1
|
Sutcliffe EI, Irvine A, Rooney J, Smith D, Northcote HM, McKenzie D, Bakshi S, Nisbet AJ, Price D, Graham R, Morphew R, Atkinson L, Mousley A, Cantacessi C. Antimicrobial peptides in nematode secretions - Unveiling biotechnological opportunities for therapeutics and beyond. Biotechnol Adv 2025; 81:108572. [PMID: 40154760 DOI: 10.1016/j.biotechadv.2025.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/02/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Gastrointestinal (GI) parasitic nematodes threaten food security and affect human health and animal welfare globally. Current anthelmintics for use in humans and livestock are challenged by continuous re-infections and the emergence and spread of multidrug resistance, underscoring an urgent need to identify novel control targets for therapeutic exploitation. Recent evidence has highlighted the occurrence of complex interplay between GI parasitic nematodes of humans and livestock and the resident host gut microbiota. Antimicrobial peptides (AMPs) found within nematode biofluids have emerged as potential effectors of these interactions. This review delves into the occurrence, structure, and function of nematode AMPs, highlighting their potential as targets for drug discovery and development. We argue that an integrated approach combining advanced analytical techniques, scalable production methods, and innovative experimental models is needed to unlock the full potential of nematode AMPs and pave the way for the discovery and development of sustainable parasite control strategies.
Collapse
Affiliation(s)
- E I Sutcliffe
- Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - A Irvine
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - J Rooney
- Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - D Smith
- Moredun Research Institute, United Kingdom
| | - H M Northcote
- Department of Life Sciences, Aberystwyth University, United Kingdom
| | - D McKenzie
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - S Bakshi
- Department of Engineering, University of Cambridge, United Kingdom
| | - A J Nisbet
- Moredun Research Institute, United Kingdom
| | - D Price
- Moredun Research Institute, United Kingdom
| | - R Graham
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - R Morphew
- Department of Life Sciences, Aberystwyth University, United Kingdom
| | - L Atkinson
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - A Mousley
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - C Cantacessi
- Department of Veterinary Medicine, University of Cambridge, United Kingdom.
| |
Collapse
|
2
|
Irvine A, Huws SA, Atkinson LE, Mousley A. Exploring the antimicrobial peptidome of nematodes through phylum-spanning in silico analyses highlights novel opportunities for pathogen control. PLoS Negl Trop Dis 2023; 17:e0011618. [PMID: 37672536 PMCID: PMC10506718 DOI: 10.1371/journal.pntd.0011618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/18/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Antimicrobial Peptides (AMPs) are key constituents of the invertebrate innate immune system and provide critical protection against microbial threat. Nematodes display diverse life strategies where they are exposed to heterogenous, microbe rich, environments highlighting their need for an innate immune system. Within the Ecdysozoa, arthropod AMPs have been well characterised, however nematode-derived AMP knowledge is limited. In this study the distribution and abundance of putative AMP-encoding genes was examined in 134 nematode genomes providing the most comprehensive profile of AMP candidates within phylum Nematoda. Through genome and transcriptome analyses we reveal that phylum Nematoda is a rich source of putative AMP diversity and demonstrate (i) putative AMP group profiles that are influenced by nematode lifestyle where free-living nematodes appear to display enriched putative AMP profiles relative to parasitic species; (ii) major differences in the putative AMP profiles between nematode clades where Clade 9/V and 10/IV species possess expanded putative AMP repertoires; (iii) AMP groups with highly restricted profiles (e.g. Cecropins and Diapausins) and others [e.g. Nemapores and Glycine Rich Secreted Peptides (GRSPs)] which are more widely distributed; (iv) complexity in the distribution and abundance of CSαβ subgroup members; and (v) that putative AMPs are expressed in host-facing life stages and biofluids of key nematode parasites. These data indicate that phylum Nematoda displays diversity in putative AMPs and underscores the need for functional characterisation to reveal their role and importance to nematode biology and host-nematode-microbiome interactions.
