1
|
Gothwal SK, Refaat AM, Nakata M, Stanlie A, Honjo T, Begum N. BRD2 promotes antibody class switch recombination by facilitating DNA repair in collaboration with NIPBL. Nucleic Acids Res 2024; 52:4422-4439. [PMID: 38567724 PMCID: PMC11077081 DOI: 10.1093/nar/gkae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 05/09/2024] Open
Abstract
Efficient repair of DNA double-strand breaks in the Ig heavy chain gene locus is crucial for B-cell antibody class switch recombination (CSR). The regulatory dynamics of the repair pathway direct CSR preferentially through nonhomologous end joining (NHEJ) over alternative end joining (AEJ). Here, we demonstrate that the histone acetyl reader BRD2 suppresses AEJ and aberrant recombination as well as random genomic sequence capture at the CSR junctions. BRD2 deficiency impairs switch (S) region synapse, optimal DNA damage response (DDR), and increases DNA break end resection. Unlike BRD4, a similar bromodomain protein involved in NHEJ and CSR, BRD2 loss does not elevate RPA phosphorylation and R-loop formation in the S region. As BRD2 stabilizes the cohesion loader protein NIPBL in the S regions, the loss of BRD2 or NIPBL shows comparable deregulation of S-S synapsis, DDR, and DNA repair pathway choice during CSR. This finding extends beyond CSR, as NIPBL and BRD4 have been linked to Cornelia de Lange syndrome, a developmental disorder exhibiting defective NHEJ and Ig isotype switching. The interplay between these proteins sheds light on the intricate mechanisms governing DNA repair and immune system functionality.
Collapse
Affiliation(s)
- Santosh K Gothwal
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Ahmed M Refaat
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Mikiyo Nakata
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Andre Stanlie
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Sze S, Bhardwaj A, Fnu P, Azarm K, Mund R, Ring K, Smith S. TERRA R-loops connect and protect sister telomeres in mitosis. Cell Rep 2023; 42:113235. [PMID: 37843976 PMCID: PMC10873023 DOI: 10.1016/j.celrep.2023.113235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023] Open
Abstract
Resolution of cohesion between sister telomeres in human cells depends on TRF1-mediated recruitment of the polyADP-ribosyltransferase tankyrase to telomeres. In human aged cells, due to insufficient recruitment of TRF1/tankyrase to shortened telomeres, sisters remain cohered in mitosis. This persistent cohesion plays a protective role, but the mechanism by which sisters remain cohered is not well understood. Here we show that telomere repeat-containing RNA (TERRA) holds sister telomeres together through RNA-DNA hybrid (R-loop) structures. We show that a tankyrase-interacting partner, the RNA-binding protein C19orf43, is required for repression of TERRA R-loops. Persistent telomere cohesion in C19orf43-depleted cells is counteracted by RNaseH1, confirming that RNA-DNA hybrids hold sisters together. Consistent with a protective role for persistent telomere cohesion, depletion of C19orf43 in aged cells reduces DNA damage and delays replicative senescence. We propose that the inherent inability of shortened telomeres to recruit R-loop-repressing machinery permits a controlled onset of senescence.
Collapse
Affiliation(s)
- Samantha Sze
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Priyanka Fnu
- University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Rachel Mund
- New York Medical College, Valhalla, NY 10595, USA
| | - Katherine Ring
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Susan Smith
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
3
|
Refaat AM, Nakata M, Husain A, Kosako H, Honjo T, Begum NA. HNRNPU facilitates antibody class-switch recombination through C-NHEJ promotion and R-loop suppression. Cell Rep 2023; 42:112284. [PMID: 36943867 DOI: 10.1016/j.celrep.2023.112284] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/23/2022] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
B cells generate functionally different classes of antibodies through class-switch recombination (CSR), which requires classical non-homologous end joining (C-NHEJ) to join the DNA breaks at the donor and acceptor switch (S) regions. We show that the RNA-binding protein HNRNPU promotes C-NHEJ-mediated S-S joining through the 53BP1-shieldin DNA-repair complex. Notably, HNRNPU binds to the S region RNA/DNA G-quadruplexes, contributing to regulating R-loop and single-stranded DNA (ssDNA) accumulation. HNRNPU is an intrinsically disordered protein that interacts with both C-NHEJ and R-loop complexes in an RNA-dependent manner. Strikingly, recruitment of HNRNPU and the C-NHEJ factors is highly sensitive to liquid-liquid phase separation inhibitors, suggestive of DNA-repair condensate formation. We propose that HNRNPU facilitates CSR by forming and stabilizing the C-NHEJ ribonucleoprotein complex and preventing excessive R-loop accumulation, which otherwise would cause persistent DNA breaks and aberrant DNA repair, leading to genomic instability.
Collapse
Affiliation(s)
- Ahmed M Refaat
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Mikiyo Nakata
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Afzal Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Hidetaka Kosako
- Division of Cell Signaling, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Borror MB, Girotti M, Kar A, Cain MK, Gao X, MacKay VL, Herron B, Bhaskaran S, Becerra S, Novy N, Ventura N, Johnson TE, Kennedy BK, Rea SL. Inhibition of ATR Reverses a Mitochondrial Respiratory Insufficiency. Cells 2022; 11:1731. [PMID: 35681427 PMCID: PMC9179431 DOI: 10.3390/cells11111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023] Open
Abstract
Diseases that affect the mitochondrial electron transport chain (ETC) often manifest as threshold effect disorders, meaning patients only become symptomatic once a certain level of ETC dysfunction is reached. Cells can invoke mechanisms to circumvent reaching their critical ETC threshold, but it is an ongoing challenge to identify such processes. In the nematode Caenorhabditis elegans, severe reduction of mitochondrial ETC activity shortens life, but mild reduction actually extends it, providing an opportunity to identify threshold circumvention mechanisms. Here, we show that removal of ATL-1, but not ATM-1, worm orthologs of ATR and ATM, respectively, key nuclear DNA damage checkpoint proteins in human cells, unexpectedly lessens the severity of ETC dysfunction. Multiple genetic and biochemical tests show no evidence for increased mutation or DNA breakage in animals exposed to ETC disruption. Reduced ETC function instead alters nucleotide ratios within both the ribo- and deoxyribo-nucleotide pools, and causes stalling of RNA polymerase, which is also known to activate ATR. Unexpectedly, atl-1 mutants confronted with mitochondrial ETC disruption maintain normal levels of oxygen consumption, and have an increased abundance of translating ribosomes. This suggests checkpoint signaling by ATL-1 normally dampens cytoplasmic translation. Taken together, our data suggest a model whereby ETC insufficiency in C. elegans results in nucleotide imbalances leading to the stalling of RNA polymerase, activation of ATL-1, dampening of global translation, and magnification of ETC dysfunction. The loss of ATL-1 effectively reverses the severity of ETC disruption so that animals become phenotypically closer to wild type.
