1
|
Signor S, Vedanayagam J, Kim BY, Wierzbicki F, Kofler R, Lai EC. Rapid evolutionary diversification of the flamenco locus across simulans clade Drosophila species. PLoS Genet 2023; 19:e1010914. [PMID: 37643184 PMCID: PMC10495008 DOI: 10.1371/journal.pgen.1010914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/11/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Suppression of transposable elements (TEs) is paramount to maintain genomic integrity and organismal fitness. In D. melanogaster, the flamenco locus is a master suppressor of TEs, preventing the mobilization of certain endogenous retrovirus-like TEs from somatic ovarian support cells to the germline. It is transcribed by Pol II as a long (100s of kb), single-stranded, primary transcript, and metabolized into ~24-32 nt Piwi-interacting RNAs (piRNAs) that target active TEs via antisense complementarity. flamenco is thought to operate as a trap, owing to its high content of recent horizontally transferred TEs that are enriched in antisense orientation. Using newly-generated long read genome data, which is critical for accurate assembly of repetitive sequences, we find that flamenco has undergone radical transformations in sequence content and even copy number across simulans clade Drosophilid species. Drosophila simulans flamenco has duplicated and diverged, and neither copy exhibits synteny with D. melanogaster beyond the core promoter. Moreover, flamenco organization is highly variable across D. simulans individuals. Next, we find that D. simulans and D. mauritiana flamenco display signatures of a dual-stranded cluster, with ping-pong signals in the testis and/or embryo. This is accompanied by increased copy numbers of germline TEs, consistent with these regions operating as functional dual-stranded clusters. Overall, the physical and functional diversity of flamenco orthologs is testament to the extremely dynamic consequences of TE arms races on genome organization, not only amongst highly related species, but even amongst individuals.
Collapse
Affiliation(s)
- Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Jeffrey Vedanayagam
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, Texas, United States of America
| | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Eric C. Lai
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| |
Collapse
|
2
|
Chary S, Hayashi R. The absence of core piRNA biogenesis factors does not impact efficient transposon silencing in Drosophila. PLoS Biol 2023; 21:e3002099. [PMID: 37279192 DOI: 10.1371/journal.pbio.3002099] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/30/2023] [Indexed: 06/08/2023] Open
Abstract
Organisms require mechanisms to distinguish self and non-self-RNA. This distinction is crucial to initiate the biogenesis of Piwi-interacting RNAs (piRNAs). In Drosophila ovaries, PIWI-guided slicing and the recognition of piRNA precursor transcripts by the DEAD-box RNA helicase Yb are the 2 known mechanisms to licence an RNA for piRNA biogenesis in the germline and the soma, respectively. Both the PIWI proteins and Yb are highly conserved across most Drosophila species and are thought to be essential to the piRNA pathway and for silencing transposons. However, we find that species closely related to Drosophila melanogaster have lost the yb gene, as well as the PIWI gene Ago3. We show that the precursor RNA is still selected in the absence of Yb to abundantly generate transposon antisense piRNAs in the soma. We further demonstrate that Drosophila eugracilis, which lacks Ago3, is completely devoid of ping-pong piRNAs and exclusively produces phased piRNAs in the absence of slicing. Thus, core piRNA pathway genes can be lost in evolution while still maintaining efficient transposon silencing.
Collapse
Affiliation(s)
- Shashank Chary
- John Curtin School of Medical Research, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Rippei Hayashi
- John Curtin School of Medical Research, The Australian National University, Acton, Australian Capital Territory, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
3
|
Pezenti LF, Dionisio JF, Sosa-Gómez DR, de Souza RF, da Rosa R. Transposable elements in the transcriptome of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Erebidae). Genome 2023. [DOI: 10.1139/gen-2022-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis ( Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression.
