1
|
Samuel B, Mittelman K, Croitoru SY, Ben Haim M, Burstein D. Diverse anti-defence systems are encoded in the leading region of plasmids. Nature 2024; 635:186-192. [PMID: 39385022 PMCID: PMC11541004 DOI: 10.1038/s41586-024-07994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Plasmids are major drivers of gene mobilization by means of horizontal gene transfer and play a key role in spreading antimicrobial resistance among pathogens1,2. Despite various bacterial defence mechanisms such as CRISPR-Cas, restriction-modification systems and SOS-response genes that prevent the invasion of mobile genetic elements3, plasmids robustly transfer within bacterial populations through conjugation4,5. Here we show that the leading region of plasmids, the first to enter recipient cells, is a hotspot for an extensive repertoire of anti-defence systems, encoding anti-CRISPR, anti-restriction, anti-SOS and other counter-defence proteins. We further identified in the leading region a prevalence of promoters known to allow expression from single-stranded DNA6, potentially facilitating rapid protection against bacterial immunity during the early stages of plasmid establishment. We demonstrated experimentally the importance of anti-defence gene localization in the leading region for efficient conjugation. These results indicate that focusing on the leading region of plasmids could lead to the discovery of diverse anti-defence genes. Combined, our findings show a new facet of plasmid dissemination and provide theoretical foundations for developing efficient conjugative delivery systems for natural microbial communities.
Collapse
Affiliation(s)
- Bruria Samuel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Karin Mittelman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Shirly Ynbal Croitoru
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Maya Ben Haim
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - David Burstein
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
2
|
Li YG, Breidenstein A, Berntsson RPA, Christie PJ. Conjugative transfer of the IncN plasmid pKM101 is mediated by dynamic interactions between the TraK accessory factor and TraI relaxase. FEBS Lett 2024; 598:2717-2733. [PMID: 39245885 PMCID: PMC11560498 DOI: 10.1002/1873-3468.15011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
Conjugative dissemination of mobile genetic elements (MGEs) among bacteria is initiated by assembly of the relaxosome at the MGE's origin-of-transfer (oriT) sequence. A critical but poorly defined step of relaxosome assembly involves recruitment of the catalytic relaxase to its DNA strand-specific nicking site within oriT. Here, we present evidence by AlphaFold modeling, affinity pulldowns, and in vivo site-directed photocrosslinking that the TraK Ribbon-Helix-Helix DNA-binding protein recruits TraI to oriT through a dynamic interaction in which TraI's C-terminal unstructured domain (TraICTD) wraps around TraK's C-proximal tetramerization domain. Upon relaxosome assembly, conformational changes disrupt this contact, and TraICTD instead self-associates as a prerequisite for relaxase catalytic functions or substrate engagement with the transfer channel. These findings delineate key early-stage processing reactions required for conjugative dissemination of a model MGE.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth at Houston, TX, United States
| | - Annika Breidenstein
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth at Houston, TX, United States
| |
Collapse
|
3
|
Lee E, Priutt E, Woods S, Quick A, King S, McLellan LK, Shields RC. Genomic analysis of conjugative and chromosomally integrated mobile genetic elements in oral streptococci. Appl Environ Microbiol 2024; 90:e0136024. [PMID: 39254330 PMCID: PMC11497809 DOI: 10.1128/aem.01360-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
