1
|
French J, Austin CL, Sodade FE, Beam ZT. Wandering Spleen in a Patient With Significant Medical History. Cureus 2023; 15:e35543. [PMID: 37007360 PMCID: PMC10056767 DOI: 10.7759/cureus.35543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The clinical presentation of a wandering spleen is characterized mainly by unspecific acute symptoms, ranging from diffuse abdominal pain to left upper/lower quadrant and referred shoulder pain to asymptomatic. This has challenged accelerated medical care and impeded the acquisition of confirmatory diagnosis; therefore, increasing morbidity and mortality risks. Splenectomy is an established operative procedure for a wandering spleen. However, there has not been enough literature emphasizing the clinical history of congenital malformations and surgical corrections as inferential tools for facilitating a decisive and informed procedure. The case presented is of a 22-year-old female who reported to the emergency department with a five-day persistent left upper quadrant and left lower quadrant (LLQ) abdominal pain, associated with nausea. According to the medical history, the patient had a significant history of vertebral defects, anal atresia, cardiac anomalies, tracheoesophageal fistula, renal anomalies, and limb abnormalities (VACTERL) associated with congenital anomalies. By the age of eight years, the patient had undergone multiple surgical interventions, including tetralogy of Fallot repair, an imperforate anal repair with rectal pull-through, Malone antegrade continence enema (MACE), and bowel vaginoplasty. Computed tomography imaging of the abdomen revealed evidence of a wandering spleen in the LLQ with associated torsion of the splenic vasculature (whirl sign). Intra-operatively, appendicostomy was identified extending from the cecum in a near mid-line position, to the umbilicus, and carefully incised distally, preventing injury to the appendicostomy. The spleen was identified in the pelvis, and the individual vessels were clamped, divided, and ligated. Blood loss was minimal with no post-operative complications. This rare case report adds valuable teaching points about the treatment of wandering spleen in individuals with VACTERL anomalies.
Collapse
|
2
|
Marcelis C, Dworschak G, de Blaauw I, van Rooij IALM. Genetic Counseling and Diagnostics in Anorectal Malformation. Eur J Pediatr Surg 2021; 31:482-491. [PMID: 34911130 DOI: 10.1055/s-0041-1740338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Anorectal malformation (ARM) is a relatively frequently occurring congenital anomaly of hindgut development with a prevalence of 1 in 3,000 live births. ARM may present as an isolated anomaly, but it can also be associated with other anomalies, sometimes as part of a recognizable syndrome. After birth, much medical attention is given to the treatment and restoring of bowel function in children with ARM. Effort should also be given to studying the etiology of the ARM in these patients. This information is important to both the medical community and the family, because it can help guide treatment and provides information on the long-term prognosis of the patient and recurrence risk in the family.In this article, we will review the current knowledge on the (genetic) etiology of (syndromic) ARM and provide guidelines for (family) history taking and clinical and genetic studies of ARM patients and their families, which is needed to study the causal factors in an ARM patient and for genetic counseling of the families.