Collapse
|
4
|
Zakharenko LP, Petrovskii DV, Bykov RA. The P-Element Has Not Significant Effect on the Drosophila simulans Viability. Mol Biol 2023. [DOI: 10.1134/s0026893323020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Tvedte ES, Gasser M, Zhao X, Tallon LJ, Sadzewicz L, Bromley RE, Chung M, Mattick J, Sparklin BC, Dunning Hotopp JC. Accumulation of endosymbiont genomes in an insect autosome followed by endosymbiont replacement. Curr Biol 2022; 32:2786-2795.e5. [PMID: 35671755 DOI: 10.1016/j.cub.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022]
Abstract
Eukaryotic genomes can acquire bacterial DNA via lateral gene transfer (LGT).1 A prominent source of LGT is Wolbachia,2 a widespread endosymbiont of arthropods and nematodes that is transmitted maternally through female germline cells.3,4 The DNA transfer from the Wolbachia endosymbiont wAna to Drosophila ananassae is extensive5-7 and has been localized to chromosome 4, contributing to chromosome expansion in this lineage.6 As has happened frequently with claims of bacteria-to-eukaryote LGT, the contribution of wAna transfers to the expanded size of D. ananassae chromosome 4 has been specifically contested8 owing to an assembly where Wolbachia sequences were classified as contaminants and removed.9 Here, long-read sequencing with DNA from a Wolbachia-cured line enabled assembly of 4.9 Mbp of nuclear Wolbachia transfers (nuwts) in D. ananassae and a 24-kbp nuclear mitochondrial transfer. The nuwts are <8,000 years old in at least two locations in chromosome 4 with at least one whole-genome integration followed by rapid extensive duplication of most of the genome with regions that have up to 10 copies. The genes in nuwts are accumulating small indels and mobile element insertions. Among the highly duplicated genes are cifA and cifB, two genes associated with Wolbachia-mediated Drosophila cytoplasmic incompatibility. The wAna strain that was the source of nuwts was subsequently replaced by a different wAna endosymbiont. Direct RNA Nanopore sequencing of Wolbachia-cured lines identified nuwt transcripts, including spliced transcripts, but functionality, if any, remains elusive.
Collapse
Affiliation(s)
- Eric S Tvedte
- Institute for Genome Sciences, University of Maryland School of Medicine, Health Sciences Facility III #2106, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Mark Gasser
- Institute for Genome Sciences, University of Maryland School of Medicine, Health Sciences Facility III #2106, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Xuechu Zhao
- Institute for Genome Sciences, University of Maryland School of Medicine, Health Sciences Facility III #2106, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Health Sciences Facility III #2106, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Health Sciences Facility III #2106, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Robin E Bromley
- Institute for Genome Sciences, University of Maryland School of Medicine, Health Sciences Facility III #2106, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Matthew Chung
- Institute for Genome Sciences, University of Maryland School of Medicine, Health Sciences Facility III #2106, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - John Mattick
- Institute for Genome Sciences, University of Maryland School of Medicine, Health Sciences Facility III #2106, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Benjamin C Sparklin
- Institute for Genome Sciences, University of Maryland School of Medicine, Health Sciences Facility III #2106, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Health Sciences Facility III #2106, 670 West Baltimore Street, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
6
|
Filée J, Farhat S, Higuet D, Teysset L, Marie D, Thomas-Bulle C, Hourdez S, Jollivet D, Bonnivard E. Comparative genomic and transcriptomic analyses of transposable elements in polychaetous annelids highlight LTR retrotransposon diversity and evolution. Mob DNA 2021; 12:24. [PMID: 34715903 PMCID: PMC8556966 DOI: 10.1186/s13100-021-00252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background With the expansion of high throughput sequencing, we now have access to a larger number of genome-wide studies analyzing the Transposable elements (TEs) composition in a wide variety of organisms. However, genomic analyses often remain too limited in number and diversity of species investigated to study in depth the dynamics and evolutionary success of the different types of TEs among metazoans. Therefore, we chose to investigate the use of transcriptomes to describe the diversity of TEs in phylogenetically related species by conducting the first comparative analysis of TEs in two groups of polychaetes and evaluate the diversity of TEs that might impact genomic evolution as a result of their mobility. Results We present a detailed analysis of TEs distribution in transcriptomes extracted from 15 polychaetes depending on the number of reads used during assembly, and also compare these results with additional TE scans on associated low-coverage genomes. We then characterized the clades defined by 1021 LTR-retrotransposon families identified in 26 species. Clade richness was highly dependent on the considered superfamily. Copia elements appear rare and are equally distributed in only three clades, GalEa, Hydra and CoMol. Among the eight BEL/Pao clades identified in annelids, two small clades within the Sailor lineage are new for science. We characterized 17 Gypsy clades of which only 4 are new; the C-clade largely dominates with a quarter of the families. Finally, all species also expressed for the majority two distinct transcripts encoding PIWI proteins, known to be involved in control of TEs mobilities. Conclusions This study shows that the use of transcriptomes assembled from 40 million reads was sufficient to access to the diversity and proportion of the transposable elements compared to those obtained by low coverage sequencing. Among LTR-retrotransposons Gypsy elements were unequivocally dominant but results suggest that the number of Gypsy clades, although high, may be more limited than previously thought in metazoans. For BEL/Pao elements, the organization of clades within the Sailor lineage appears more difficult to establish clearly. The Copia elements remain rare and result from the evolutionary consistent success of the same three clades. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-021-00252-0.