This study aimed to investigate the diversity of conjugative and chromosomally integrated mobile genetic elements (cciMGEs) within six oral streptococci species. cciMGEs, including integrative and conjugative elements (ICEs) and integrative and mobilizable elements (IMEs), are stably maintained on the host cell chromosome; however, under certain conditions, they are able to excise, form extrachromosomal circles, and transfer via a conjugation apparatus. Many cciMGEs encode "cargo" functions that aid survival in new niches and evolve new antimicrobial resistance or virulence properties, whereas others have been shown to influence host bacterial physiology. Here, using a workflow employing preexisting bioinformatics tools, we analyzed 551 genomes for the presence of cciMGEs across six common health- and disease-associated oral streptococci. We identified 486 cciMGEs, 173 of which were ICEs and 233 of which were IMEs. The cciMGEs were diverse in size, cargo genes, and relaxase types. We identified several novel relaxase proteins and a widespread IME carrying a small multidrug resistance transporter. Additionally, we provide evidence that several of the bioinformatically predicted cciMGEs encoded within various Streptococcus mutans strains are capable of excision and circularization, a critical step for cciMGE conjugative transfer. These findings highlight the significance and potential impact of MGEs in shaping the genetic landscape, pathogenicity, and antimicrobial resistance profiles of the oral microbiota.IMPORTANCEOral streptococci are important players in the oral microbiome, influencing both health and disease states within dental bacterial communities. Evolutionary adaptation, shaped in a major part by the horizontal transfer of genes, is essential for their survival in the oral cavity and within new environments. Conjugation is a significant driver of horizontal gene transfer; however, there is limited information regarding this process in oral bacteria. This study utilizes publicly available genome sequences to identify conjugative and chromosomally integrated mobile genetic elements (cciMGEs) across several species of oral streptococci and presents the preliminary characterization of these elements. Our findings significantly enhance our understanding of the mobile genomic landscape of oral streptococci critical for human health, with valuable insights into how cciMGEs might influence the survival and pathogenesis of these bacteria in the oral microbiome.
Collapse
Affiliation(s)
- Erica Lee
- New York Institute of Technology College of Osteopathic Medicine, Jonesboro, Arkansas, USA
| | - Erin Priutt
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Seth Woods
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Allison Quick
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Shawn King
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Lisa K. McLellan
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Robert C. Shields
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
4
|
Ares-Arroyo M, Coluzzi C, Moura de Sousa JA, Rocha EPC. Hijackers, hitchhikers, or co-drivers? The mysteries of mobilizable genetic elements. PLoS Biol 2024; 22:e3002796. [PMID: 39208359 PMCID: PMC11389934 DOI: 10.1371/journal.pbio.3002796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/11/2024] [Indexed: 09/04/2024] Open
Abstract
Mobile genetic elements shape microbial gene repertoires and populations. Recent results reveal that many, possibly most, microbial mobile genetic elements require helpers to transfer between genomes, which we refer to as Hitcher Genetic Elements (hitchers or HGEs). They may be a large fraction of pathogenicity and resistance genomic islands, whose mechanisms of transfer have remained enigmatic for decades. Together with their helper elements and their bacterial hosts, hitchers form tripartite networks of interactions that evolve rapidly within a parasitism-mutualism continuum. In this emerging view of microbial genomes as communities of mobile genetic elements many questions arise. Which elements are being moved, by whom, and how? How often are hitchers costly hyper-parasites or beneficial mutualists? What is the evolutionary origin of hitchers? Are there key advantages associated with hitchers' lifestyle that justify their unexpected abundance? And why are hitchers systematically smaller than their helpers? In this essay, we start answering these questions and point ways ahead for understanding the principles, origin, mechanisms, and impact of hitchers in bacterial ecology and evolution.