Collapse
Affiliation(s)
- Allister Irvine
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Sharon A. Huws
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Louise E. Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
3
|
Baradaran M, Mahdavinia M, Naderi Soorki M, Jorfi S. Identification, Characterization, and Modeling of a Bioinsecticide Protein Isolated from Scorpion Venom gland: A Three-Finger Protein. IRANIAN BIOMEDICAL JOURNAL 2023; 27:158-66. [PMID: 37553755 PMCID: PMC10507287 DOI: 10.52547/ibj.3885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/24/2023] [Indexed: 08/10/2023]
Abstract
Background The majority of insecticides target sodium channels. The increasing emergence of resistance to the current insecticides has persuaded researchers to search for alternative compounds. Scorpion venom gland as a reservoir of peptides or proteins, which selectively target insect sodium channels. These proteins would be an appropriate source for finding new suitable anti-insect components. Methods Transcriptome of venom gland of scorpion Mesobuthus eupeus was obtained by RNA extraction and complementary DNA library synthesis. The obtained transcriptome was blasted against protein databases to find insect toxins against sodium channel based on the statistically significant similarity in sequence. Physicochemical properties of the identified protein were calculated using bioinformatics software. The three-dimensional structure of this protein was determined using homology modeling, and the final structure was assessed by molecular dynamics simulation. Results The sodium channel blocker found in the transcriptome of M. eupeus venom gland was submitted to the GenBank under the name of meuNa10, a stable hydrophilic protein consisting of 69 amino acids, with the molecular weight of 7721.77 g/mol and pI of 8.7. The tertiary structure of meuNa10 revealed a conserved LCN-type cysteine-stabilized alpha/beta domain stabilized by eight cysteine residues. The meuNa10 is a member of the 3FP superfamily consisting of three finger-like beta strands. Conclusion This study identified meuNa10 as a small insect sodium channel-interacting protein with some physicochemical properties, including stability and water-solubility, which make it a good candidate for further in vivo and in vitro experiments in order to develop a new bioinsecticide.
Collapse
Affiliation(s)
- Masoumeh Baradaran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, School of Pharmacy, Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Naderi Soorki
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sahand Jorfi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Irvine A, McKenzie D, McCoy CJ, Graham RLJ, Graham C, Huws SA, Atkinson LE, Mousley A. Novel integrated computational AMP discovery approaches highlight diversity in the helminth AMP repertoire. PLoS Pathog 2023; 19:e1011508. [PMID: 37523405 PMCID: PMC10414684 DOI: 10.1371/journal.ppat.1011508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/10/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023] Open
Abstract
Antimicrobial Peptides (AMPs) are immune effectors that are key components of the invertebrate innate immune system providing protection against pathogenic microbes. Parasitic helminths (phylum Nematoda and phylum Platyhelminthes) share complex interactions with their hosts and closely associated microbiota that are likely regulated by a diverse portfolio of antimicrobial immune effectors including AMPs. Knowledge of helminth AMPs has largely been derived from nematodes, whereas the flatworm AMP repertoire has not been described. This study highlights limitations in the homology-based approaches, used to identify putative nematode AMPs, for the characterisation of flatworm AMPs, and reveals that innovative algorithmic AMP prediction approaches provide an alternative strategy for novel helminth AMP discovery. The data presented here: (i) reveal that flatworms do not encode traditional lophotrochozoan AMP groups (Big Defensin, CSαβ peptides and Myticalin); (ii) describe a unique integrated computational pipeline for the discovery of novel helminth AMPs; (iii) reveal >16,000 putative AMP-like peptides across 127 helminth species; (iv) highlight that cysteine-rich peptides dominate helminth AMP-like peptide profiles; (v) uncover eight novel helminth AMP-like peptides with diverse antibacterial activities, and (vi) demonstrate the detection of AMP-like peptides from Ascaris suum biofluid. These data represent a significant advance in our understanding of the putative helminth AMP repertoire and underscore a potential untapped source of antimicrobial diversity which may provide opportunities for the discovery of novel antimicrobials. Further, unravelling the role of endogenous worm-derived antimicrobials and their potential to influence host-worm-microbiome interactions may be exploited for the development of unique helminth control approaches.