Collapse
Affiliation(s)
- Jonathan Filée
- Laboratoire Evolution, Genomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sarah Farhat
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794-5000, USA
| | - Dominique Higuet
- Institut de Systématique, Evolution, Biodiversité (ISYEB) - Sorbonne Université, Muséum National d'Histoire Naturel, CNRS, EPHE, Université des Antilles, 7 quai Saint Bernard, 75252, Paris Cedex 05, France
| | - Laure Teysset
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, "Transgenerational Epigenetics & small RNA Biology", F-75005, Paris, France
| | - Dominique Marie
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, France
| | - Camille Thomas-Bulle
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, France
| | - Stephane Hourdez
- UMR8222 LECOB CNRS-Sorbonne Université, Observatoire Océanologique de Banyuls, 1 avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - Didier Jollivet
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, France
| | - Eric Bonnivard
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, France.
| |
Collapse
|
7
|
Domínguez A. Interrogating the 5'UTR tandem repeats of retrotransposon roo of Drosophila about horizontal transfer. Genetica 2021; 149:171-177. [PMID: 33900494 DOI: 10.1007/s10709-021-00120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
Horizontal transfer in Drosophila has been inferred for several families of transposable elements. Specifically, the retroelement roo has been suggested to have been horizontally transferred between the species D. melanogaster, D. simulans, D. sechellia and D. yakuba. The inferences were based on the observation that divergence between transposable elements in different species was lower than the divergence found in typical nuclear genes and in the incongruence of phylogenies of the species and their TEs. Here, we address the question of the possible horizontal transfer of roo between species of the Drosophila genus by studying the presence absence of a duplication of 99 bp in the 5'UTR of the transposon, as well as comparing the sequences of the paralogous and orthologous duplicated repeats within and between species. First, the repeats were only found in five species of the melanogaster subgroup. Second, the date of occurrence of the duplication event originating the repeats was posterior to the split of the subgroup. The duplication date suggests an origin previous to the split of D. simulans and D. sechellia and close to the divergence of D. melanogaster from the D. simulans complex. These data point to horizontal transfer to the afrotropical species D. yakuba and D. erecta from one of the cosmopolitan species D. melanogaster or D. simulans. We propose that the parasitoid wasp Leptopilina could have been the vector of horizontal transfer after the observation that a sequence of 845 bp with high homology to a fragment of roo was isolated from this wasp.
Collapse
Affiliation(s)
- Ana Domínguez
- Departamento de Biología Funcional, Área de Genética, Universidad de Oviedo, 33071, Oviedo, Spain.
| |
Collapse
|
8
|
Schwarz F, Wierzbicki F, Senti KA, Kofler R. Tirant Stealthily Invaded Natural Drosophila melanogaster Populations during the Last Century. Mol Biol Evol 2021; 38:1482-1497. [PMID: 33247725 PMCID: PMC8042734 DOI: 10.1093/molbev/msaa308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It was long thought that solely three different transposable elements (TEs)-the I-element, the P-element, and hobo-invaded natural Drosophila melanogaster populations within the last century. By sequencing the "living fossils" of Drosophila research, that is, D. melanogaster strains sampled from natural populations at different time points, we show that a fourth TE, Tirant, invaded D. melanogaster populations during the past century. Tirant likely spread in D. melanogaster populations around 1938, followed by the I-element, hobo, and, lastly, the P-element. In addition to the recent insertions of the canonical Tirant, D. melanogaster strains harbor degraded Tirant sequences in the heterochromatin which are likely due to an ancient invasion, likely predating the split of D. melanogaster and D. simulans. These degraded insertions produce distinct piRNAs that were unable to prevent the novel Tirant invasion. In contrast to the I-element, P-element, and hobo, we did not find that Tirant induces any hybrid dysgenesis symptoms. This absence of apparent phenotypic effects may explain the late discovery of the Tirant invasion. Recent Tirant insertions were found in all investigated natural populations. Populations from Tasmania carry distinct Tirant sequences, likely due to a founder effect. By investigating the TE composition of natural populations and strains sampled at different time points, insertion site polymorphisms, piRNAs, and phenotypic effects, we provide a comprehensive study of a natural TE invasion.