Collapse
Affiliation(s)
- Manuel Ares-Arroyo
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Charles Coluzzi
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Jorge A Moura de Sousa
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| |
Collapse
|
5
|
Alvarez-Molina A, Cobo-Díaz JF, Alexa EA, Crispie F, Prieto M, López M, Cotter PD, Alvarez-Ordóñez A. Sequencing-based analysis of the microbiomes of Spanish food processing facilities reveals environment-specific variation in the dominant taxa and antibiotic resistance genes. Food Res Int 2023; 173:113442. [PMID: 37803768 DOI: 10.1016/j.foodres.2023.113442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/11/2023] [Accepted: 09/09/2023] [Indexed: 10/08/2023]
Abstract
In the last years, advances in high throughput sequencing technologies have opened the possibility to broaden environmental monitoring activities in facilities processing food, offering expanded opportunities for characterizing in an untargeted manner the microbiome and resistome of foods and food processing environments (FPE) with huge potential benefits in food safety management systems. Here the microbiome and resistome of FPE from slaughterhouses (n = 3), dairy (n = 12) and meat (n = 10) processing plants were assessed through whole metagenome sequencing of 2 composite samples for each facility, comprising 10 FPE swabs taken from food contact surfaces and 10 FPE samples from non-food contact surfaces, respectively. FPE from slaughterhouses had more diverse microbiomes and resistomes, while FPE from dairy processing plants showed the highest β-dispersion, consistent with a more heterogeneous microbiome and resistome composition. The predominant bacterial genera depended on the industry type, with Pseudomonas and Psychrobacter being highly dominant in surfaces from slaughterhouses and meat industries, while different lactic acid bacteria predominated in dairy industries. The most abundant antimicrobial resistance genes (ARG) found were associated with resistance to aminoglycosides, tetracyclines and quaternary ammonium compounds (QAC). ARGs relating to resistance to aminoglycosides and tetracyclines were significantly more prevalent in slaughterhouses than in food processing plants, while QAC resistance genes were particularly abundant in some food contact surfaces from dairy and meat processing plants, suggesting that daily sanitation under suboptimal conditions may be selecting for persistent microbiota tolerant to these biocides in some facilities. The taxonomic mapping of ARG pointed to specific bacterial genera, such as Escherichia, Bacillus, or Staphylococcus, as carriers of the most relevant resistance determinants. About 63% of all ARG reads were assigned to contigs classified as plasmid-associated, indicating that the resistome of FPE may be strongly shaped through the spread of mobile genetic elements. Overall, the relevance of FPE as reservoirs of ARG was confirmed and it was demonstrated that next generation sequencing technologies allowing a deep characterisation of sources and routes of spread of microorganisms and antimicrobial resistance determinants in food industry settings hold promise to be integrated in monitoring and food safety management programmes.
Collapse
Affiliation(s)
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Elena A Alexa
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain.
| |
Collapse
|
6
|
Al-Trad EI, Chew CH, Che Hamzah AM, Suhaili Z, Rahman NIA, Ismail S, Puah SM, Chua KH, Kwong SM, Yeo CC. The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia. Antibiotics (Basel) 2023; 12:antibiotics12040733. [PMID: 37107095 PMCID: PMC10135026 DOI: 10.3390/antibiotics12040733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a priority nosocomial pathogen with plasmids playing a crucial role in its genetic adaptability, particularly in the acquisition and spread of antimicrobial resistance. In this study, the genome sequences of 79 MSRA clinical isolates from Terengganu, Malaysia, (obtained between 2016 and 2020) along with an additional 15 Malaysian MRSA genomes from GenBank were analyzed for their plasmid content. The majority (90%, 85/94) of the Malaysian MRSA isolates harbored 1-4 plasmids each. In total, 189 plasmid sequences were identified ranging in size from 2.3 kb to ca. 58 kb, spanning all seven distinctive plasmid replication initiator (replicase) types. Resistance genes (either to antimicrobials, heavy metals, and/or biocides) were found in 74% (140/189) of these plasmids. Small plasmids (<5 kb) were predominant (63.5%, 120/189) with a RepL replicase plasmid harboring the ermC gene that confers resistance to macrolides, lincosamides, and streptogramin B (MLSB) identified in 63 MRSA isolates. A low carriage of conjugative plasmids was observed (n = 2), but the majority (64.5%, 122/189) of the non-conjugative plasmids have mobilizable potential. The results obtained enabled us to gain a rare view of the plasmidomic landscape of Malaysian MRSA isolates and reinforces their importance in the evolution of this pathogen.