Collapse
Affiliation(s)
- Megan B. Borror
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Milena Girotti
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Adwitiya Kar
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Meghan K. Cain
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiaoli Gao
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Vivian L. MacKay
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (V.L.M.); (B.K.K.)
| | - Brent Herron
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (B.H.); (T.E.J.)
| | - Shylesh Bhaskaran
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sandra Becerra
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nathan Novy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
| | - Natascia Ventura
- IUF—Leibniz Research Institute for Environmental Medicine, 103045 Düsseldorf, Germany;
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty of the Heinrich Heine University, 103045 Düsseldorf, Germany
| | - Thomas E. Johnson
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (B.H.); (T.E.J.)
| | - Brian K. Kennedy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (V.L.M.); (B.K.K.)
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117542, Singapore
| | - Shane L. Rea
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
5
|
Abstract
RNase H1 has become an essential tool to uncover the physiological and pathological roles of R-loops, three-stranded structures consisting of and RNA-DNA hybrid opposite to a single DNA strand (ssDNA). RNase H1 degrades the RNA portion of the R-loops returning the two DNA strands to double-stranded form (dsDNA). Overexpression of RNase H1 in different systems has helped to address the questions of where R-loops are located, their abundance, and mechanisms of formation, stability, and degradation. In this chapter we review multiple studies that used RNase H1 as an instrument to investigate R-loops multiple functions and their relevance in health and diseases.
Collapse
Affiliation(s)
- Susana M Cerritelli
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kiran Sakhuja
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Crossley MP, Brickner JR, Song C, Zar SMT, Maw SS, Chédin F, Tsai MS, Cimprich KA. Catalytically inactive, purified RNase H1: A specific and sensitive probe for RNA-DNA hybrid imaging. J Cell Biol 2021; 220:212458. [PMID: 34232287 PMCID: PMC8266564 DOI: 10.1083/jcb.202101092] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
R-loops are three-stranded nucleic acid structures with both physiological and pathological roles in cells. R-loop imaging generally relies on detection of the RNA-DNA hybrid component of these structures using the S9.6 antibody. We show that the use of this antibody for imaging can be problematic because it readily binds to double-stranded RNA (dsRNA) in vitro and in vivo, giving rise to nonspecific signal. In contrast, purified, catalytically inactive human RNase H1 tagged with GFP (GFP-dRNH1) is a more specific reagent for imaging RNA-DNA hybrids. GFP-dRNH1 binds strongly to RNA-DNA hybrids but not to dsRNA oligonucleotides in fixed human cells and is not susceptible to binding endogenous RNA. Furthermore, we demonstrate that purified GFP-dRNH1 can be applied to fixed cells to detect hybrids after their induction, thereby bypassing the need for cell line engineering. GFP-dRNH1 therefore promises to be a versatile tool for imaging and quantifying RNA-DNA hybrids under a wide range of conditions.
Collapse
Affiliation(s)
- Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Chenlin Song
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Su Mon Thin Zar
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Su S Maw
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, Davis, CA
| | - Miaw-Sheue Tsai
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
7
|
Chédin F, Hartono SR, Sanz LA, Vanoosthuyse V. Best practices for the visualization, mapping, and manipulation of R-loops. EMBO J 2021; 40:e106394. [PMID: 33411340 PMCID: PMC7883053 DOI: 10.15252/embj.2020106394] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 01/12/2023] Open
Abstract
R-loops represent an abundant class of large non-B DNA structures in genomes. Even though they form transiently and at modest frequencies, interfering with R-loop formation or dissolution has significant impacts on genome stability. Addressing the mechanism(s) of R-loop-mediated genome destabilization requires a precise characterization of their distribution in genomes. A number of independent methods have been developed to visualize and map R-loops, but their results are at times discordant, leading to confusion. Here, we review the main existing methodologies for R-loop mapping and assess their limitations as well as the robustness of existing datasets. We offer a set of best practices to improve the reproducibility of maps, hoping that such guidelines could be useful for authors and referees alike. Finally, we propose a possible resolution for the apparent contradictions in R-loop mapping outcomes between antibody-based and RNase H1-based mapping approaches.
Collapse
Affiliation(s)
- Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Vincent Vanoosthuyse
- Laboratoire de Biologie et Modélisation de la CelluleCNRSUMR 5239Univ LyonÉcole Normale Supérieure de LyonLyonFrance
| |
Collapse
|
8
|
Giannini M, Bayona-Feliu A, Sproviero D, Barroso SI, Cereda C, Aguilera A. TDP-43 mutations link Amyotrophic Lateral Sclerosis with R-loop homeostasis and R loop-mediated DNA damage. PLoS Genet 2020; 16:e1009260. [PMID: 33301444 PMCID: PMC7755276 DOI: 10.1371/journal.pgen.1009260] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/22/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022] Open
Abstract
TDP-43 is a DNA and RNA binding protein involved in RNA processing and with structural resemblance to heterogeneous ribonucleoproteins (hnRNPs), whose depletion sensitizes neurons to double strand DNA breaks (DSBs). Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder, in which 97% of patients are familial and sporadic cases associated with TDP-43 proteinopathies and conditions clearing TDP-43 from the nucleus, but we know little about the molecular basis of the disease. After showing with the non-neuronal model of HeLa cells that TDP-43 depletion increases R loops and associated genome instability, we prove that mislocalization of mutated TDP-43 (A382T) in transfected neuronal SH-SY5Y and lymphoblastoid cell lines (LCLs) from an ALS patient cause R-loop accumulation, R loop-dependent increased DSBs and Fanconi Anemia repair centers. These results uncover a new role of TDP-43 in the control of co-transcriptional R loops and the maintenance of genome integrity by preventing harmful R-loop accumulation. Our findings thus link TDP-43 pathology to increased R loops and R loop-mediated DNA damage opening the possibility that R-loop modulation in TDP-43-defective cells might help develop ALS therapies. Amyotrophic Lateral Sclerosis (ALS) is an adult onset, progressive neurodegenerative disease, caused by the selective loss of upper and lower motor neurons in the cerebral cortex, brainstem and spinal cord. The nuclear TDP-43 RNA binding protein, is encoded by a major gene for ALS susceptibility whose mutations are found in 3% of familial and 2% of sporadic ALS cases. Thanks to its ability to recognize DNA and RNA, TDP-43 is involved in different steps of mRNA metabolism and in several mechanisms of genome integrity. This, together with the fact that R loops or DNA-RNA hybrids are a common source of genome instability, prompted us to investigate whether TDP-43 deficiency has any role in R loop homeostasis that could explain previously described DNA damage response defects of ALS cells. We show that TDP-43 plays a role in preventing R loop-accumulation and associated genome instability in neuronal and non-neuronal cells, as well as in patient cell lines. Thus, our study opens the possibility that R loop-modulation in TDP-43-defective cells might help develop ALS therapies.