Collapse
Affiliation(s)
- Florian Schwarz
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | | | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
9
|
Chakraborty M, Chang CH, Khost DE, Vedanayagam J, Adrion JR, Liao Y, Montooth KL, Meiklejohn CD, Larracuente AM, Emerson JJ. Evolution of genome structure in the Drosophila simulans species complex. Genome Res 2021; 31:380-396. [PMID: 33563718 PMCID: PMC7919458 DOI: 10.1101/gr.263442.120] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022]
Abstract
The rapid evolution of repetitive DNA sequences, including satellite DNA, tandem duplications, and transposable elements, underlies phenotypic evolution and contributes to hybrid incompatibilities between species. However, repetitive genomic regions are fragmented and misassembled in most contemporary genome assemblies. We generated highly contiguous de novo reference genomes for the Drosophila simulans species complex (D. simulans, D. mauritiana, and D. sechellia), which speciated ∼250,000 yr ago. Our assemblies are comparable in contiguity and accuracy to the current D. melanogaster genome, allowing us to directly compare repetitive sequences between these four species. We find that at least 15% of the D. simulans complex species genomes fail to align uniquely to D. melanogaster owing to structural divergence-twice the number of single-nucleotide substitutions. We also find rapid turnover of satellite DNA and extensive structural divergence in heterochromatic regions, whereas the euchromatic gene content is mostly conserved. Despite the overall preservation of gene synteny, euchromatin in each species has been shaped by clade- and species-specific inversions, transposable elements, expansions and contractions of satellite and tRNA tandem arrays, and gene duplications. We also find rapid divergence among Y-linked genes, including copy number variation and recent gene duplications from autosomes. Our assemblies provide a valuable resource for studying genome evolution and its consequences for phenotypic evolution in these genetic model species.
Collapse
Affiliation(s)
- Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| | - Ching-Ho Chang
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Danielle E Khost
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
- FAS Informatics and Scientific Applications, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jeffrey Vedanayagam
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jeffrey R Adrion
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Yi Liao
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68502, USA
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68502, USA
| | | | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
10
|
Moschetti R, Palazzo A, Lorusso P, Viggiano L, Massimiliano Marsano R. "What You Need, Baby, I Got It": Transposable Elements as Suppliers of Cis-Operating Sequences in Drosophila. BIOLOGY 2020; 9:E25. [PMID: 32028630 PMCID: PMC7168160 DOI: 10.3390/biology9020025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. Drosophila is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new cis-regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in cis provided by TEs in Drosophila. Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome's structure and stability. It emerges that Drosophila is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE-host interactions in any complex eukaryotic genome.
Collapse
Affiliation(s)
- Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - Antonio Palazzo
- Laboratory of Translational Nanotechnology, “Istituto Tumori Giovanni Paolo II” I.R.C.C.S, Viale Orazio Flacco 65, 70125 Bari, Italy;
| | - Patrizio Lorusso
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - Luigi Viggiano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - René Massimiliano Marsano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| |
Collapse
|
11
|
Cordeiro J, Carvalho TL, Valente VLDS, Robe LJ. Evolutionary history and classification of Micropia retroelements in Drosophilidae species. PLoS One 2019; 14:e0220539. [PMID: 31622354 PMCID: PMC6797199 DOI: 10.1371/journal.pone.0220539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022] Open
Abstract
Transposable elements (TEs) have the main role in shaping the evolution of genomes and host species, contributing to the creation of new genes and promoting rearrangements frequently associated with new regulatory networks. Support for these hypotheses frequently results from studies with model species, and Drosophila provides a great model organism to the study of TEs. Micropia belongs to the Ty3/Gypsy group of long terminal repeats (LTR) retroelements and comprises one of the least studied Drosophila transposable elements. In this study, we assessed the evolutionary history of Micropia within Drosophilidae, while trying to assist in the classification of this TE. At first, we performed searches of Micropia presence in the genome of natural populations from several species. Then, based on searches within online genomic databases, we retrieved Micropia-like sequences from the genomes of distinct Drosophilidae species. We expanded the knowledge of Micropia distribution within Drosophila species. The Micropia retroelements we detected consist of an array of divergent sequences, which we subdivided into 20 subfamilies. Even so, a patchy distribution of Micropia sequences within the Drosophilidae phylogeny could be identified, with incongruences between the species phylogeny and the Micropia phylogeny. Comparing the pairwise synonymous distance (dS) values between Micropia and three host nuclear sequences, we found several cases of unexpectedly high levels of similarity between Micropia sequences in divergent species. All these findings provide a hypothesis to the evolution of Micropia within Drosophilidae, which include several events of vertical and horizontal transposon transmission, associated with ancestral polymorphisms and recurrent Micropia sequences diversification.