Collapse
Affiliation(s)
- Esra'a I Al-Trad
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | | | - Zarizal Suhaili
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut 22200, Malaysia
| | - Nor Iza A Rahman
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Salwani Ismail
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Stephen M Kwong
- Infectious Diseases & Microbiology, School of Medicine, Western Sydney University, Campbelltown 2560, Australia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| |
Collapse
|
7
|
A chromosome-encoded T4SS independently contributes to horizontal gene transfer in Enterococcus faecalis. Cell Rep 2022; 41:111609. [DOI: 10.1016/j.celrep.2022.111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
|
8
|
Laroussi H, Aoudache Y, Robert E, Libante V, Thiriet L, Mias-Lucquin D, Douzi B, Roussel Y, Chauvot de Beauchêne I, Soler N, Leblond-Bourget N. Exploration of DNA processing features unravels novel properties of ICE conjugation in Gram-positive bacteria. Nucleic Acids Res 2022; 50:8127-8142. [PMID: 35849337 PMCID: PMC9371924 DOI: 10.1093/nar/gkac607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/02/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are important drivers of horizontal gene transfer in prokaryotes. They are responsible for antimicrobial resistance spread, a major current health concern. ICEs are initially processed by relaxases that recognize the binding site of oriT sequence and nick at a conserved nic site. The ICESt3/Tn916/ICEBs1 superfamily, which is widespread among Firmicutes, encodes uncanonical relaxases belonging to a recently identified family called MOBT. This family is related to the rolling circle replication initiators of the Rep_trans family. The nic site of these MOBT relaxases is conserved but their DNA binding site is still unknown. Here, we identified the bind site of RelSt3, the MOBT relaxase from ICESt3. Unexpectedly, we found this bind site distantly located from the nic site. We revealed that the binding of the RelSt3 N-terminal HTH domain is required for efficient nicking activity. We also deciphered the role of RelSt3 in the initial and final stages of DNA processing during conjugation. Especially, we demonstrated a strand transfer activity, and the formation of covalent DNA-relaxase intermediate for a MOBT relaxase.
Collapse
Affiliation(s)
- Haifa Laroussi
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France
| | - Yanis Aoudache
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France
| | - Emilie Robert
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France
| | | | - Louise Thiriet
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France
| | | | | | - Yvonne Roussel
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France
| | | | - Nicolas Soler
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France
| | | |
Collapse
|
9
|
Conteville LC, Vicente ACP. A plasmid network from the gut microbiome of semi-isolated human groups reveals unique and shared metabolic and virulence traits. Sci Rep 2022; 12:12102. [PMID: 35840779 PMCID: PMC9287393 DOI: 10.1038/s41598-022-16392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
The plasmids in gut microbiomes have the potential to contribute to the microbiome community, as well as human health and physiology. Nevertheless, this niche remains poorly explored. In general, most microbiome studies focus on urban-industrialized groups, but here, we studied semi-isolated groups from South America and Africa, which would represent a link between ancestral and modern human groups. Based on open metagenomic data, we characterized the set of plasmids, including their genes and functions, from the gut microbiome of the Hadza, Matses, Tunapuco, and Yanomami, semi-isolated groups with a hunter, gather or subsistence lifestyle. Unique plasmid clusters and gene functions for each human group were identified. Moreover, a dozen plasmid clusters circulating in other niches worldwide are shared by these distinct groups. In addition, novel and unique plasmids harboring resistance (encompassing six antibiotic classes and multiple metals) and virulence (as type VI secretion systems) genes were identified. Functional analysis revealed pathways commonly associated with urban-industrialized groups, such as lipopolysaccharide biosynthesis that was characterized in the Hadza gut plasmids. These results demonstrate the richness of plasmids in semi-isolated human groups’ gut microbiome, which represents an important source of information with biotechnological/pharmaceutical potential, but also on the spread of resistance/virulence genes to semi-isolated groups.