Collapse
Affiliation(s)
- Carlo Marcelis
- Department of Clinical Genetics, Radboudumc, Nijmegen, the Netherlands
| | - Gabriel Dworschak
- Department of Pediatrics, University Hospital Bonn Center of Paediatrics, Bonn, Nordrhein-Westfalen, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Nordrhein-Westfalen, Germany
| | - Ivo de Blaauw
- Department of Pediatric Surgery, Radboud Medical Centre, Nijmegen, the Netherlands
| | - Iris A L M van Rooij
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Li L, Chu C, Li S, Lu D, Zheng P, Sheng J, Luo LJ, Wu X, Zhang YD, Yin C, Duan AH. Renal agenesis-related genes are associated with Herlyn-Werner-Wunderlich syndrome. Fertil Steril 2021; 116:1360-1369. [PMID: 34311961 DOI: 10.1016/j.fertnstert.2021.06.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To explore the genetic causes of Herlyn-Werner-Wunderlich syndrome (HWWS) using whole-exome sequencing. DESIGN Retrospective genetic study. SETTING Academic medical center. PATIENT(S) Twelve patients with HWWS. INTERVENTION(S) Whole-exome sequencing was performed for each patient. Sanger sequencing was used to confirm the potential causative genetic variants. In silico analysis and American College of Medical Genetics and Genomics guidelines were used to classify the pathogenicity of each variant. MAIN OUTCOME MEASURE(S) Rare sequence variants associated with müllerian duct development and renal agenesis were identified and included in subsequent analyses. RESULT(S) A total of 11 variants were identified in 10 of 12 patients (83.3%) and were considered to constitute a molecular genetic diagnosis of HWWS. These 11 variants were related to 9 genes: CHD1L, TRIM32, TGFBR3, WNT4, RET, FRAS1, FAT1, FOXF1, and PCSK5. All variants were heterozygous and confirmed by Sanger sequencing. The changes included one frameshift variant, one splice-site variant, and eight missense variants. All of the identified variants were absent or rare in Genome Aggregation Database East Asian populations. One of the 11 variants (9.1%) was classified as a pathogenic variant according to the American College of Medical Genetics and Genomics guidelines, and 8 of the 11 variants (72.7%) were classified as variants of uncertain significance. CONCLUSION(S) To our knowledge, this is the first report of the genetic causes of HWWS. Renal agenesis-related genes, such as CHD1L, TRIM32, RET, and WNT4, may be associated with HWWS. Identification of these variants can not only help us understand the etiology of HWWS and the relationship between reproductive tract development and urinary system development, but additionally improve the level of genetic counseling for HWWS.
Collapse
Affiliation(s)
- Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Chunfang Chu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Shenghui Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Dan Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Ping Zheng
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Jie Sheng
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Li-Jing Luo
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Xia Wu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Yu-Di Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Ai-Hong Duan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Chen Q, Xu Z, Chen G, Liu S, Xia Y. Prenatal diagnosis and molecular cytogenetic characterization of three chromosomal abnormalities with favorable outcomes. Taiwan J Obstet Gynecol 2020; 59:338-341. [PMID: 32127162 DOI: 10.1016/j.tjog.2020.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVE Here we present three cases of chromosomal abnormalities with favorable outcomes. CASE REPORT In Case 1, conventional karyotyping revealed a karyotype of 46, XY,t(7; 14) (q35; q13)[4]/46,XY[26]. Array comparative genomic hybridization (aCGH) analysis revealed no genomic imbalance. In Case 2, conventional karyotyping revealed a norma karyotype but aCGH analysis revealed a 3.2M chromosomal duplication (13q12.11q12.12(22, 073, 046_25, 230, 759)x3). In Case 3, aCGH analysis revealed a 5.5M chromosomal deletion (9q21.13q21.32 (78, 645, 382_84, 115, 555) x1). In all three cases, ultrasound examination showed no dysmorphisms and intrauterine growth restrictions (IUGRs) in the fetus. All three pregnancies resulted in phenotypically normal babies. CONCLUSION Chromosomal abnormalities may be associated with favorable outcomes. Combining conventional karyotyping, aCGH analysis and ultrasound results can provide a more accurate risk assessment for pregnant women with advanced age.