Collapse
Affiliation(s)
- Juliana Cordeiro
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Tuane Letícia Carvalho
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vera Lúcia da Silva Valente
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre; Rio Grande do Sul; Brazil
| | - Lizandra Jaqueline Robe
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Departamento de Ecologia e Evolução, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
12
|
Weilguny L, Kofler R. DeviaTE: Assembly-free analysis and visualization of mobile genetic element composition. Mol Ecol Resour 2019; 19:1346-1354. [PMID: 31056858 PMCID: PMC6791034 DOI: 10.1111/1755-0998.13030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 11/28/2022]
Abstract
Transposable elements (TEs) are selfish DNA sequences that multiply within host genomes. They are present in most species investigated so far at varying degrees of abundance and sequence diversity. The TE composition may not only vary between but also within species and could have important biological implications. Variation in prevalence among populations may for example indicate a recent TE invasion, whereas sequence variation could indicate the presence of hyperactive or inactive forms. Gaining unbiased estimates of TE composition is thus vital for understanding the evolutionary dynamics of transposons. To this end, we developed DeviaTE, a tool to analyse and visualize TE abundance using Illumina or Sanger sequencing reads. Our tool requires sequencing reads of one or more samples (tissue, individual or population) and consensus sequences of TEs. It generates a table and a visual representation of TE composition. This allows for an intuitive assessment of coverage, sequence divergence, segregating SNPs and indels, as well as the presence of internal and terminal deletions. By contrasting the coverage between TEs and single copy genes, DeviaTE derives unbiased estimates of TE abundance. We show that naive approaches, which do not consider regions spanned by internal deletions, may substantially underestimate TE abundance. Using published data we demonstrate that DeviaTE can be used to study the TE composition within samples, identify clinal variation in TEs, compare TE diversity among species, and monitor TE invasions. Finally we present careful validations with publicly available and simulated data. DeviaTE is implemented in Python and distributed under the GPLv3 (https://github.com/W-L/deviaTE).
Collapse
Affiliation(s)
- Lukas Weilguny
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| |
Collapse
|
13
|
Helleu Q, Levine MT. Recurrent Amplification of the Heterochromatin Protein 1 (HP1) Gene Family across Diptera. Mol Biol Evol 2019; 35:2375-2389. [PMID: 29924345 PMCID: PMC6188558 DOI: 10.1093/molbev/msy128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The heterochromatic genome compartment mediates strictly conserved cellular processes such as chromosome segregation, telomere integrity, and genome stability. Paradoxically, heterochromatic DNA sequence is wildly unconserved. Recent reports that many hybrid incompatibility genes encode heterochromatin proteins, together with the observation that interspecies hybrids suffer aberrant heterochromatin-dependent processes, suggest that heterochromatic DNA packaging requires species-specific innovations. Testing this model of coevolution between fast-evolving heterochromatic DNA and its packaging proteins begins with defining the latter. Here we describe many such candidates encoded by the Heterochromatin Protein 1 (HP1) gene family across Diptera, an insect Order that encompasses dramatic episodes of heterochromatic sequence turnover. Using BLAST, synteny analysis, and phylogenetic tree building across 64 Diptera genomes, we discovered a staggering 121 HP1 duplication events. In contrast, we observed virtually no gene duplication in gene families that share a common “chromodomain” with HP1s, including Polycomb and Su(var)3-9. The remarkably high number of Dipteran HP1 paralogs arises from distant clades undergoing convergent HP1 family amplifications. These independently derived, young HP1s span diverse ages, domain structures, and rates of molecular evolution, including episodes of positive selection. Moreover, independently derived HP1s exhibit convergent expression evolution. While ancient HP1 parent genes are transcribed ubiquitously, young HP1 paralogs are transcribed primarily in male germline tissue, a pattern typical of young genes. Pervasive gene youth, rapid evolution, and germline specialization implicate heterochromatin-encoded selfish elements driving recurrent HP1 gene family expansions. The 121 young genes offer valuable experimental traction for elucidating the germline processes shaped by Diptera’s many dramatic episodes of heterochromatin turnover.
