1
|
Shivam P, Ball D, Cooley A, Osi I, Rayford KJ, Gonzalez SB, Edwards AD, McIntosh AR, Devaughn J, Pugh-Brown JP, Misra S, Kirabo A, Ramesh A, Lindsey ML, Sakwe AM, Gaye A, Hinton A, Martin PM, Nde PN. Regulatory roles of PIWI-interacting RNAs in cardiovascular disease. Am J Physiol Heart Circ Physiol 2025; 328:H991-H1004. [PMID: 40048207 PMCID: PMC12122055 DOI: 10.1152/ajpheart.00833.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/27/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025]
Abstract
Cardiovascular disease remains the number one cause of death worldwide. Across the spectrum of cardiovascular pathologies, all are accompanied by changes in gene expression profiles spanning a variety of cellular components of the myocardium. Alterations in gene expression are regulated by small noncoding RNAs (sncRNAs), with P-element-induced WImpy testis (PIWI)-interacting RNAs (piRNAs) being the most abundant of the sncRNAs in the human genome. Composed of 21-35 nucleotides in length with a protective methyl group at the 3' end, piRNAs complex with highly conserved RNA-binding proteins termed PIWI proteins to recruit enzymes used for histone, DNA, RNA, and protein modifications. Thus, specific piRNA expression patterns can be exploited for early clinical diagnosis of cardiovascular disease and the development of novel RNA therapeutics that may improve cardiac health outcomes. This review summarizes the latest progress made on understanding how piRNAs regulate cardiovascular health and disease progression, including a discussion of their potential in the development of biomarkers and therapeutics.
Collapse
Affiliation(s)
- Pushkar Shivam
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Destiny Ball
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Ayorinde Cooley
- School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Inmar Osi
- School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Kayla J. Rayford
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Said B. Gonzalez
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Alayjha D. Edwards
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Antonisha R. McIntosh
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Jessica Devaughn
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Jada P. Pugh-Brown
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Smita Misra
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Merry L. Lindsey
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
- Research Service, Nashville VA Medical Center, Nashville, TN, USA
| | - Amos M. Sakwe
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Antentor Hinton
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Pamela M. Martin
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Pius N. Nde
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
2
|
Ahmadi Asouri S, Aghadavood E, Mirzaei H, Abaspour A, Esmaeil Shahaboddin M. PIWI-interacting RNAs (PiRNAs) as emerging biomarkers and therapeutic targets in biliary tract cancers: A comprehensive review. Heliyon 2024; 10:e33767. [PMID: 39040379 PMCID: PMC11261894 DOI: 10.1016/j.heliyon.2024.e33767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Cancers affecting the biliary tract, such as gallbladder cancer and cholangiocarcinoma, make up a small percentage of adult gastrointestinal malignancies, but their incidence is on the rise. Due to the lack of dependable molecular biomarkers for diagnosis and prognosis, these cancers are often not detected until later stages and have limited treatment options. Piwi-interacting RNAs (piRNAs) are a type of small noncoding RNA that interacts with Piwi proteins and has been linked to various diseases, especially cancer. Manipulation of piRNA expression has the potential to serve as an important biomarker and target for therapy. This review uncovers the relationship between PIWI-interacting RNA (piRNA) and a variety of gastrointestinal cancers, including biliary tract cancer (BTC). It is evident that piRNAs have the ability to impact gene expression and regulate key genes and pathways related to the advancement of digestive cancers. Abnormal expression of piRNAs plays a significant role in the development and progression of digestive-related malignancies. The potential of piRNAs as potential biomarkers for diagnosis and prognosis, as well as therapeutic targets in BTC, is noteworthy. Nevertheless, there are obstacles and limitations that require further exploration to fully comprehend piRNAs' role in BTC and to devise effective diagnostic and therapeutic approaches using piRNAs. In summary, this review underscores the value of piRNAs as valuable biomarkers and promising targets for treating BTC, as we delve into the association between piRNAs and various gastrointestinal cancers, including BTC, and how piRNAs can impact gene expression and control essential pathways for digestive cancer advancement. The present research consists of a thorough evaluation presented in a storytelling style. The databases utilized to locate original sources were PubMed, MEDLINE, and Google Scholar, and the search was conducted using the designated keywords.
Collapse
Affiliation(s)
- Sahar Ahmadi Asouri
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavood
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Abaspour
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Signor S, Vedanayagam J, Kim BY, Wierzbicki F, Kofler R, Lai EC. Rapid evolutionary diversification of the flamenco locus across simulans clade Drosophila species. PLoS Genet 2023; 19:e1010914. [PMID: 37643184 PMCID: PMC10495008 DOI: 10.1371/journal.pgen.1010914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/11/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Suppression of transposable elements (TEs) is paramount to maintain genomic integrity and organismal fitness. In D. melanogaster, the flamenco locus is a master suppressor of TEs, preventing the mobilization of certain endogenous retrovirus-like TEs from somatic ovarian support cells to the germline. It is transcribed by Pol II as a long (100s of kb), single-stranded, primary transcript, and metabolized into ~24-32 nt Piwi-interacting RNAs (piRNAs) that target active TEs via antisense complementarity. flamenco is thought to operate as a trap, owing to its high content of recent horizontally transferred TEs that are enriched in antisense orientation. Using newly-generated long read genome data, which is critical for accurate assembly of repetitive sequences, we find that flamenco has undergone radical transformations in sequence content and even copy number across simulans clade Drosophilid species. Drosophila simulans flamenco has duplicated and diverged, and neither copy exhibits synteny with D. melanogaster beyond the core promoter. Moreover, flamenco organization is highly variable across D. simulans individuals. Next, we find that D. simulans and D. mauritiana flamenco display signatures of a dual-stranded cluster, with ping-pong signals in the testis and/or embryo. This is accompanied by increased copy numbers of germline TEs, consistent with these regions operating as functional dual-stranded clusters. Overall, the physical and functional diversity of flamenco orthologs is testament to the extremely dynamic consequences of TE arms races on genome organization, not only amongst highly related species, but even amongst individuals.