Collapse
Affiliation(s)
- Liliane Costa Conteville
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | - Ana Carolina Paulo Vicente
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Coluzzi C, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. Evolution of plasmid mobility: origin and fate of conjugative and non-conjugative plasmids. Mol Biol Evol 2022; 39:6593704. [PMID: 35639760 PMCID: PMC9185392 DOI: 10.1093/molbev/msac115] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugation drives the horizontal transfer of adaptive traits across prokaryotes. One-fourth of the plasmids encode the functions necessary to conjugate autonomously, the others being eventually mobilizable by conjugation. To understand the evolution of plasmid mobility, we studied plasmid size, gene repertoires, and conjugation-related genes. Plasmid gene repertoires were found to vary rapidly in relation to the evolutionary rate of relaxases, for example, most pairs of plasmids with 95% identical relaxases have fewer than 50% of homologs. Among 249 recent transitions of mobility type, we observed a clear excess of plasmids losing the capacity to conjugate. These transitions are associated with even greater changes in gene repertoires, possibly mediated by transposable elements, including pseudogenization of the conjugation locus, exchange of replicases reducing the problem of incompatibility, and extensive loss of other genes. At the microevolutionary scale of plasmid taxonomy, transitions of mobility type sometimes result in the creation of novel taxonomic units. Interestingly, most transitions from conjugative to mobilizable plasmids seem to be lost in the long term. This suggests a source-sink dynamic, where conjugative plasmids generate nonconjugative plasmids that tend to be poorly adapted and are frequently lost. Still, in some cases, these relaxases seem to have evolved to become efficient at plasmid mobilization in trans, possibly by hijacking multiple conjugative systems. This resulted in specialized relaxases of mobilizable plasmids. In conclusion, the evolution of plasmid mobility is frequent, shapes the patterns of gene flow in bacteria, the dynamics of gene repertoires, and the ecology of plasmids.
Collapse
Affiliation(s)
- Charles Coluzzi
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| |
Collapse
|
11
|
Mias‐Lucquin D, Chauvot de Beauchene I. Conformational variability in proteins bound to single-stranded DNA: A new benchmark for new docking perspectives. Proteins 2022; 90:625-631. [PMID: 34617336 PMCID: PMC9292434 DOI: 10.1002/prot.26258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022]
Abstract
We explored the Protein Data Bank (PDB) to collect protein-ssDNA structures and create a multi-conformational docking benchmark including both bound and unbound protein structures. Due to ssDNA high flexibility when not bound, no ssDNA unbound structure is included in the benchmark. For the 91 sequence-identity groups identified as bound-unbound structures of the same protein, we studied the conformational changes in the protein induced by the ssDNA binding. Moreover, based on several bound or unbound protein structures in some groups, we also assessed the intrinsic conformational variability in either bound or unbound conditions and compared it to the supposedly binding-induced modifications. To illustrate a use case of this benchmark, we performed docking experiments using ATTRACT docking software. This benchmark is, to our knowledge, the first one made to peruse available structures of ssDNA-protein interactions to such an extent, aiming to improve computational docking tools dedicated to this kind of molecular interactions.
Collapse
|
12
|
Cappele J, Mohamad Ali A, Leblond-Bourget N, Mathiot S, Dhalleine T, Payot S, Savko M, Didierjean C, Favier F, Douzi B. Structural and Biochemical Analysis of OrfG: The VirB8-like Component of the Conjugative Type IV Secretion System of ICE St3 From Streptococcus thermophilus. Front Mol Biosci 2021; 8:642606. [PMID: 33816557 PMCID: PMC8012802 DOI: 10.3389/fmolb.2021.642606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
Conjugative transfer is a major threat to global health since it contributes to the spread of antibiotic resistance genes and virulence factors among commensal and pathogenic bacteria. To allow their transfer, mobile genetic elements including Integrative and Conjugative Elements (ICEs) use a specialized conjugative apparatus related to Type IV secretion systems (Conj-T4SS). Therefore, Conj-T4SSs are excellent targets for strategies that aim to limit the spread of antibiotic resistance. In this study, we combined structural, biochemical and biophysical approaches to study OrfG, a protein that belongs to Conj-T4SS of ICESt3 from Streptococcus thermophilus. Structural analysis of OrfG by X-ray crystallography revealed that OrfG central domain is similar to VirB8-like proteins but displays a different quaternary structure in the crystal. To understand, at a structural level, the common and the diverse features between VirB8-like proteins from both Gram-negative and -positive bacteria, we used an in silico structural alignment method that allowed us to identify different structural classes of VirB8-like proteins. Biochemical and biophysical characterizations of purified OrfG soluble domain and its central and C-terminal subdomains indicated that they are mainly monomeric in solution but able to form an unprecedented 6-mer oligomers. Our study provides new insights into the structural analysis of VirB8-like proteins and discusses the interplay between tertiary and quaternary structures of these proteins as an essential component of the conjugative transfer.