Collapse
Affiliation(s)
- Quentin Helleu
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Mia T Levine
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
14
|
Shamimuzzaman M, Hasegawa DK, Chen W, Simmons AM, Fei Z, Ling KS. Genome-wide profiling of piRNAs in the whitefly Bemisia tabaci reveals cluster distribution and association with begomovirus transmission. PLoS One 2019; 14:e0213149. [PMID: 30861037 PMCID: PMC6413925 DOI: 10.1371/journal.pone.0213149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/17/2019] [Indexed: 11/19/2022] Open
Abstract
The whitefly Bemisia tabaci MEAM1 is a notorious vector capable of transmitting many plant viruses, resulting in serious crop loss and food shortage around the world. To investigate potential sRNA-mediated regulatory mechanisms in whiteflies that are affected by virus acquisition and transmission, we conducted small RNA (sRNA) deep sequencing and performed genome-wide profiling of piwi-interacting RNAs (piRNAs) in whiteflies that were fed on tomato yellow leaf curl virus (TYLCV)-infected or non-infected tomato plants for 24, 48, and 72 h. In the present study, piRNA reads ranging from 564,395 to 1,715,652 per library were identified and shown to distribute unevenly in clusters (57 to 96 per library) on the whitefly (B. tabaci MEAM1) genome. Among them, 53 piRNA clusters were common for all treatments. Comparative analysis between libraries generated from viruliferous and non-viruliferous whiteflies identified five TYLCV-induced and 24 TYLCV-suppressed piRNA clusters. Approximately 62% of piRNAs were derived from non-coding sequences including intergenic regions, introns, and untranslated regions (UTRs). The remaining 38% were derived from coding sequences (CDS) or repeat elements. Interestingly, six protein coding genes were targeted by the TYLCV-induced piRNAs. We identified a large number of piRNAs that were distributed in clusters across the whitefly genome, with 60% being derived from non-coding regions. Comparative analysis revealed that feeding on a virus-infected host caused induction and suppression of only a small number of piRNA clusters in whiteflies. Although piRNAs primarily regulate the activity of transposable elements, our results suggest that they may have additional functions in regulating protein coding genes and in insect-virus interactions.
Collapse
Affiliation(s)
- Md Shamimuzzaman
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC, United States of America
| | - Daniel K. Hasegawa
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC, United States of America
| | - Wenbo Chen
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
| | - Alvin M. Simmons
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC, United States of America
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
- USDA-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Kai-Shu Ling
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lerat E, Goubert C, Guirao‐Rico S, Merenciano M, Dufour A, Vieira C, González J. Population-specific dynamics and selection patterns of transposable element insertions in European natural populations. Mol Ecol 2019; 28:1506-1522. [PMID: 30506554 PMCID: PMC6849870 DOI: 10.1111/mec.14963] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 01/02/2023]
Abstract
Transposable elements (TEs) are ubiquitous sequences in genomes of virtually all species. While TEs have been investigated for several decades, only recently we have the opportunity to study their genome-wide population dynamics. Most of the studies so far have been restricted either to the analysis of the insertions annotated in the reference genome or to the analysis of a limited number of populations. Taking advantage of the European Drosophila population genomics consortium (DrosEU) sequencing data set, we have identified and measured the dynamics of TEs in a large sample of European Drosophila melanogaster natural populations. We showed that the mobilome landscape is population-specific and highly diverse depending on the TE family. In contrast with previous studies based on SNP variants, no geographical structure was observed for TE abundance or TE divergence in European populations. We further identified de novo individual insertions using two available programs and, as expected, most of the insertions were present at low frequencies. Nevertheless, we identified a subset of TEs present at high frequencies and located in genomic regions with a high recombination rate. These TEs are candidates for being the target of positive selection, although neutral processes should be discarded before reaching any conclusion on the type of selection acting on them. Finally, parallel patterns of association between the frequency of TE insertions and several geographical and temporal variables were found between European and North American populations, suggesting that TEs can be potentially implicated in the adaptation of populations across continents.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- Laboratoire de Biométrie et Biologie EvolutiveUMR 5558Université de Lyon, Université Lyon 1, CNRSVilleurbanneFrance
| | - Clément Goubert
- Molecular Biology and GeneticsCornell UniversityIthacaNew York
| | - Sara Guirao‐Rico
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Miriam Merenciano
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Anne‐Béatrice Dufour
- Laboratoire de Biométrie et Biologie EvolutiveUMR 5558Université de Lyon, Université Lyon 1, CNRSVilleurbanneFrance
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie EvolutiveUMR 5558Université de Lyon, Université Lyon 1, CNRSVilleurbanneFrance
| | - Josefa González
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| |
Collapse
|
16
|