Collapse
Affiliation(s)
- Marta Giannini
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Aleix Bayona-Feliu
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Daisy Sproviero
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Sonia I. Barroso
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
- * E-mail: (CC); (AA)
| | - Andrés Aguilera
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- * E-mail: (CC); (AA)
| |
Collapse
|
9
|
Crossley MP, Bocek MJ, Hamperl S, Swigut T, Cimprich KA. qDRIP: a method to quantitatively assess RNA-DNA hybrid formation genome-wide. Nucleic Acids Res 2020; 48:e84. [PMID: 32544226 PMCID: PMC7641308 DOI: 10.1093/nar/gkaa500] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
R-loops are dynamic, co-transcriptional nucleic acid structures that facilitate physiological processes but can also cause DNA damage in certain contexts. Perturbations of transcription or R-loop resolution are expected to change their genomic distribution. Next-generation sequencing approaches to map RNA–DNA hybrids, a component of R-loops, have so far not allowed quantitative comparisons between such conditions. Here, we describe quantitative differential DNA–RNA immunoprecipitation (qDRIP), a method combining synthetic RNA–DNA-hybrid internal standards with high-resolution, strand-specific sequencing. We show that qDRIP avoids biases inherent to read-count normalization by accurately profiling signal in regions unaffected by transcription inhibition in human cells, and by facilitating accurate differential peak calling between conditions. We also use these quantitative comparisons to make the first estimates of the absolute count of RNA–DNA hybrids per cell and their half-lives genome-wide. Finally, we identify a subset of RNA–DNA hybrids with high GC skew which are partially resistant to RNase H. Overall, qDRIP allows for accurate normalization in conditions where R-loops are perturbed and for quantitative measurements that provide previously unattainable biological insights.
Collapse
Affiliation(s)
- Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Bocek
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephan Hamperl
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Lazarchuk P, Hernandez-Villanueva J, Pavlova MN, Federation A, MacCoss M, Sidorova JM. Mutual Balance of Histone Deacetylases 1 and 2 and the Acetyl Reader ATAD2 Regulates the Level of Acetylation of Histone H4 on Nascent Chromatin of Human Cells. Mol Cell Biol 2020; 40:e00421-19. [PMID: 32015101 PMCID: PMC7156220 DOI: 10.1128/mcb.00421-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/25/2019] [Accepted: 01/21/2020] [Indexed: 01/04/2023] Open
Abstract
Newly synthesized histone H4 that is incorporated into chromatin during DNA replication is acetylated on lysines 5 and 12. Histone deacetylase 1 (HDAC1) and HDAC2 are responsible for reducing H4 acetylation as chromatin matures. Using CRISPR-Cas9-generated hdac1- or hdac2-null fibroblasts, we determined that HDAC1 and HDAC2 do not fully compensate for each other in removing de novo acetyls on H4 in vivo Proteomics of nascent chromatin and proximity ligation assays with newly replicated DNA revealed the binding of ATAD2, a bromodomain-containing posttranslational modification (PTM) reader that recognizes acetylated H4. ATAD2 is a transcription facilitator overexpressed in several cancers and in the simian virus 40 (SV40)-transformed human fibroblast model cell line used in this study. The recruitment of ATAD2 to nascent chromatin was increased in hdac2 cells over the wild type, and ATAD2 depletion reduced the levels of nascent chromatin-associated, acetylated H4 in wild-type and hdac2 cells. We propose that overexpressed ATAD2 shifts the balance of H4 acetylation by protecting this mark from removal and that HDAC2 but not HDAC1 can effectively compete with ATAD2 for the target acetyls. ATAD2 depletion also reduced global RNA synthesis and nascent DNA-associated RNA. A moderate dependence on ATAD2 for replication fork progression was noted only for hdac2 cells overexpressing the protein.
Collapse
Affiliation(s)
- Pavlo Lazarchuk
- University of Washington, Department of Pathology, Seattle, Washington, USA
| | | | - Maria N Pavlova
- University of Washington, Department of Pathology, Seattle, Washington, USA
| | | | - Michael MacCoss
- University of Washington, Department of Genome Sciences, Seattle, Washington, USA
| | - Julia M Sidorova
- University of Washington, Department of Pathology, Seattle, Washington, USA
| |
Collapse
|
11
|
Zhang LH, Zhang XY, Hu T, Chen XY, Li JJ, Raida M, Sun N, Luo Y, Gao X. The SUMOylated METTL8 Induces R-loop and Tumorigenesis via m3C. iScience 2020; 23:100968. [PMID: 32199293 PMCID: PMC7082549 DOI: 10.1016/j.isci.2020.100968] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/08/2020] [Accepted: 03/03/2020] [Indexed: 01/26/2023] Open
Abstract
R-loops, three-stranded DNA-DNA:RNA hybrid structures, are best known for their deleterious effects on genome stability. The regulatory factors of this fundamental genetic structure remain unclear. Here, we reveal an epigenetic factor that controls R-loop stability. METTL8, a member of the methyltransferase-like protein family that methylates 3-methylcytidine (m3C), is a key factor in the R-loop regulating methyltransferase complex. Biochemical studies show that METTL8 forms a large SUMOylated nuclear RNA-binding protein complex (∼0.8 mega daltons) that contains well-reported R-loop related factors. Genetic ablation of METTL8 results in an overall reduction of R-loops in cells. Interaction assays indicated METTL8 binds to RNAs and is responsible for R-loop stability on selected gene regions. Our results demonstrate that the SUMOylated METTL8 promotes tumorigenesis by affecting genetic organization primarily in, or in close proximity to, the nucleolus and impacts the formation of regulatory R-loops through its methyltransferase activity on m3C. DNA:RNA hybrid structures are regulated by RNA methyltransferase via 3-methylcytidine SUMOylation stabilizes the RNA methyltransferase complex in the nucleus Dysregulation of DNA:RNA hybrids may induce tumorigenesis in mammalian cells
Collapse
Affiliation(s)
- Li-Hong Zhang
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou 310009, China
| | - Xue-Yun Zhang
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou 310009, China
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University, Shanghai 200092, China
| | - Xin-Yun Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing-Jia Li
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou 310009, China
| | - Manfred Raida
- Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Luo
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou 310009, China.