Collapse
Affiliation(s)
- Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Jeffrey Vedanayagam
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, Texas, United States of America
| | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Eric C. Lai
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| |
Collapse
|
4
|
Li C, Zhang R, Zhang Z, Ren C, Wang X, He X, Mwacharo JM, Zhang X, Zhang J, Di R, Chu M. Expression characteristics of piRNAs in ovine luteal phase and follicular phase ovaries. Front Vet Sci 2022; 9:921868. [PMID: 36157184 PMCID: PMC9493120 DOI: 10.3389/fvets.2022.921868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs), as a novel class of small non-coding RNAs that have been shown to be indispensable in germline integrity and stem cell development. However, the expressed characteristics and regulatory roles of piRNAs during different reproductive phases of animals remain unknown. In this study, we investigated the piRNAs expression profiles in ovaries of sheep during the luteal phase (LP) and follicular phase (FP) using the Solexa sequencing technique. A total of 85,219 and 1,27,156 piRNAs tags were identified in ovine ovaries across the two phases. Most expressed piRNAs start with uracil. piRNAs with a length of 24 nt or 27–29 nts accounted for the largest proportion. The obvious ping-pong signature appeared in the FP ovary. The piRNA clusters in the sheep ovary were unevenly distributed on the chromosomes, with high density on Chr 3 and 1. For genome distribution, piRNAs in sheep ovary were mainly derived from intron, CDS, and repeat sequence regions. Compared to the LP ovary, a greater number of expressed piRNA clusters were detected in the FP ovary. Simultaneously, we identified 271 differentially expressed (DE) piRNAs between LP and FP ovaries, with 96 piRNAs upregulated and 175 piRNAs downregulated, respectively. Functional enrichment analysis (GO and KEGG) indicated that their target genes were enriched in reproduction-related pathways including oocyte meiosis, PI3K-Akt, Wnt, and TGF-β signaling pathways. Together, our results highlighted the sequence and expression characteristics of the piRNAs in the sheep ovary, which will help us understand the roles of piRNAs in the ovine estrus cycle.
Collapse
Affiliation(s)
- Chunyan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Rensen Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Joram Mwashigadi Mwacharo
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
- Institute of Animal and Veterinary Sciences, Animal and Veterinary Sciences, SRUC and Center for Tropical Livestock Genetics and Health (CTLGH), Midlothian, United Kingdom
| | | | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Ran Di
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Mingxing Chu
| |
Collapse
|
5
|
Abstract
With the length of about 26-31 nt, PIWI-interacting RNA (piRNA) is a small non-coding RNA (ncRNA) that interacts with PIWI proteins to form the piRNA silencing complex (piRISC). PIWI is a subfamily of Argonaute, and piRNA must bind to PIWI to exert its regulatory role. Current studies indicated that piRNA and PIWI are significantly abnormally expressed in gastric, breast, kidney, colon, and lung cancers, and are involved in the initiation, progression, and metastasis of cancers, which may be the potential diagnostic tools, prognostic markers, and therapeutic targets for cancers. By reviewing piRNA recent studies, this research summarized the mechanism of piRNA generation and the functions of piRNA/PIWI in gastric, breast, kidney, colon, and lung cancers, providing a reference value for further piRNA research.
Collapse
|
6
|
Dodson AE, Kennedy S. Phase Separation in Germ Cells and Development. Dev Cell 2020; 55:4-17. [PMID: 33007213 DOI: 10.1016/j.devcel.2020.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022]
Abstract
The animal germline is an immortal cell lineage that gives rise to eggs and/or sperm each generation. Fusion of an egg and sperm, or fertilization, sets off a cascade of developmental events capable of producing an array of different cell types and body plans. How germ cells develop, function, and eventually give rise to entirely new organisms is an important question in biology. A growing body of evidence suggests that phase separation events likely play a significant and multifaceted role in germ cells and development. Here, we discuss the organization, dynamics, and potential functions of phase-separated compartments in germ cells and examine the various ways in which phase separation might contribute to the development of multicellular organisms.
Collapse
Affiliation(s)
- Anne E Dodson
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Assembly and Function of Gonad-Specific Non-Membranous Organelles in Drosophila piRNA Biogenesis. Noncoding RNA 2019; 5:ncrna5040052. [PMID: 31698692 PMCID: PMC6958439 DOI: 10.3390/ncrna5040052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding RNAs that repress transposons in animal germlines. This protects the genome from the invasive DNA elements. piRNA pathway failures lead to DNA damage, gonadal development defects, and infertility. Thus, the piRNA pathway is indispensable for the continuation of animal life. piRNA-mediated transposon silencing occurs in both the nucleus and cytoplasm while piRNA biogenesis is a solely cytoplasmic event. piRNA production requires a number of proteins, the majority of which localize to non-membranous organelles that specifically appear in the gonads. Other piRNA factors are localized on outer mitochondrial membranes. In situ RNA hybridization experiments show that piRNA precursors are compartmentalized into other non-membranous organelles. In this review, we summarize recent findings about the function of these organelles in the Drosophila piRNA pathway by focusing on their assembly and function.
Collapse
|