Collapse
Affiliation(s)
| | | | | | | | | | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, Nancy, France
| | - Martin Savko
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
13
|
Zrimec J. Multiple plasmid origin-of-transfer regions might aid the spread of antimicrobial resistance to human pathogens. Microbiologyopen 2020; 9:e1129. [PMID: 33111499 PMCID: PMC7755788 DOI: 10.1002/mbo3.1129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance poses a great danger to humanity, in part due to the widespread horizontal gene transfer of plasmids via conjugation. Modeling of plasmid transfer is essential to uncovering the fundamentals of resistance transfer and for the development of predictive measures to limit the spread of resistance. However, a major limitation in the current understanding of plasmids is the incomplete characterization of the conjugative DNA transfer mechanisms, which conceals the actual potential for plasmid transfer in nature. Here, we consider that the plasmid-borne origin-of-transfer substrates encode specific DNA structural properties that can facilitate finding these regions in large datasets and develop a DNA structure-based alignment procedure for typing the transfer substrates that outperforms sequence-based approaches. Thousands of putative DNA transfer substrates are identified, showing that plasmid mobility can be twofold higher and span almost twofold more host species than is currently known. Over half of all putative mobile plasmids contain the means for mobilization by conjugation systems belonging to different mobility groups, which can hypothetically link previously confined host ranges across ecological habitats into a robust plasmid transfer network. This hypothetical network is found to facilitate the transfer of antimicrobial resistance from environmental genetic reservoirs to human pathogens, which might be an important driver of the observed rapid resistance development in humans and thus an important point of focus for future prevention measures.
Collapse
Affiliation(s)
- Jan Zrimec
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
14
|
Lao J, Guédon G, Lacroix T, Charron-Bourgoin F, Libante V, Loux V, Chiapello H, Payot S, Leblond-Bourget N. Abundance, Diversity and Role of ICEs and IMEs in the Adaptation of Streptococcus salivarius to the Environment. Genes (Basel) 2020; 11:genes11090999. [PMID: 32858915 PMCID: PMC7563491 DOI: 10.3390/genes11090999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/15/2023] Open
Abstract
Streptococcus salivarius is a significant contributor to the human oral, pharyngeal and gut microbiomes that contribute to the maintenance of health. The high genomic diversity observed in this species is mainly caused by horizontal gene transfer. This work aimed to evaluate the contribution of integrative and conjugative elements (ICEs) and integrative and mobilizable elements (IMEs) in S. salivarius genome diversity. For this purpose, we performed an in-depth analysis of 75 genomes of S. salivarius and searched for signature genes of conjugative and mobilizable elements. This analysis led to the retrieval of 69 ICEs, 165 IMEs and many decayed elements showing their high prevalence in S. salivarius genomes. The identification of almost all ICE and IME boundaries allowed the identification of the genes in which these elements are inserted. Furthermore, the exhaustive analysis of the adaptation genes carried by these elements showed that they encode numerous functions such as resistance to stress, to antibiotics or to toxic compounds, and numerous enzymes involved in diverse cellular metabolic pathways. These data support the idea that not only ICEs but also IMEs and decayed elements play an important role in S. salivarius adaptation to the environment.
Collapse
Affiliation(s)
- Julie Lao
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (J.L.); (G.G.); (F.C.-B.); (V.L.); (S.P.)
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France; (T.L.); (V.L.); (H.C.)
| | - Gérard Guédon
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (J.L.); (G.G.); (F.C.-B.); (V.L.); (S.P.)
| | - Thomas Lacroix
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France; (T.L.); (V.L.); (H.C.)
| | - Florence Charron-Bourgoin
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (J.L.); (G.G.); (F.C.-B.); (V.L.); (S.P.)
| | - Virginie Libante
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (J.L.); (G.G.); (F.C.-B.); (V.L.); (S.P.)
| | - Valentin Loux
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France; (T.L.); (V.L.); (H.C.)
| | - Hélène Chiapello
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France; (T.L.); (V.L.); (H.C.)
| | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (J.L.); (G.G.); (F.C.-B.); (V.L.); (S.P.)
| | - Nathalie Leblond-Bourget
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (J.L.); (G.G.); (F.C.-B.); (V.L.); (S.P.)