Collapse
Affiliation(s)
- Qiuqing Chen
- Department of Obstetrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhen Xu
- Department of Gynecology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, PR China
| | - Guoqiang Chen
- Department of Clinical Laboratory, Huanggang Central Hospital, Huanggang, Hubei, PR China
| | - Sha Liu
- Department of Medical Ultrasonics, Shiyan Maternal and Child Health Hospital, Shiyan, Hubei, PR China
| | - Yanzhi Xia
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
van de Putte R, Dworschak GC, Brosens E, Reutter HM, Marcelis CLM, Acuna-Hidalgo R, Kurtas NE, Steehouwer M, Dunwoodie SL, Schmiedeke E, Märzheuser S, Schwarzer N, Brooks AS, de Klein A, Sloots CEJ, Tibboel D, Brisighelli G, Morandi A, Bedeschi MF, Bates MD, Levitt MA, Peña A, de Blaauw I, Roeleveld N, Brunner HG, van Rooij IALM, Hoischen A. A Genetics-First Approach Revealed Monogenic Disorders in Patients With ARM and VACTERL Anomalies. Front Pediatr 2020; 8:310. [PMID: 32656166 PMCID: PMC7324789 DOI: 10.3389/fped.2020.00310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background: The VATER/VACTERL association (VACTERL) is defined as the non-random occurrence of the following congenital anomalies: Vertebral, Anal, Cardiac, Tracheal-Esophageal, Renal, and Limb anomalies. As no unequivocal candidate gene has been identified yet, patients are diagnosed phenotypically. The aims of this study were to identify patients with monogenic disorders using a genetics-first approach, and to study whether variants in candidate genes are involved in the etiology of VACTERL or the individual features of VACTERL: Anorectal malformation (ARM) or esophageal atresia with or without trachea-esophageal fistula (EA/TEF). Methods: Using molecular inversion probes, a candidate gene panel of 56 genes was sequenced in three patient groups: VACTERL (n = 211), ARM (n = 204), and EA/TEF (n = 95). Loss-of-function (LoF) and additional likely pathogenic missense variants, were prioritized and validated using Sanger sequencing. Validated variants were tested for segregation and patients were clinically re-evaluated. Results: In 7 out of the 510 patients (1.4%), pathogenic or likely pathogenic variants were identified in SALL1, SALL4, and MID1, genes that are associated with Townes-Brocks, Duane-radial-ray, and Opitz-G/BBB syndrome. These syndromes always include ARM or EA/TEF, in combination with at least two other VACTERL features. We did not identify LoF variants in the remaining candidate genes. Conclusions: None of the other candidate genes were identified as novel unequivocal disease genes for VACTERL. However, a genetics-first approach allowed refinement of the clinical diagnosis in seven patients, in whom an alternative molecular-based diagnosis was found with important implications for the counseling of the families.
Collapse
Affiliation(s)
- Romy van de Putte
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gabriel C Dworschak
- Department of Pediatrics, Children's Hospital, University Hospital Bonn, Bonn, Germany.,Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands.,Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Heiko M Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Neonatology, Children's Hospital, University Hospital Bonn, Bonn, Germany
| | - Carlo L M Marcelis
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rocio Acuna-Hidalgo
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nehir E Kurtas
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marloes Steehouwer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Eberhard Schmiedeke
- Department of Pediatric Surgery and Urology, Centre for Child and Youth Health, Klinikum Bremen-Mitte, Bremen, Germany
| | - Stefanie Märzheuser
- Department of Pediatric Surgery, Campus Virchow Clinic, Charité University Hospital Berlin, Berlin, Germany
| | - Nicole Schwarzer
- SoMA e.V., Self-Help Organization for People With Anorectal Malformation, Munich, Germany
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Cornelius E J Sloots
- Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Giulia Brisighelli
- Department of Paediatric Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa.,Department of Pediatric Surgery, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Morandi
- Department of Pediatric Surgery, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria F Bedeschi
- Medical Genetic Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Michael D Bates
- Division of Gastroenterology and Nutrition, Dayton Children's Hospital, Dayton, OH, United States.,Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Marc A Levitt
- Division of Gastroenterology and Nutrition, Dayton Children's Hospital, Dayton, OH, United States.,Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.,Department of Surgery, Center for Colorectal and Pelvic Reconstruction, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States
| | - Alberto Peña
- Division of Gastroenterology and Nutrition, Dayton Children's Hospital, Dayton, OH, United States.,Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.,Department of Surgery, International Center for Colorectal Care, Children's Hospital Colorado, University of Colorado, Aurora, CO, United States
| | - Ivo de Blaauw
- Department of Surgery-Pediatric Surgery, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nel Roeleveld
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Han G Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Iris A L M van Rooij
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Iwanishi M, Ito-Kobayashi J, Washiyama M, Kusakabe T, Ebihara K. Clinical Characteristics, Phenotype of Lipodystrophy and a Genetic Analysis of Six Diabetic Japanese Women with Familial Partial Lipodystrophy in a Diabetic Outpatient Clinic. Intern Med 2018; 57:2301-2313. [PMID: 29607946 PMCID: PMC6148158 DOI: 10.2169/internalmedicine.0225-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/15/2018] [Indexed: 02/02/2023] Open
Abstract
Objective Our aim was to examine the clinical characteristics and phenotype of lipodystrophy of six diabetic Japanese women with partial lipodystrophy (PL) who received a genetic analysis at a diabetic outpatient clinic. Methods We screened for PL using dual energy X-ray absorptiometry (DEXA) and magnetic resonance imaging (MRI) among patients who had a reduced peripheral skinfold thickness at the diabetic outpatient clinic of Kusatsu General Hospital between August 2003 and August 2013. We performed a mutation analysis of candidate genes, including LMNA and PPARG, in two patients with PL and whole-exome sequencing in four patients with PL. Results We identified 15 patients with PL and performed a genetic analysis in 6 of them. They had no mutations in candidate genes known to be associated with familial partial lipodystrophy (FPLD). They all had near-complete loss of subcutaneous fat, particularly in the antero-lateral and posterior thigh region and the calf region. As almost all patients were characterized by fat loss in the lower limbs with abdominal fat accumulation, a high rate of positivity for a family history, diabetes, and an unknown genetic cause, we suspected they might have FPLD1. Some patients have shown relatively severe insulin resistance, while others have shown insulin deficiency. Four and one had severe atherosclerosis and liver cirrhosis, probably due to nonalcoholic steatohepatitis, respectively. Conclusion Almost all patients with PL identified in a diabetic outpatient clinic had subcutaneous fat loss in the lower limbs with excess truncal fat and might have had FPLD1.