| | - Xiang Gao
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou 310009, China.
| |
Collapse
|
12
|
R-Loops Promote Antisense Transcription across the Mammalian Genome. Mol Cell 2019; 76:600-616.e6. [PMID: 31679819 PMCID: PMC6868509 DOI: 10.1016/j.molcel.2019.10.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/14/2019] [Accepted: 09/30/2019] [Indexed: 11/25/2022]
Abstract
Widespread antisense long noncoding RNA (lncRNA) overlap with many protein-coding genes in mammals and emanate from gene promoter, enhancer, and termination regions. However, their origin and biological purpose remain unclear. We show that these antisense lncRNA can be generated by R-loops that form when nascent transcript invades the DNA duplex behind elongating RNA polymerase II (Pol II). Biochemically, R-loops act as intrinsic Pol II promoters to induce de novo RNA synthesis. Furthermore, their removal across the human genome by RNase H1 overexpression causes the selective reduction of antisense transcription. Consequently, we predict that R-loops act to facilitate the synthesis of many gene proximal antisense lncRNA. Not only are R-loops widely associated with DNA damage and repair, but we now show that they have the capacity to promote de novo transcript synthesis that may have aided the evolution of gene regulation. R-loops formed within plasmids promote antisense transcription in nuclear extracts TSS of lncRNA and eRNA are often near R-loop structures and sensitive to RNase H1 Preinitiation complexes associated with lncRNA synthesis are R-loop dependent Many mammalian lncRNA derive from R-loop promoter activity
Collapse
|
13
|
Sakhtemani R, Senevirathne V, Stewart J, Perera MLW, Pique-Regi R, Lawrence MS, Bhagwat AS. Genome-wide mapping of regions preferentially targeted by the human DNA-cytosine deaminase APOBEC3A using uracil-DNA pulldown and sequencing. J Biol Chem 2019; 294:15037-15051. [PMID: 31431505 DOI: 10.1074/jbc.ra119.008053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Activation-induced deaminase (AID) and apolipoprotein B mRNA-editing enzyme catalytic subunit (APOBEC) enzymes convert cytosines to uracils, creating signature mutations that have been used to predict sites targeted by these enzymes. Mutation-based targeting maps are distorted by the error-prone or error-free repair of these uracils and by selection pressures. To directly map uracils created by AID/APOBEC enzymes, here we used uracil-DNA glycosylase and an alkoxyamine to covalently tag and sequence uracil-containing DNA fragments (UPD-Seq). We applied this technique to the genome of repair-defective, APOBEC3A-expressing bacterial cells and created a uracilation genome map, i.e. uracilome. The peak uracilated regions were in the 5'-ends of genes and operons mainly containing tRNA genes and a few protein-coding genes. We validated these findings through deep sequencing of pulldown regions and whole-genome sequencing of independent clones. The peaks were not correlated with high transcription rates or stable RNA:DNA hybrid formation. We defined the uracilation index (UI) as the frequency of occurrence of TT in UPD-Seq reads at different original TC dinucleotides. Genome-wide UI calculation confirmed that APOBEC3A modifies cytosines in the lagging-strand template during replication and in short hairpin loops. APOBEC3A's preference for tRNA genes was observed previously in yeast, and an analysis of human tumor sequences revealed that in tumors with a high percentage of APOBEC3 signature mutations, the frequency of tRNA gene mutations was much higher than in the rest of the genome. These results identify multiple causes underlying selection of cytosines by APOBEC3A for deamination, and demonstrate the utility of UPD-Seq.
Collapse
Affiliation(s)
- Ramin Sakhtemani
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | | | - Jessica Stewart
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Madusha L W Perera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Michael S Lawrence
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202 .,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
14
|
Yu K, Lieber MR. Current insights into the mechanism of mammalian immunoglobulin class switch recombination. Crit Rev Biochem Mol Biol 2019; 54:333-351. [PMID: 31509023 PMCID: PMC6856442 DOI: 10.1080/10409238.2019.1659227] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Immunoglobulin (Ig) class switch recombination (CSR) is the gene rearrangement process by which B lymphocytes change the Ig heavy chain constant region to permit a switch of Ig isotype from IgM to IgG, IgA, or IgE. At the DNA level, CSR occurs via generation and joining of DNA double strand breaks (DSBs) at intronic switch regions located just upstream of each of the heavy chain constant regions. Activation-induced deaminase (AID), a B cell specific enzyme, catalyzes cytosine deaminations (converting cytosines to uracils) as the initial DNA lesions that eventually lead to DSBs and CSR. Progress on AID structure integrates very well with knowledge about Ig class switch region nucleic acid structures that are supported by functional studies. It is an ideal time to review what is known about the mechanism of Ig CSR and its relation to somatic hypermutation. There have been many comprehensive reviews on various aspects of the CSR reaction and regulation of AID expression and activity. This review is focused on the relation between AID and switch region nucleic acid structures, with a particular emphasis on R-loops.
Collapse
Affiliation(s)
- Kefei Yu
- Michigan State University, Department of Microbiology & Molecular Genetics, 5175 Biomedical Physical Sciences, East Lansing, MI 48824
| | - Michael R. Lieber
- USC Norris Comprehensive Cancer Ctr., Departments of Pathology, of Molecular Microbiology & Immunology, of Biochemistry & Molecular Biology, and of the Section of Molecular & Computational Biology within the Department of Biological Sciences, 1441 Eastlake Ave., NTT5428, Los Angeles, CA 90089-9176
| |
Collapse
|
15
|
Choi J, Hwang SY, Ahn K. Interplay between RNASEH2 and MOV10 controls LINE-1 retrotransposition. Nucleic Acids Res 2019; 46:1912-1926. [PMID: 29315404 PMCID: PMC5829647 DOI: 10.1093/nar/gkx1312] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/23/2017] [Indexed: 01/22/2023] Open
Abstract
Long interspersed nuclear element 1 is an autonomous non-long terminal repeat retrotransposon that comprises ∼17% of the human genome. Its spontaneous retrotransposition and the accumulation of heritable L1 insertions can potentially result in genome instability and sporadic disorders. Moloney leukemia virus 10 homolog (MOV10), a putative RNA helicase, has been implicated in inhibiting L1 replication, although its underlying mechanism of action remains obscure. Moreover, the physiological relevance of MOV10-mediated L1 regulation in human disease has not yet been examined. Using a proteomic approach, we identified RNASEH2 as a binding partner of MOV10. We show that MOV10 interacts with RNASEH2, and their interplay is crucial for restricting L1 retrotransposition. RNASEH2 and MOV10 co-localize in the nucleus, and RNASEH2 binds to L1 RNAs in a MOV10-dependent manner. Small hairpin RNA-mediated depletion of either RNASEH2A or MOV10 results in an accumulation of L1-specific RNA-DNA hybrids, suggesting they contribute to prevent formation of vital L1 heteroduplexes during retrotransposition. Furthermore, we show that RNASEH2-MOV10-mediated L1 restriction downregulates expression of the rheumatoid arthritis-associated inflammatory cytokines and matrix-degrading proteinases in synovial cells, implicating a potential causal relationship between them and disease development in terms of disease predisposition.
