1
|
Tristan-Ramos P, Morell S, Sanchez L, Toledo B, Garcia-Perez JL, Heras SR. sRNA/L1 retrotransposition: using siRNAs and miRNAs to expand the applications of the cell culture-based LINE-1 retrotransposition assay. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190346. [PMID: 32075559 DOI: 10.1098/rstb.2019.0346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cell culture-based retrotransposition reporter assay has been (and is) an essential tool for the study of vertebrate Long INterspersed Elements (LINEs). Developed more than 20 years ago, this assay has been instrumental in characterizing the role of LINE-encoded proteins in retrotransposition, understanding how ribonucleoprotein particles are formed, how host factors regulate LINE mobilization, etc. Moreover, variations of the conventional assay have been developed to investigate the biology of other currently active human retrotransposons, such as Alu and SVA. Here, we describe a protocol that allows combination of the conventional cell culture-based LINE-1 retrotransposition reporter assay with short interfering RNAs (siRNAs) and microRNA (miRNAs) mimics or inhibitors, which has allowed us to uncover specific miRNAs and host factors that regulate retrotransposition. The protocol described here is highly reproducible, quantitative, robust and flexible, and allows the study of several small RNA classes and various retrotransposons. To illustrate its utility, here we show that siRNAs to Fanconi anaemia proteins (FANC-A and FANC-C) and an inhibitor of miRNA-20 upregulate and downregulate human L1 retrotransposition, respectively. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Pablo Tristan-Ramos
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Santiago Morell
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain
| | - Laura Sanchez
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain
| | - Belen Toledo
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jose L Garcia-Perez
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Sara R Heras
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Kannan M, Li J, Fritz SE, Husarek KE, Sanford JC, Sullivan TL, Tiwary PK, An W, Boeke JD, Symer DE. Dynamic silencing of somatic L1 retrotransposon insertions reflects the developmental and cellular contexts of their genomic integration. Mob DNA 2017; 8:8. [PMID: 28491150 PMCID: PMC5424313 DOI: 10.1186/s13100-017-0091-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/03/2017] [Indexed: 02/15/2023] Open
Abstract
Background The ongoing mobilization of mammalian transposable elements (TEs) contributes to natural genetic variation. To survey the epigenetic control and expression of reporter genes inserted by L1 retrotransposition in diverse cellular and genomic contexts, we engineered highly sensitive, real-time L1 retrotransposon reporter constructs. Results Here we describe different patterns of expression and epigenetic controls of newly inserted sequences retrotransposed by L1 in various somatic cells and tissues including cultured human cancer cells, mouse embryonic stem cells, and tissues of pseudofounder transgenic mice and their progeny. In cancer cell lines, the newly inserted sequences typically underwent rapid transcriptional gene silencing, but they lacked cytosine methylation even after many cell divisions. L1 reporter expression was reversible and oscillated frequently. Silenced or variegated reporter expression was strongly and uniformly reactivated by treatment with inhibitors of histone deacetylation, revealing the mechanism for their silencing. By contrast, de novo integrants retrotransposed by L1 in pluripotent mouse embryonic stem (ES) cells underwent rapid silencing by dense cytosine methylation. Similarly, de novo cytosine methylation also was identified at new integrants when studied in several distinct somatic tissues of adult founder mice. Pre-existing L1 elements in cultured human cancer cells were stably silenced by dense cytosine methylation, whereas their transcription modestly increased when cytosine methylation was experimentally reduced in cells lacking DNA methyltransferases DNMT1 and DNMT3b. As a control, reporter genes mobilized by piggyBac (PB), a DNA transposon, revealed relatively stable and robust expression without apparent silencing in both cultured cancer cells and ES cells. Conclusions We hypothesize that the de novo methylation marks at newly inserted sequences retrotransposed by L1 in early pre-implantation development are maintained or re-established in adult somatic tissues. By contrast, histone deacetylation reversibly silences L1 reporter insertions that had mobilized at later timepoints in somatic development and differentiation, e.g., in cancer cell lines. We conclude that the cellular contexts of L1 retrotransposition can determine expression or silencing of newly integrated sequences. We propose a model whereby reporter expression from somatic TE insertions reflects the timing, molecular mechanism, epigenetic controls and the genomic, cellular and developmental contexts of their integration. Electronic supplementary material The online version of this article (doi:10.1186/s13100-017-0091-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manoj Kannan
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani, 333031 Rajasthan India.,Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA.,Present Address: Birla Institute of Technology and Science, Pilani, Dubai campus, Dubai, United Arab Emirates
| | - Jingfeng Li
- Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH USA.,Department of Internal Medicine, The Ohio State University, Columbus, OH USA
| | - Sarah E Fritz
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH USA.,Present Address: National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Kathryn E Husarek
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH USA.,Present Address: Aventiv Research, Inc., Columbus, OH USA
| | - Jonathan C Sanford
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH USA.,Present Address: Drug Safety Research and Development, Pfizer, Inc., Groton, CT USA
| | - Teresa L Sullivan
- Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| | - Pawan Kumar Tiwary
- Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA.,Present Address: Biocon, Bangalore, India
| | - Wenfeng An
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD USA.,Present Address: Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD USA
| | - Jef D Boeke
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD USA.,Present Address: Institute for Systems Genetics, New York University Langone Medical Center, New York, NY USA
| | - David E Symer
- Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH USA.,Human Cancer Genetics Program, and Department of Biomedical Informatics, The Ohio State University, Columbus, OH USA.,Human Cancer Genetics Program, Department of Cancer Biology and Genetics, and Department of Biomedical Informatics, The Ohio State University, Tzagournis Research Facility, Room 440, 420 West 12th Ave, Columbus, OH 43210 USA
| |
Collapse
|