Collapse
Affiliation(s)
- Masanori Iwanishi
- Department of Diabetes and Endocrinology, Kusatsu General Hospital, Japan
| | - Jun Ito-Kobayashi
- Department of Diabetes and Endocrinology, Kusatsu General Hospital, Japan
| | - Miki Washiyama
- Department of Diabetes and Endocrinology, Kusatsu General Hospital, Japan
| | - Toru Kusakabe
- Department of Endocrinology, Metabolism and Hypertension, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Japan
| | - Ken Ebihara
- Division of Endocrinology and Metabolism, Jichi Medical University, Japan
| |
Collapse
|
8
|
Szumska D, Cioroch M, Keeling A, Prat A, Seidah NG, Bhattacharya S. Pcsk5 is required in the early cranio-cardiac mesoderm for heart development. BMC DEVELOPMENTAL BIOLOGY 2017; 17:6. [PMID: 28446132 PMCID: PMC5407003 DOI: 10.1186/s12861-017-0148-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/17/2017] [Indexed: 11/25/2022]
Abstract
Background Loss of proprotein convertase subtilisin/kexin type 5 (Pcsk5) results in multiple developmental anomalies including cardiac malformations, caudal regression, pre-sacral mass, renal agenesis, anteroposterior patterning defects, and tracheo-oesophageal and anorectal malformations, and is a model for VACTERL/caudal regression/Currarino syndromes (VACTERL association - Vertebral anomalies, Anal atresia, Cardiac defects, Tracheoesophageal fistula and/or Esophageal atresia, Renal & Radial anomalies and Limb defects). Results Using magnetic resonance imaging (MRI), we examined heart development in mouse embryos with zygotic and cardiac specific deletion of Pcsk5. We show that conditional deletion of Pcsk5 in all epiblastic lineages recapitulates all developmental malformations except for tracheo-esophageal malformations. Using a conditional deletion strategy, we find that there is an essential and specific requirement for Pcsk5 in the cranio-cardiac mesoderm for cardiogenesis, but not for conotruncal septation or any other aspect of embryonic development. Surprisingly, deletion of Pcsk5 in cardiogenic or pharyngeal mesodermal progenitors that form later from the cranio-cardiac mesoderm does not affect heart development. Neither is Pcsk5 essential in the neural crest, which drives conotruncal septation. Conclusions Our results suggest that Pcsk5 may have an essential and early role in the cranio-cardiac mesoderm for heart development. Alternatively, it is possible that Pcsk5 may still play a critical role in Nkx2.5-expressing cardiac progenitors, with persistence of mRNA or protein accounting for the lack of effect of deletion on heart development. Electronic supplementary material The online version of this article (doi:10.1186/s12861-017-0148-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorota Szumska
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Milena Cioroch
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Angela Keeling
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), 110 Pine Ave west, Montreal, QC, H2W1R7, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), 110 Pine Ave west, Montreal, QC, H2W1R7, Canada
| | - Shoumo Bhattacharya
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
9
|
Reutter H, Hilger AC, Hildebrandt F, Ludwig M. Underlying genetic factors of the VATER/VACTERL association with special emphasis on the "Renal" phenotype. Pediatr Nephrol 2016; 31:2025-33. [PMID: 26857713 PMCID: PMC5207487 DOI: 10.1007/s00467-016-3335-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/18/2022]
Abstract
The acronym VATER/VACTERL association (OMIM #192350) refers to the rare non-random co-occurrence of the following component features (CFs): vertebral defects (V), anorectal malformations (A), cardiac defects (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb defects (L). According to epidemiological studies, the majority of patients with VATER/VACTERL association present with a "Renal" phenotype comprising a large spectrum of congenital renal anomalies. This finding is supported by evidence linking all of the human disease genes for the VATER/VACTERL association identified to date, namely, FGF8, FOXF1, HOXD13, LPP, TRAP1, and ZIC3, with renal malformations. Here we review these genotype-phenotype correlations and suggest that the elucidation of the genetic causes of the VATER/VACTERL association will ultimately provide insights into the genetic causes of the complete spectrum of congenital renal anomalies per se.