Collapse
Affiliation(s)
- Jongsu Choi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Yeon Hwang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
High-resolution, strand-specific R-loop mapping via S9.6-based DNA-RNA immunoprecipitation and high-throughput sequencing. Nat Protoc 2019; 14:1734-1755. [PMID: 31053798 DOI: 10.1038/s41596-019-0159-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/28/2019] [Indexed: 11/08/2022]
Abstract
R-loops are prevalent three-stranded non-B DNA structures composed of an RNA-DNA hybrid and a single strand of DNA. R-loops are implicated in various basic nuclear processes, such as class-switch recombination, transcription termination and chromatin patterning. Perturbations in R-loop metabolism have been linked to genomic instability and have been implicated in human disorders, including cancer. As a consequence, the accurate mapping of these structures has been of increasing interest in recent years. Here, we describe two related immunoprecipitation-based methods for mapping R-loop structures: basic DRIP-seq (DNA-RNA immunoprecipitation followed by high-throughput DNA sequencing), an easy, robust, but resolution-limited technique; and DRIPc-seq (DNA-RNA immunoprecipitation followed by cDNA conversion coupled to high-throughput sequencing), a high-resolution and strand-specific iteration of the method that permits accurate R-loop mapping genome wide. Briefly, after gentle DNA extraction and restriction digestion with a cocktail of enzymes, R-loop structures are immunoprecipitated with the anti-RNA-DNA hybrid S9.6 antibody. Compared with DRIP-seq, in which the immunoprecipitated DNA is directly sequenced, DRIPc-seq permits the recovery of the RNA moiety of R-loops, and these RNA strands are subjected to strand-specific RNA sequencing (RNA-seq) analysis. DRIPc-seq can be performed in 5 d and can be applied to any cell type, provided sufficient starting material can be collected. Accurately mapping R-loop distribution in various cell lines and under varied conditions is essential to understanding the formation, roles and dynamic resolution of these important structures.
Collapse
|
17
|
Human mitochondrial degradosome prevents harmful mitochondrial R loops and mitochondrial genome instability. Proc Natl Acad Sci U S A 2018; 115:11024-11029. [PMID: 30301808 DOI: 10.1073/pnas.1807258115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
R loops are nucleic acid structures comprising an DNA-RNA hybrid and a displaced single-stranded DNA. These structures may occur transiently during transcription, playing essential biological functions. However, persistent R loops may become pathological as they are important drivers of genome instability and have been associated with human diseases. The mitochondrial degradosome is a functionally conserved complex from bacteria to human mitochondria. It is composed of the ATP-dependent RNA and DNA helicase SUV3 and the PNPase ribonuclease, playing a central role in mitochondrial RNA surveillance and degradation. Here we describe a new role for the mitochondrial degradosome in preventing the accumulation of pathological R loops in the mitochondrial DNA, in addition to preventing dsRNA accumulation. Our data indicate that, similar to the molecular mechanisms acting in the nucleus, RNA surveillance mechanisms in the mitochondria are crucial to maintain its genome integrity by counteracting pathological R-loop accumulation.
Collapse
|
18
|
Winkler C, Rouget R, Wu D, Beullens M, Van Eynde A, Bollen M. Overexpression of PP1-NIPP1 limits the capacity of cells to repair DNA double-strand breaks. J Cell Sci 2018; 131:jcs.214932. [PMID: 29898919 DOI: 10.1242/jcs.214932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
Abstract
The ubiquitously expressed nuclear protein NIPP1 (also known as PPP1R8) recruits phosphoproteins for regulated dephosphorylation by the associated protein phosphatase PP1. To bypass the PP1 titration artifacts seen upon NIPP1 overexpression, we have engineered covalently linked fusions of PP1 and NIPP1, and demonstrate their potential to selectively explore the function of the PP1:NIPP1 holoenzyme. By using inducible stable cell lines, we show that PP1-NIPP1 fusions cause replication stress in a manner that requires both PP1 activity and substrate recruitment via the ForkHead Associated domain of NIPP1. More specifically, PP1-NIPP1 expression resulted in the build up of RNA-DNA hybrids (R-loops), enhanced chromatin compaction and a diminished repair of DNA double-strand breaks (DSBs), culminating in the accumulation of DSBs. These effects were associated with a reduced expression of DNA damage signaling and repair proteins. Our data disclose a key role for dephosphorylation of PP1:NIPP1 substrates in setting the threshold for DNA repair, and indicate that activators of this phosphatase hold therapeutic potential as sensitizers for DNA-damaging agents.
Collapse
Affiliation(s)
- Claudia Winkler
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Raphael Rouget
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Dan Wu
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Monique Beullens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
19
|
Hartono SR, Malapert A, Legros P, Bernard P, Chédin F, Vanoosthuyse V. The Affinity of the S9.6 Antibody for Double-Stranded RNAs Impacts the Accurate Mapping of R-Loops in Fission Yeast. J Mol Biol 2017; 430:272-284. [PMID: 29289567 DOI: 10.1016/j.jmb.2017.12.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022]
Abstract
R-loops, which result from the formation of stable DNA:RNA hybrids, can both threaten genome integrity and act as physiological regulators of gene expression and chromatin patterning. To characterize R-loops in fission yeast, we used the S9.6 antibody-based DRIPc-seq method to sequence the RNA strand of R-loops and obtain strand-specific R-loop maps at near nucleotide resolution. Surprisingly, preliminary DRIPc-seq experiments identified mostly RNase H-resistant but exosome-sensitive RNAs that mapped to both DNA strands and resembled RNA:RNA hybrids (dsRNAs), suggesting that dsRNAs form widely in fission yeast. We confirmed in vitro that S9.6 can immuno-precipitate dsRNAs and provide evidence that dsRNAs can interfere with its binding to R-loops. dsRNA elimination by RNase III treatment prior to DRIPc-seq allowed the genome-wide and strand-specific identification of genuine R-loops that responded in vivo to RNase H levels and displayed classical features associated with R-loop formation. We also found that most transcripts whose levels were altered by in vivo manipulation of RNase H levels did not form detectable R-loops, suggesting that prolonged manipulation of R-loop levels could indirectly alter the transcriptome. We discuss the implications of our work in the design of experimental strategies to probe R-loop functions.