- Correspondence: ; Tel.: +33-3-72-74-51-46
| |
Collapse
|
15
|
Libante V, Sarica N, Mohamad Ali A, Gapp C, Oussalah A, Guédon G, Leblond-Bourget N, Payot S. Mobilization of IMEs Integrated in the oriT of ICEs Involves Their Own Relaxase Belonging to the Rep-Trans Family of Proteins. Genes (Basel) 2020; 11:genes11091004. [PMID: 32859088 PMCID: PMC7563843 DOI: 10.3390/genes11091004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/27/2023] Open
Abstract
Integrative mobilizable elements (IMEs) are widespread but very poorly studied integrated elements that can excise and hijack the transfer apparatus of co-resident conjugative elements to promote their own spreading. Sixty-four putative IMEs, harboring closely related mobilization and recombination modules, were found in 14 Streptococcus species and in Staphylococcus aureus. Fifty-three are integrated into the origin of transfer (oriT) of a host integrative conjugative element (ICE), encoding a MobT relaxase and belonging to three distant families: ICESt3, Tn916, and ICE6013. The others are integrated into an unrelated IME or in chromosomal sites. After labeling by an antibiotic resistance gene, the conjugative transfer of one of these IMEs (named IME_oriTs) and its host ICE was measured. Although the IME is integrated in an ICE, it does not transfer as a part of the host ICE (no cis-mobilization). The IME excises and transfers separately from the ICE (without impacting its transfer rate) using its own relaxase, distantly related to all known MobT relaxases, and integrates in the oriT of the ICE after transfer. Overall, IME_oriTs use MobT-encoding ICEs both as hosts and as helpers for conjugative transfer. As half of them carry lsa(C), they actively participate in the dissemination of lincosamide–streptogramin A–pleuromutilin resistance among Firmicutes.
Collapse
|
16
|
Heilers JH, Reiners J, Heller EM, Golzer A, Smits SHJ, van der Does C. DNA processing by the MOBH family relaxase TraI encoded within the gonococcal genetic island. Nucleic Acids Res 2019; 47:8136-8153. [PMID: 31276596 PMCID: PMC6736028 DOI: 10.1093/nar/gkz577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 11/26/2022] Open
Abstract
Relaxases of the MOBH family are often found on large plasmids, genetic islands and integrative conjugative elements. Many members of this family contain an N-terminal relaxase domain (TraI_2) followed by a disordered middle part and a C-terminal domain of unknown function (TraI_2_C). The TraI_2 domain contains two putative metal-binding motifs, an HD domain motif and an alternative 3H motif. TraI, encoded within the gonococcal genetic island of Neisseria gonorrhoeae, is the prototype of the MOBH family. SAXS experiments showed that TraI_2 and TraI_2_C form globular structures separated by an extended middle domain. The TraI_2 domain cleaves oriT-ssDNA in a site-specific Mn2+ or Co2+ dependent manner. The minimal oriT encompasses 50 nucleotides, requires an inverted repeat 3′ of the nic-site and several nucleotides around nic for efficient cleavage. Surprisingly, no stable covalent relaxase-DNA intermediate was observed. Mutagenesis of conserved tyrosines showed that cleavage was abolished in the Y212A mutant, whereas the Y212F and Y212H mutants retained residual activity. The HD and the alternative 3H motifs were essential for cleavage and the HD domain residues D162 and D267 for metal ion binding. We propose that the active site binds two metal ions, one in a high-affinity and one in a low-affinity site.
Collapse
Affiliation(s)
- Jan-Hendrik Heilers
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| | - Jens Reiners
- Biochemie I, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - Annika Golzer
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| | - Sander H J Smits
- Biochemie I, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Chris van der Does
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|