Collapse
Affiliation(s)
- Allister Irvine
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Darrin McKenzie
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ciaran J. McCoy
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Robert L. J. Graham
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ciaren Graham
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Sharon A. Huws
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Louise E. Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
5
|
Baradaran M, Mahdavinia M, Naderi Soorki M, Jorfi S. Identification, Characterization, and Modeling of a Bioinsecticide Protein Isolated from Scorpion Venom gland: A Three-Finger Protein. IRANIAN BIOMEDICAL JOURNAL 2023; 27:158-66. [PMID: 37553755 PMCID: PMC10507287 DOI: 10.61186/ibj.3885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/24/2023] [Indexed: 12/17/2023]
Abstract
Background The majority of insecticides target sodium channels. The increasing emergence of resistance to the current insecticides has persuaded researchers to search for alternative compounds. Scorpion venom gland as a reservoir of peptides or proteins, which selectively target insect sodium channels. These proteins would be an appropriate source for finding new suitable anti-insect components. Methods Transcriptome of venom gland of scorpion Mesobuthus eupeus was obtained by RNA extraction and complementary DNA library synthesis. The obtained transcriptome was blasted against protein databases to find insect toxins against sodium channel based on the statistically significant similarity in sequence. Physicochemical properties of the identified protein were calculated using bioinformatics software. The three-dimensional structure of this protein was determined using homology modeling, and the final structure was assessed by molecular dynamics simulation. Results The sodium channel blocker found in the transcriptome of M. eupeus venom gland was submitted to the GenBank under the name of meuNa10, a stable hydrophilic protein consisting of 69 amino acids, with the molecular weight of 7721.77 g/mol and pI of 8.7. The tertiary structure of meuNa10 revealed a conserved LCN-type cysteine-stabilized alpha/beta domain stabilized by eight cysteine residues. The meuNa10 is a member of the 3FP superfamily consisting of three finger-like beta strands. Conclusion This study identified meuNa10 as a small insect sodium channel-interacting protein with some physicochemical properties, including stability and water-solubility, which make it a good candidate for further in vivo and in vitro experiments in order to develop a new bioinsecticide.
Collapse
Affiliation(s)
- Masoumeh Baradaran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, School of Pharmacy, Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Naderi Soorki
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sahand Jorfi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Senra MVX. In silico characterization of cysteine-stabilized αβ defensins from neglected unicellular microeukaryotes. BMC Microbiol 2023; 23:82. [PMID: 36966312 PMCID: PMC10040121 DOI: 10.1186/s12866-023-02817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/09/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND The emergence of multi-resistant pathogens have increased dramatically in recent years, becoming a major public-health concern. Among other promising antimicrobial molecules with potential to assist in this worldwide struggle, cysteine-stabilized αβ (CS-αβ) defensins are attracting attention due their efficacy, stability, and broad spectrum against viruses, bacteria, fungi, and protists, including many known human pathogens. RESULTS Here, 23 genomes of ciliated protists were screened and two CS-αβ defensins with a likely antifungal activity were identified and characterized, using bioinformatics, from a culturable freshwater species, Laurentiella sp. (LsAMP-1 and LsAMP-2). Although any potential cellular ligand could be predicted for LsAMP-2; evidences from structural, molecular dynamics, and docking analyses suggest that LsAMP-1 may form stably associations with phosphatidylinositol 4,5-bisphosphates (PIP2), a phospholipid found on many eukaryotic cells, which could, in turn, represent an anchorage mechanism within plasma membrane of targeted cells. CONCLUSION These data stress that more biotechnology-oriented studies should be conducted on neglected protists, such ciliates, which could become valuable sources of novel bioactive molecules for therapeutic uses.