Collapse
Affiliation(s)
- Stella R Hartono
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, 95616, United States; Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, 95616, United States
| | - Amélie Malapert
- UMR5239 CNRS/Université de Lyon/ENS-Lyon, 46 Allée d'Italie, 69007 Lyon, France
| | - Pénélope Legros
- UMR5239 CNRS/Université de Lyon/ENS-Lyon, 46 Allée d'Italie, 69007 Lyon, France
| | - Pascal Bernard
- UMR5239 CNRS/Université de Lyon/ENS-Lyon, 46 Allée d'Italie, 69007 Lyon, France
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, 95616, United States
| | - Vincent Vanoosthuyse
- UMR5239 CNRS/Université de Lyon/ENS-Lyon, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
20
|
Bayona-Feliu A, Casas-Lamesa A, Reina O, Bernués J, Azorín F. Linker histone H1 prevents R-loop accumulation and genome instability in heterochromatin. Nat Commun 2017; 8:283. [PMID: 28819201 PMCID: PMC5561251 DOI: 10.1038/s41467-017-00338-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/22/2017] [Indexed: 12/01/2022] Open
Abstract
Linker histone H1 is an important structural component of chromatin that stabilizes the nucleosome and compacts the nucleofilament into higher-order structures. The biology of histone H1 remains, however, poorly understood. Here we show that Drosophila histone H1 (dH1) prevents genome instability as indicated by the increased γH2Av (H2AvS137P) content and the high incidence of DNA breaks and sister-chromatid exchanges observed in dH1-depleted cells. Increased γH2Av occurs preferentially at heterochromatic elements, which are upregulated upon dH1 depletion, and is due to the abnormal accumulation of DNA:RNA hybrids (R-loops). R-loops accumulation is readily detectable in G1-phase, whereas γH2Av increases mainly during DNA replication. These defects induce JNK-mediated apoptosis and are specific of dH1 depletion since they are not observed when heterochromatin silencing is relieved by HP1a depletion. Altogether, our results suggest that histone H1 prevents R-loops-induced DNA damage in heterochromatin and unveil its essential contribution to maintenance of genome stability.While structural importance of linker histone H1 in packaging eukaryotic genome into chromatin is well known, its biological function remains poorly understood. Here the authors reveal that Drosophila linker histone H1 prevents DNA:RNA hybrids accumulation and genome instability in heterochromatin.
Collapse
Affiliation(s)
- Aleix Bayona-Feliu
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain
| | - Anna Casas-Lamesa
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Jordi Bernués
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain.
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain.
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain.
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain.
| |
Collapse
|
21
|
RNA Polymerase Collision versus DNA Structural Distortion: Twists and Turns Can Cause Break Failure. Mol Cell 2017; 62:327-334. [PMID: 27153532 DOI: 10.1016/j.molcel.2016.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The twisting of DNA due to the movement of RNA polymerases is the basis of numerous classic experiments in molecular biology. Recent mouse genetic models indicate that chromosomal breakage is common at sites of transcriptional turbulence. Two key studies on this point mapped breakpoints to sites of either convergent or divergent transcription but arrived at different conclusions as to which is more detrimental and why. The issue hinges on whether DNA strand separation is the basis for the chromosomal instability or collision of RNA polymerases.
Collapse
|
22
|
König F, Schubert T, Längst G. The monoclonal S9.6 antibody exhibits highly variable binding affinities towards different R-loop sequences. PLoS One 2017; 12:e0178875. [PMID: 28594954 PMCID: PMC5464589 DOI: 10.1371/journal.pone.0178875] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/20/2017] [Indexed: 12/15/2022] Open
Abstract
The monoclonal antibody S9.6 is a widely-used tool to purify, analyse and quantify R-loop structures in cells. A previous study using the surface plasmon resonance technology and a single-chain variable fragment (scFv) of S9.6 showed high affinity (0.6 nM) for DNA—RNA and also a high affinity (2.7 nM) for RNA—RNA hybrids. We used the microscale thermophoresis method allowing surface independent interaction studies and electromobility shift assays to evaluate additional RNA-DNA hybrid sequences and to quantify the binding affinities of the S9.6 antibody with respect to distinct sequences and their GC-content. Our results confirm high affinity binding to previously analysed sequences, but reveals that binding affinities are highly sequence specific. Our study presents R-loop sequences that independent of GC-content and in different sequence variations exhibit either no binding, binding affinities in the micromolar range and as well high affinity binding in the nanomolar range. Our study questions the usefulness of the S9.6 antibody in the quantitative analysis of R-loop sequences in vivo.