Collapse
Affiliation(s)
- Heiko Reutter
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany. .,Department of Neonatology and Pediatric Intensive Care, Children's Hospital-University of Bonn, Bonn, Germany.
| | - Alina C Hilger
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital-Harvard Medical School, Boston, MA, USA
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Chen Y, Liu Z, Chen J, Zuo Y, Liu S, Chen W, Liu G, Qiu G, Giampietro PF, Wu N, Wu Z. The genetic landscape and clinical implications of vertebral anomalies in VACTERL association. J Med Genet 2016; 53:431-7. [PMID: 27084730 PMCID: PMC4941148 DOI: 10.1136/jmedgenet-2015-103554] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/17/2016] [Indexed: 01/22/2023]
Abstract
VACTERL association is a condition comprising multisystem congenital malformations, causing severe physical disability in affected individuals. It is typically defined by the concurrence of at least three of the following component features: vertebral anomalies (V), anal atresia (A), cardiac malformations (C), tracheo-oesophageal fistula (TE), renal dysplasia (R) and limb abnormalities (L). Vertebral anomaly is one of the most important and common defects that has been reported in approximately 60–95% of all VACTERL patients. Recent breakthroughs have suggested that genetic factors play an important role in VACTERL association, especially in those with vertebral phenotypes. In this review, we summarised the genetic studies of the VACTERL association, especially focusing on the genetic aetiology of patients with vertebral anomalies. Furthermore, genetic reports of other syndromes with vertebral phenotypes overlapping with VACTERL association are also included. We aim to provide a further understanding of the genetic aetiology and a better evidence for genetic diagnosis of the association and vertebral anomalies.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenlei Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Philip F Giampietro
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Puvabanditsin S, Van Gurp J, February M, Khalil M, Mayne J, Ai McConnell J, Mehta R. VATER/VACTERL Association and Caudal Regression with Xq25-q27.3 Microdeletion: A Case Report. Fetal Pediatr Pathol 2016; 35:133-41. [PMID: 26881326 DOI: 10.3109/15513815.2016.1139019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We report a term female neonate with vertebral anomalies, anal and urethral atresia, esophageal atresia with tracheoesophageal fistula (TEF), renal agenesis, pulmonary hypoplasia, genital and sacral appendages, and a single umbilical artery. Genetic studies revealed a 20.91 Mb interstitial deletion of the long arm of X chromosome: Xq25-q27.3. This is a new case of VATER/VACTERL association with Xq25 microdeletion.
Collapse
Affiliation(s)
- Surasak Puvabanditsin
- a Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick , New Jersey , USA
| | - James Van Gurp
- b Pathology, Rutgers-Robert Wood Johnson Medical School, New Brunswick , New Jersey , USA
| | - Melissa February
- a Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick , New Jersey , USA
| | - Marwa Khalil
- a Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick , New Jersey , USA
| | - Julia Mayne
- a Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick , New Jersey , USA
| | - Jennifer Ai McConnell
- a Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick , New Jersey , USA
| | - Rajeev Mehta
- a Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick , New Jersey , USA
| |
Collapse
|