Collapse
|
7
|
Téllez Ramirez GA, Osorio-Méndez JF, Henao Arias DC, Toro S. LJ, Franco Castrillón J, Rojas-Montoya M, Castaño Osorio JC. New Insect Host Defense Peptides (HDP) From Dung Beetle (Coleoptera: Scarabaeidae) Transcriptomes. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:12. [PMID: 34374763 PMCID: PMC8353981 DOI: 10.1093/jisesa/ieab054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 06/13/2023]
Abstract
The Coleoptera Scarabaeidae family is one of the most diverse groups of insects on the planet, which live in complex microbiological environments. Their immune systems have evolved diverse families of Host Defense Peptides (HDP) with strong antimicrobial and immunomodulatory activities. However, there are several peptide sequences that await discovery in this group of organisms. This would pave the way to identify molecules with promising therapeutic potential. This work retrieved two sources of information: 1) De-novo transcriptomic data from two species of neotropical Scarabaeidae (Dichotomius satanas and Ontophagus curvicornis); 2) Sequence data deposited in available databases. A Blast-based search was conducted against the transcriptomes with a subset of sequences representative of the HDP. This work reports 155 novel HDP sequences identified in nine transcriptomes from seven species of Coleoptera: D. satanas (n = 76; 49.03%), O. curvicornis (n = 23; 14.83%), (Trypoxylus dichotomus) (n = 18; 11.61%), (Onthophagus nigriventris) (n = 10; 6.45%), (Heterochelus sp) (n = 6; 3.87%), (Oxysternon conspicillatum) (n = 18; 11.61%), and (Popillia japonica) (n = 4; 2.58%). These sequences were identified based on similarity to known HDP insect families. New members of defensins (n = 58; 37.42%), cecropins (n = 18; 11.61%), attancins (n = 41; 26.45%), and coleoptericins (n = 38; 24.52%) were described based on their physicochemical and structural characteristics, as well as their sequence relationship to other insect HDPs. Therefore, the Scarabaeidae family is a complex and rich group of insects with a great diversity of antimicrobial peptides with potential antimicrobial activity.
Collapse
Affiliation(s)
- Germán Alberto Téllez Ramirez
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Carrera 15 and Calle 12 Norte, Armenia, Quindío, Colombia
| | - Juan Felipe Osorio-Méndez
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Carrera 15 and Calle 12 Norte, Armenia, Quindío, Colombia
| | - Diana Carolina Henao Arias
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Carrera 15 and Calle 12 Norte, Armenia, Quindío, Colombia
| | - Lily Johanna Toro S.
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Carrera 15 and Calle 12 Norte, Armenia, Quindío, Colombia
| | - Juliana Franco Castrillón
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Carrera 15 and Calle 12 Norte, Armenia, Quindío, Colombia
| | - Maribel Rojas-Montoya
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Carrera 15 and Calle 12 Norte, Armenia, Quindío, Colombia
| | - Jhon Carlos Castaño Osorio
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Carrera 15 and Calle 12 Norte, Armenia, Quindío, Colombia
| |
Collapse
|
8
|
Robles-Fort A, García-Robles I, Fernando W, Hoskin DW, Rausell C, Real MD. Dual Antimicrobial and Antiproliferative Activity of TcPaSK Peptide Derived from a Tribolium castaneum Insect Defensin. Microorganisms 2021; 9:222. [PMID: 33499187 PMCID: PMC7912591 DOI: 10.3390/microorganisms9020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial peptides (AMPs) found in the innate immune system of a wide range of organisms might prove useful to fight infections, due to the reported slower development of resistance to AMPs. Increasing the cationicity and keeping moderate hydrophobicity of the AMPs have been described to improve antimicrobial activity. We previously found a peptide derived from the Tribolium castaneum insect defensin 3, exhibiting antrimicrobial activity against several human pathogens. Here, we analyzed the effect against Staphyloccocus aureus of an extended peptide (TcPaSK) containing two additional amino acids, lysine and asparagine, flanking the former peptide fragment in the original insect defensin 3 protein. TcPaSK peptide displayed higher antimicrobial activity against S. aureus, and additionally showed antiproliferative activity against the MDA-MB-231 triple negative breast cancer cell line. A SWATH proteomic analysis revealed the downregulation of proteins involved in cell growth and tumor progression upon TcPaSK cell treatment. The dual role of TcPaSK peptide as antimicrobial and antiproliferative agent makes it a versatile molecule that warrants exploration for its use in novel therapeutic developments as an alternative approach to overcome bacterial antibiotic resistance and to increase the efficacy of conventional cancer treatments.