Collapse
Affiliation(s)
- Fabian König
- Biochemistry III; Biochemistry Centre Regensburg (BCR), University of Regensburg, Universitätsstr, Regensburg, Germany
| | - Thomas Schubert
- Biochemistry III; Biochemistry Centre Regensburg (BCR), University of Regensburg, Universitätsstr, Regensburg, Germany
- 2Bind GmbH, Regensburg, Germany
| | - Gernot Längst
- Biochemistry III; Biochemistry Centre Regensburg (BCR), University of Regensburg, Universitätsstr, Regensburg, Germany
- * E-mail:
| |
Collapse
|
23
|
Halász L, Karányi Z, Boros-Oláh B, Kuik-Rózsa T, Sipos É, Nagy É, Mosolygó-L Á, Mázló A, Rajnavölgyi É, Halmos G, Székvölgyi L. RNA-DNA hybrid (R-loop) immunoprecipitation mapping: an analytical workflow to evaluate inherent biases. Genome Res 2017; 27:1063-1073. [PMID: 28341774 PMCID: PMC5453320 DOI: 10.1101/gr.219394.116] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/23/2017] [Indexed: 12/16/2022]
Abstract
The impact of R-loops on the physiology and pathology of chromosomes has been demonstrated extensively by chromatin biology research. The progress in this field has been driven by technological advancement of R-loop mapping methods that largely relied on a single approach, DNA-RNA immunoprecipitation (DRIP). Most of the DRIP protocols use the experimental design that was developed by a few laboratories, without paying attention to the potential caveats that might affect the outcome of RNA-DNA hybrid mapping. To assess the accuracy and utility of this technology, we pursued an analytical approach to estimate inherent biases and errors in the DRIP protocol. By performing DRIP-sequencing, qPCR, and receiver operator characteristic (ROC) analysis, we tested the effect of formaldehyde fixation, cell lysis temperature, mode of genome fragmentation, and removal of free RNA on the efficacy of RNA-DNA hybrid detection and implemented workflows that were able to distinguish complex and weak DRIP signals in a noisy background with high confidence. We also show that some of the workflows perform poorly and generate random answers. Furthermore, we found that the most commonly used genome fragmentation method (restriction enzyme digestion) led to the overrepresentation of lengthy DRIP fragments over coding ORFs, and this bias was enhanced at the first exons. Biased genome sampling severely compromised mapping resolution and prevented the assignment of precise biological function to a significant fraction of R-loops. The revised workflow presented herein is established and optimized using objective ROC analyses and provides reproducible and highly specific RNA-DNA hybrid detection.
Collapse
Affiliation(s)
- László Halász
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Karányi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Internal Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Beáta Boros-Oláh
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Tímea Kuik-Rózsa
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Éva Sipos
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Biopharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Éva Nagy
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ágnes Mosolygó-L
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, University of Debrecen, 4032 Debrecen, Hungary
| | - Éva Rajnavölgyi
- Department of Immunology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Halmos
- Department of Biopharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Lóránt Székvölgyi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
24
|
DEAD Box 1 Facilitates Removal of RNA and Homologous Recombination at DNA Double-Strand Breaks. Mol Cell Biol 2016; 36:2794-2810. [PMID: 27550810 DOI: 10.1128/mcb.00415-16] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/17/2016] [Indexed: 12/16/2022] Open
Abstract
Although RNA and RNA-binding proteins have been linked to double-strand breaks (DSBs), little is known regarding their roles in the cellular response to DSBs and, if any, in the repair process. Here, we provide direct evidence for the presence of RNA-DNA hybrids at DSBs and suggest that binding of RNA to DNA at DSBs may impact repair efficiency. Our data indicate that the RNA-unwinding protein DEAD box 1 (DDX1) is required for efficient DSB repair and cell survival after ionizing radiation (IR), with depletion of DDX1 resulting in reduced DSB repair by homologous recombination (HR). While DDX1 is not essential for end resection, a key step in homology-directed DSB repair, DDX1 is required for maintenance of the single-stranded DNA once generated by end resection. We show that transcription deregulation has a significant effect on DSB repair by HR in DDX1-depleted cells and that RNA-DNA duplexes are elevated at DSBs in DDX1-depleted cells. Based on our combined data, we propose a role for DDX1 in resolving RNA-DNA structures that accumulate at DSBs located at sites of active transcription. Our findings point to a previously uncharacterized requirement for clearing RNA at DSBs for efficient repair by HR.
Collapse
|
25
|
Morales JC, Richard P, Patidar PL, Motea EA, Dang TT, Manley JL, Boothman DA. XRN2 Links Transcription Termination to DNA Damage and Replication Stress. PLoS Genet 2016; 12:e1006107. [PMID: 27437695 PMCID: PMC4954731 DOI: 10.1371/journal.pgen.1006107] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/14/2016] [Indexed: 11/18/2022] Open
Abstract
XRN2 is a 5’-3’ exoribonuclease implicated in transcription termination. Here we demonstrate an unexpected role for XRN2 in the DNA damage response involving resolution of R-loop structures and prevention of DNA double-strand breaks (DSBs). We show that XRN2 undergoes DNA damage-inducible nuclear re-localization, co-localizing with 53BP1 and R loops, in a transcription and R-loop-dependent process. XRN2 loss leads to increased R loops, genomic instability, replication stress, DSBs and hypersensitivity of cells to various DNA damaging agents. We demonstrate that the DSBs that arise with XRN2 loss occur at transcriptional pause sites. XRN2-deficient cells also exhibited an R-loop- and transcription-dependent delay in DSB repair after ionizing radiation, suggesting a novel role for XRN2 in R-loop resolution, suppression of replication stress, and maintenance of genomic stability. Our study highlights the importance of regulating transcription-related activities as a critical component in maintaining genetic stability. Genomic instability is one of the primary causes of disease states, in particular cancer. One major cause of genomic instability is the formation of DNA double strand breaks (DSBs), which are one of the most dangerous types of DNA lesions the cell can encounter. If not repaired in a timely manner, one DSB can lead not only to cell death. If misrepaired, one DSB can lead to a hazardous chromosomal aberration, such as a translocation, that can eventually lead to cancer. The cell encounters and repairs DSBs that arise from naturally occurring cellular processes on a daily basis. A number of studies have demonstrated that aberrant structures that form during transcription under certain circumstances, in particular RNA:DNA hybrids (R loops), can lead to DSB formation and genomic instability, especially during DNA synthesis. Thus, it is important to understand how the cell responds and repairs transcription-mediated DNA damage in general and R loop-related DNA damage in particular. This paper both demonstrates that the XRN transcription termination factor links transcription and DNA damage, but also provides a better understanding of how the cell prevents transcription-related DNA damage.
Collapse
Affiliation(s)
- Julio C. Morales
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
- * E-mail: (JCM); (DAB)
| | - Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Praveen L. Patidar
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Edward A. Motea
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tuyen T. Dang
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - David A. Boothman
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (JCM); (DAB)
| |
Collapse
|
26
|
Abstract
Analysis of chromosomal translocation sequence locations in human lymphomas has provided valuable clues about the mechanism of the translocations and when they occur. Biochemical analyses on the mechanisms of DNA breakage and rejoining permit formulation of detailed models of the human chromosomal translocation process in lymphoid neoplasms. Most human lymphomas are derived from B cells in which a DNA break at an oncogene is initiated by activation-induced deaminase (AID). The partner locus in many cases is located at one of the antigen receptor loci, and this break is generated by the recombination activating gene (RAG) complex or by AID. After breakage, the joining process typically occurs by non-homologous DNA end-joining (NHEJ). Some of the insights into this mechanism also apply to translocations that occur in non-lymphoid neoplasms.
