having potentially harmful health consequences for aquatic crustaceans and consumers. Herein, we report that a natural antimicrobial mixture (A3009) was capable of significantly reducing the virulence of V. parahaemolyticus strains A3 and D4 in an in vitro infection model, using the fish cell line CHSE-214, an effect which correlates with the bacterial downregulation of hcp1 and hcp2 gene expression and with the ability of the antimicrobial to efficiently retain low cytotoxic levels (p < 0.001). We show for the first time that a natural antimicrobial is able to significantly reduce the mortality of shrimps in a challenge experiment and is able to significantly attenuate H2O2 release during infection (p < 0.001), indicating that it could harbor positive intestinal redox balance effects.
Collapse
Affiliation(s)
- Laurette Pinkerton
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK
| | - Mark Linton
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK
| | - Carmel Kelly
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK
| | | | | | - Ioan Pet
- Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, 300645 Timisoara, Romania
| | - Lavinia Stef
- Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, 300645 Timisoara, Romania
| | - Filip Sima
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK
- Auranta, NovaUCD, Dublin 4, Ireland
- Research Institute of University of Bucharest, 300645 Bucharest, Romania
| | - Tabita Adamov
- Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, 300645 Timisoara, Romania
| | - Ozan Gundogdu
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK
- Auranta, NovaUCD, Dublin 4, Ireland
- Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, 300645 Timisoara, Romania
| |
Collapse
|