Collapse
Affiliation(s)
- Aida Robles-Fort
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| | - Inmaculada García-Robles
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| | - Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (D.W.H.)
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (D.W.H.)
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Carolina Rausell
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| | - María Dolores Real
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| |
Collapse
|
9
|
Dümig M, Binder J, Gaculenko A, Daul F, Winandy L, Hasenberg M, Gunzer M, Fischer R, Künzler M, Krappmann S. The infectious propagules of Aspergillus fumigatus are coated with antimicrobial peptides. Cell Microbiol 2021; 23:e13301. [PMID: 33331054 DOI: 10.1111/cmi.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 11/29/2022]
Abstract
Fungal spores are unique cells that mediate dispersal and survival in the environment. For pathogenic fungi encountering a susceptible host, these specialised structures may serve as infectious particles. The main causative agent of the opportunistic disease aspergillosis, Aspergillus fumigatus, produces asexual spores, the conidia, that become dissipated by air flows or water currents but also serve as propagules to infect a susceptible host. We demonstrate that the defX gene of this mould encodes putative antimicrobial peptides resembling cysteine-stabilised (CS)αβ defensins that are expressed in a specific spatial and temporal manner in the course of asexual spore formation. Localisation studies on strains expressing a fluorescent proxy or tagged defX alleles expose that these antimicrobial peptides are secreted to coat the conidial surface. Deletion mutants reveal that the spore-associated defX gene products delay the growth of Gram-positive Staphylococcus aureus and demonstrate that the defX gene and presumably its encoded spore-associated defensins confer a growth advantage to the fungal opponent over bacterial competitors. These findings have implications with respect to the ecological niche of A. fumigatus that serves as a 'virulence school' for this human pathogenic mould; further relevance is given for the infectious process resulting in aspergillosis, considering competition with the host microbiome or co-infecting microorganisms to break colonisation resistance at host surfaces.
Collapse
Affiliation(s)
- Michaela Dümig
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jasmin Binder
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anastasia Gaculenko
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Daul
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lex Winandy
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mike Hasenberg
- Imaging Centre Essen (IMCES) - Electron Microscopy Unit, University Hospital and University Duisburg-Essen, Essen, Germany.,Institute for Experimental Immunology and Imaging, University Hospital and University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital and University Duisburg-Essen, Essen, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Sven Krappmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Erlangen, Germany
| |
Collapse
|
10
|
Gerdol M, Schmitt P, Venier P, Rocha G, Rosa RD, Destoumieux-Garzón D. Functional Insights From the Evolutionary Diversification of Big Defensins. Front Immunol 2020; 11:758. [PMID: 32425943 PMCID: PMC7203481 DOI: 10.3389/fimmu.2020.00758] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Big defensins are antimicrobial polypeptides believed to be the ancestors of β-defensins, the most evolutionary conserved family of host defense peptides (HDPs) in vertebrates. Nevertheless, big defensins underwent several independent gene loss events during animal evolution, being only retained in a limited number of phylogenetically distant invertebrates. Here, we explore the evolutionary history of this fascinating HDP family and investigate its patchy distribution in extant metazoans. We highlight the presence of big defensins in various classes of lophotrochozoans, as well as in a few arthropods and basal chordates (amphioxus), mostly adapted to life in marine environments. Bivalve mollusks often display an expanded repertoire of big defensin sequences, which appear to be the product of independent lineage-specific gene tandem duplications, followed by a rapid molecular diversification of newly acquired gene copies. This ongoing evolutionary process could underpin the simultaneous presence of canonical big defensins and non-canonical (β-defensin-like) sequences in some species. The big defensin genes of mussels and oysters, two species target of in-depth studies, are subjected to gene presence/absence variation (PAV), i.e., they can be present or absent in the genomes of different individuals. Moreover, big defensins follow different patterns of gene expression within a given species and respond differently to microbial challenges, suggesting functional divergence. Consistently, current structural data show that big defensin sequence diversity affects the 3D structure and biophysical properties of these polypeptides. We discuss here the role of the N-terminal hydrophobic domain, lost during evolution toward β-defensins, in the big defensin stability to high salt concentrations and its mechanism of action. Finally, we discuss the potential of big defensins as markers for animal health and for the nature-based design of novel therapeutics active at high salt concentrations.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Paola Venier