Thomas-Bulle C, Piednoël M, Donnart T, Filée J, Jollivet D, Bonnivard É. Mollusc genomes reveal variability in patterns of LTR-retrotransposons dynamics. BMC Genomics 2018; 19:821. [PMID: 30442098 PMCID: PMC6238403 DOI: 10.1186/s12864-018-5200-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/25/2018] [Indexed: 01/06/2023] Open
Abstract
Background The three superfamilies of Long Terminal Repeat (LTR) retrotransposons are a widespread kind of transposable element and a major factor in eukaryotic genome evolution. In metazoans, recent studies suggested that Copia LTR-retrotransposons display specific dynamic compared to the more abundant and diverse Gypsy elements. Indeed, Copia elements show a relative scarcity and the prevalence of only a few clades in specific hosts. Thus, BEL/Pao seems to be the second most abundant superfamily. However, the generality of these assumptions remains to be assessed. Therefore, we carried out the first large-scale comparative genomic analysis of LTR-retrotransposons in molluscs. The aim of this study was to analyse the diversity, copy numbers, genomic proportions and distribution of LTR-retrotransposons in a large host phylum. Results We compare nine genomes of molluscs and further added LTR-retrotransposons sequences detected in databases for 47 additional species. We identified 1709 families, which enabled us to define 31 clades. We show that clade richness was highly dependent on the considered superfamily. We found only three Copia clades, including GalEa and Hydra which appear to be widely distributed and highly dominant as they account for 96% of the characterised Copia elements. Among the seven BEL/Pao clades identified, Sparrow and Surcouf are characterised for the first time. We find no BEL or Pao elements, but the rare clades Dan and Flow are present in molluscs. Finally, we characterised 21 Gypsy clades, only five of which had been previously described, the C-clade being the most abundant one. Even if they are found in the same number of host species, Copia elements are clearly less abundant than BEL/Pao elements in copy number or genomic proportions, while Gypsy elements are always the most abundant ones whatever the parameter considered. Conclusions Our analysis confirms the contrasting dynamics of Copia and Gypsy elements in metazoans and indicates that BEL/Pao represents the second most abundant superfamily, probably reflecting an intermediate dynamic. Altogether, the data obtained in several taxa highly suggest that these patterns can be generalised for most metazoans. Finally, we highlight the importance of using database information in complement of genome analyses when analyzing transposable element diversity. Electronic supplementary material The online version of this article (10.1186/s12864-018-5200-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camille Thomas-Bulle
- Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire Evolution Paris Seine, F-75005, Paris, France. .,Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier CS90074, 29688, Roscoff, France.
| | - Mathieu Piednoël
- Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire Evolution Paris Seine, F-75005, Paris, France
| | - Tifenn Donnart
- Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire Evolution Paris Seine, F-75005, Paris, France
| | - Jonathan Filée
- Laboratoire Evolution, Génomes, Comportement, Ecologie; CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Didier Jollivet
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier CS90074, 29688, Roscoff, France
| | - Éric Bonnivard
- Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire Evolution Paris Seine, F-75005, Paris, France
| |
Collapse
|
17
|
da Silva AF, Dezordi FZ, Loreto ELS, Wallau GL. Drosophila parasitoid wasps bears a distinct DNA transposon profile. Mob DNA 2018; 9:23. [PMID: 30002736 PMCID: PMC6035795 DOI: 10.1186/s13100-018-0127-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/19/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The majority of Eukaryotic genomes are composed of a small portion of stable (non-mobile) genes and a large fraction of parasitic mobile elements such as transposable elements and endogenous viruses: the Mobilome. Such important component of many genomes are normally underscored in genomic analysis and detailed characterized mobilomes only exists for model species. In this study, we used a combination of de novo and homology approaches to characterize the Mobilome of two non-model parasitoid wasp species. RESULTS The different methodologies employed for TE characterization recovered TEs with different features as TE consensus number and size. Moreover, some TEs were detected only by one or few methodologies. RepeatExplorer and dnaPipeTE estimated a low TE content of 5.86 and 4.57% for Braconidae wasp and 5.22% and 7.42% for L. boulardi species, respectively. Both mobilomes are composed by a miscellaneous of ancient and recent elements. Braconidae wasps presented a large diversity of Maverick/Polintons Class II TEs while other TE superfamilies were more equally diverse in both species. Phylogenetic analysis of reconstructed elements showed that vertical transfer is the main mode of transmission. CONCLUSION Different methodologies should be used complementarity in order to achieve better mobilome characterization. Both wasps genomes have one of the lower mobilome estimates among all Hymenoptera genomes studied so far and presented a higher proportion of Class II than Class I TEs. The large majority of superfamilies analyzed phylogenetically showed that the elements are being inherited by vertical transfer. Overall, we achieved a deep characterization of the mobilome in two non-model parasitoid wasps improving our understanding of their evolution.