Collapse
Affiliation(s)
- Michael R Lieber
- USC Norris Comprehensive Cancer Center, Room 5428, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, MC9176, Los Angeles, California 90089-9176, USA
| |
Collapse
|
27
|
Nadel J, Athanasiadou R, Lemetre C, Wijetunga NA, Ó Broin P, Sato H, Zhang Z, Jeddeloh J, Montagna C, Golden A, Seoighe C, Greally JM. RNA:DNA hybrids in the human genome have distinctive nucleotide characteristics, chromatin composition, and transcriptional relationships. Epigenetics Chromatin 2015; 8:46. [PMID: 26579211 PMCID: PMC4647656 DOI: 10.1186/s13072-015-0040-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023] Open
Abstract
Background RNA:DNA hybrids represent a non-canonical nucleic acid structure that has been associated with a range of human diseases and potential transcriptional regulatory functions. Mapping of RNA:DNA hybrids in human cells reveals them to have a number of characteristics that give insights into their functions. Results We find RNA:DNA hybrids to occupy millions of base pairs in the human genome. A directional sequencing approach shows the RNA component of the RNA:DNA hybrid to be purine-rich, indicating a thermodynamic contribution to their in vivo stability. The RNA:DNA hybrids are enriched at loci with decreased DNA methylation and increased DNase hypersensitivity, and within larger domains with characteristics of heterochromatin formation, indicating potential transcriptional regulatory properties. Mass spectrometry studies of chromatin at RNA:DNA hybrids shows the presence of the ILF2 and ILF3 transcription factors, supporting a model of certain transcription factors binding preferentially to the RNA:DNA conformation. Conclusions Overall, there is little to indicate a dependence for RNA:DNA hybrids forming co-transcriptionally, with results from the ribosomal DNA repeat unit instead supporting the intriguing model of RNA generating these structures intrans. The results of the study indicate heterogeneous functions of these genomic elements and new insights into their formation and stability in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0040-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julie Nadel
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Rodoniki Athanasiadou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA ; Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003 USA
| | - Christophe Lemetre
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA ; Integrated Genomics Operation, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - N Ari Wijetunga
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Pilib Ó Broin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Hanae Sato
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Zhengdong Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | | | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Aaron Golden
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA ; Department of Genetics, Center for Epigenomics and Division of Computational Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461 USA
| |
Collapse
|
28
|
Santos-Pereira JM, Aguilera A. R loops: new modulators of genome dynamics and function. Nat Rev Genet 2015; 16:583-97. [PMID: 26370899 DOI: 10.1038/nrg3961] [Citation(s) in RCA: 553] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
R loops are nucleic acid structures composed of an RNA-DNA hybrid and a displaced single-stranded DNA. Recently, evidence has emerged that R loops occur more often in the genome and have greater physiological relevance, including roles in transcription and chromatin structure, than was previously predicted. Importantly, however, R loops are also a major threat to genome stability. For this reason, several DNA and RNA metabolism factors prevent R-loop formation in cells. Dysfunction of these factors causes R-loop accumulation, which leads to replication stress, genome instability, chromatin alterations or gene silencing, phenomena that are frequently associated with cancer and a number of genetic diseases. We review the current knowledge of the mechanisms controlling R loops and their putative relationship with disease.
Collapse
Affiliation(s)
- José M Santos-Pereira
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Seville 41092, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Seville 41092, Spain
| |
Collapse
|
29
|
Zhang ZZ, Pannunzio NR, Lu Z, Hsu E, Yu K, Lieber MR. The repetitive portion of the Xenopus IgH Mu switch region mediates orientation-dependent class switch recombination. Mol Immunol 2015; 67:524-31. [PMID: 26277278 DOI: 10.1016/j.molimm.2015.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/26/2022]
Abstract
Vertebrates developed immunoglobulin heavy chain (IgH) class switch recombination (CSR) to express different IgH constant regions. Most double-strand breaks for Ig CSR occur within the repetitive portion of the switch regions located upstream of each set of constant domain exons for the Igγ, Igα or Igϵ heavy chain. Unlike mammalian switch regions, Xenopus switch regions do not have a high G-density on the non-template DNA strand. In previous studies, when Xenopus Sμ DNA was moved to the genome of mice, it is able to support substantial CSR when it is used to replace the murine Sγ1 region. Here, we tested both the 2kb repetitive portion and the 4.6 kb full-length portions of the Xenopus Sμ in both their natural (forward) orientation relative to the constant domain exons, as well as the opposite (reverse) orientation. Consistent with previous work, we find that the 4.6 kb full-length Sμ mediates similar levels of CSR in both the forward and reverse orientations. Whereas, the forward orientation of the 2kb portion can restore the majority of the CSR level of the 4.6 kb full-length Sμ, the reverse orientation poorly supports R-looping and no CSR. The forward orientation of the 2kb repetitive portion has more GG dinucleotides on the non-template strand than the reverse orientation. The correlation of R-loop formation with CSR efficiency, as demonstrated in the 2kb repetitive fragment of the Xenopus switch region, confirms a role played by R-looping in CSR that appears to be conserved through evolution.
Collapse
Affiliation(s)
- Zheng Z Zhang
- USC Norris Comprehensive Cancer Ctr. Molecular and Computational Biology Program, Department of Biological Sciences, Departments of Pathology, Biochemistry & Molecular Biology, Molecular Microbiology & Immunology, Urology, University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm, 5428, Los Angeles, CA 90089-9176, United States
| | - Nicholas R Pannunzio
- USC Norris Comprehensive Cancer Ctr. Molecular and Computational Biology Program, Department of Biological Sciences, Departments of Pathology, Biochemistry & Molecular Biology, Molecular Microbiology & Immunology, Urology, University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm, 5428, Los Angeles, CA 90089-9176, United States
| | - Zhengfei Lu
- USC Norris Comprehensive Cancer Ctr. Molecular and Computational Biology Program, Department of Biological Sciences, Departments of Pathology, Biochemistry & Molecular Biology, Molecular Microbiology & Immunology, Urology, University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm, 5428, Los Angeles, CA 90089-9176, United States
| | - Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, New York, NY 11203, United States
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, Michigan State University, 5175 Biomedical Physical Sciences, East Lansing, MI 48824, United States
| | - Michael R Lieber
- USC Norris Comprehensive Cancer Ctr. Molecular and Computational Biology Program, Department of Biological Sciences, Departments of Pathology, Biochemistry & Molecular Biology, Molecular Microbiology & Immunology, Urology, University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm, 5428, Los Angeles, CA 90089-9176, United States
| |
Collapse
|