- Department of Biology, University of Padova, Padova, Italy
| | - Gustavo Rocha
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rafael Diego Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
11
|
Ochiai A, Ogawa K, Fukuda M, Suzuki M, Ito K, Tanaka T, Sagehashi Y, Taniguchi M. Crystal structure of rice defensin OsAFP1 and molecular insight into lipid-binding. J Biosci Bioeng 2020; 130:6-13. [PMID: 32192842 DOI: 10.1016/j.jbiosc.2020.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
Defensins are antibacterial peptides that function in the innate immune system. OsAFP1, a defensin identified from Oryza sativa (rice), exhibits antimicrobial activity against rice pathogens. Intriguingly, OsAFP1 was also shown to demonstrate potent antifungal activity against the human pathogenic fungus Candida albicans by inducing apoptosis in target cells, suggesting that OsAFP1 represents a potential new antibiotic candidate; however, further analyses, particularly at the structural level, are required to elucidate the mechanistic underpinnings of OsAFP1 antifungal activity. Here, we determined the three-dimensional structure of OsAFP1 using X-ray crystallography. OsAFP1 features the cysteine-stabilized αβ structure highly conserved in plant defensins and presents a dimeric structure that appears necessary for antifungal activity. Superimposition of the OsAFP1 structure with that of Nicotiana alata NaD1 complexed with phosphatidic acid indicated that the target molecule is likely trapped between the S2-S3 loops of each OsAFP1 dimer. In lipid-binding analyses performed using nitrocellulose membranes immobilized with various membrane lipid components, OsAFP1 was found to bind to phosphatidylinositols (PIPs) harboring phosphate groups, particularly PI(3)P. These results indicate that OsAFP1 exerts antifungal activity by binding to PI(3)P contained in the C. albicans cell membrane, thereby applying cellular stress and inducing apoptosis. Furthermore, the OsAFP1 structure and site-specific-mutation analyses revealed that Arg1, His2, Leu4, Arg9, and Phe10 play critical roles in OsAFP1 dimer formation. Thus, our study provides novel insights into the antifungal mechanism of OsAFP1.
Collapse
Affiliation(s)
- Akihito Ochiai
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan; Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Kodai Ogawa
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Minami Fukuda
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Masami Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Kosuke Ito
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan; Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan; Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Yoshiyuki Sagehashi
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hokkaido 062-8555, Japan
| | - Masayuki Taniguchi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan; Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
12
|
Greco S, Gerdol M, Edomi P, Pallavicini A. Molecular Diversity of Mytilin-Like Defense Peptides in Mytilidae (Mollusca, Bivalvia). Antibiotics (Basel) 2020; 9:E37. [PMID: 31963793 PMCID: PMC7168163 DOI: 10.3390/antibiotics9010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/17/2022] Open
Abstract
The CS-αβ architecture is a structural scaffold shared by a high number of small, cationic, cysteine-rich defense peptides, found in nearly all the major branches of the tree of life. Although several CS-αβ peptides involved in innate immune response have been described so far in bivalve mollusks, a clear-cut definition of their molecular diversity is still lacking, leaving the evolutionary relationship among defensins, mytilins, myticins and other structurally similar antimicrobial peptides still unclear. In this study, we performed a comprehensive bioinformatic screening of the genomes and transcriptomes available for marine mussels (Mytilida), redefining the distribution of mytilin-like CS-αβ peptides, which in spite of limited primary sequence similarity maintain in all cases a well-conserved backbone, stabilized by four disulfide bonds. Variations in the size of the alpha-helix and the two antiparallel beta strand region, as well as the positioning of the cysteine residues involved in the formation of the C1-C5 disulfide bond might allow a certain degree of structural flexibility, whose functional implications remain to be investigated. The identification of mytilins in Trichomya and Perna spp. revealed that many additional CS-αβ AMPs remain to be formally described and functionally characterized in Mytilidae, and suggest that a more robust scheme should be used for the future classification of such peptides with respect with their evolutionary origin.