Collapse
Affiliation(s)
- Alexandre Freitas da Silva
- Pós Graduação em Biociências e Biotecnologia em Saúde, Instituto Aggeu Magalhães (IAM), Recife, Pernambuco Brazil
| | - Filipe Zimmer Dezordi
- Pós Graduação em Biociências e Biotecnologia em Saúde, Instituto Aggeu Magalhães (IAM), Recife, Pernambuco Brazil
| | - Elgion Lucio Silva Loreto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ/PE), Recife, Pernambuco Brazil
| |
Collapse
|
18
|
Ty3/Gypsy retrotransposons in the Pacific abalone Haliotis discus hannai: characterization and use for species identification in the genus Haliotis. Genes Genomics 2018; 40:177-187. [PMID: 29892921 DOI: 10.1007/s13258-017-0619-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
Abstract
Transposable elements are highly abundant elements that are present in all eukaryotic species. Here, we present a molecular description of abalone retrotransposon (Abret) elements. The genome of Haliotis discus hannai contains 130 Abret elements which were all Ty3/Gypsy retrotransposons. The Ty1/Copia elements were absent in the H. discus hannai genome. Most of the elements were not complete due to sequence truncation or coding region decay. However, three elements Abret-296, Abret-935, and Abret-3259 had most of the canonical features of LTR (long terminal repeat)-retrotransposons. There were several reading frame shifts in Abret-935 and Abret-3259 elements. Surprisingly, phylogenetic analysis indicated that all of the elements belonged to the Osvaldo lineage. The sequence divergence between LTRs revealed that the Abret elements were mostly active within 2 million years ago. Abret elements were used as molecular markers in SSAP analyses, which allowed clear distinction of different species in the genus Haliotis. The polymorphic markers were converted into SCAR markers for use in species identification by simple PCR in the Haliotis genus.
Collapse
|
19
|
Wiegmann BM, Richards S. Genomes of Diptera. CURRENT OPINION IN INSECT SCIENCE 2018; 25:116-124. [PMID: 29602357 DOI: 10.1016/j.cois.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Diptera (true flies) are among the most diverse holometabolan insect orders and were the first eukaryotic order to have a representative genome fully sequenced. 110 fly species have publically available genome assemblies and many hundreds of population-level genomes have been generated in the model organisms Drosophila melanogaster and the malaria mosquito Anopheles gambiae. Comparative genomics carried out in a phylogenetic context is illuminating many aspects of fly biology, providing unprecedented insight into variability in genome structure, gene content, genetic mechanisms, and rates and patterns of evolution in genes, populations, and species. Despite the rich availability of genomic resources in flies, there remain many fly lineages to which new genome sequencing efforts should be directed. Such efforts would be most valuable in fly families or clades that exhibit multiple origins of key fly behaviors such as blood feeding, phytophagy, parasitism, pollination, and mycophagy.
Collapse
Affiliation(s)
- Brian M Wiegmann
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, United States.
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77006, United States
| |
Collapse
|
20
|
Wallau GL, Vieira C, Loreto ÉLS. Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome. Mob DNA 2018; 9:6. [PMID: 29422954 PMCID: PMC5791352 DOI: 10.1186/s13100-018-0112-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Background All living species contain genetic information that was once shared by their common ancestor. DNA is being inherited through generations by vertical transmission (VT) from parents to offspring and from ancestor to descendant species. This process was considered the sole pathway by which biological entities exchange inheritable information. However, Horizontal Transfer (HT), the exchange of genetic information by other means than parents to offspring, was discovered in prokaryotes along with strong evidence showing that it is a very important process by which prokaryotes acquire new genes. Main body For some time now, it has been a scientific consensus that HT events were rare and non-relevant for evolution of eukaryotic species, but there is growing evidence supporting that HT is an important and frequent phenomenon in eukaryotes as well. Conclusion Here, we will discuss the latest findings regarding HT among eukaryotes, mainly HT of transposons (HTT), establishing HTT once and for all as an important phenomenon that should be taken into consideration to fully understand eukaryotes genome evolution. In addition, we will discuss the latest development methods to detect such events in a broader scale and highlight the new approaches which should be pursued by researchers to fill the knowledge gaps regarding HTT among eukaryotes.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- 1Entomology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE Brazil
| | - Cristina Vieira
- 2Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR5558, F-69622 Villeurbanne, France
| | - Élgion Lúcio Silva Loreto
- 3Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS Brazil
| |
Collapse
|