Collapse
Affiliation(s)
- Samuele Greco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (S.G.); (P.E.); (A.P.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (S.G.); (P.E.); (A.P.)
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (S.G.); (P.E.); (A.P.)
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (S.G.); (P.E.); (A.P.)
- National Institute of Oceanography and Applied Geophysics, 34151 Trieste, Italy
- Anton Dohrn Zoological Station, 80121 Naples, Italy
| |
Collapse
|
13
|
Ozias‐Akins P, Breiteneder H. The functional biology of peanut allergens and possible links to their allergenicity. Allergy 2019; 74:888-898. [PMID: 30636003 PMCID: PMC6563476 DOI: 10.1111/all.13719] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 12/24/2022]
Abstract
Peanut is one of the most common food triggers of fatal anaphylaxis worldwide although peanut allergy affects only 1%-2% of the general population. Peanuts are the source of highly potent allergenic proteins. It is emerging that the allergenicity of certain proteins is linked to their biological function. Peanut is an unusual crop in that it flowers aboveground but produces its seed-containing pods underground. This so-called geocarpic fruiting habit exposes pods and seeds during their development to soilborne pathogens and pests. Pest damage can also open routes of entry for opportunistic fungi such as Aspergillus. Although seed proteins have primary functions in nutrient reservoirs, lipid storage bodies, or the cytoskeleton, they have also evolved to act as part of the plant's defense system to enhance fitness and survival of the species. When interacting with pathogens or pests, these proteins modify and damage cells' membranes, interact with immune receptors, and modulate signaling pathways. Moreover, following exposure, the immune system of predisposed individuals reacts to these proteins with the production of specific IgE. This review explores the evolutionary biology of peanut and its seed proteins and highlights possible links between the proteins' biological function and their allergenicity.
Collapse
Affiliation(s)
- Peggy Ozias‐Akins
- Genetic & Genomics and Department of Horticulture Institute of Plant Breeding University of Georgia Tifton Georgia
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| |
Collapse
|
14
|
Correnti CE, Gewe MM, Mehlin C, Bandaranayake AD, Johnsen WA, Rupert PB, Brusniak MY, Clarke M, Burke SE, De Van Der Schueren W, Pilat K, Turnbaugh SM, May D, Watson A, Chan MK, Bahl CD, Olson JM, Strong RK. Screening, large-scale production and structure-based classification of cystine-dense peptides. Nat Struct Mol Biol 2018; 25:270-278. [PMID: 29483648 PMCID: PMC5840021 DOI: 10.1038/s41594-018-0033-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/23/2018] [Indexed: 12/04/2022]
Abstract
Peptides folded through interwoven disulfides display extreme biochemical properties and unique medicinal potential. However, their exploitation has been hampered by the limited amounts isolatable from natural sources and the expense of chemical synthesis. We developed reliable biological methods for high-throughput expression, screening and large-scale production of these peptides: 46 were successfully produced in multimilligram quantities, and >600 more were deemed expressible through stringent screening criteria. Many showed extreme resistance to temperature, proteolysis and/or reduction, and all displayed inhibitory activity against at least 1 of 20 ion channels tested, thus confirming their biological functionality. Crystal structures of 12 confirmed proper cystine topology and the utility of crystallography to study these molecules but also highlighted the need for rational classification. Previous categorization attempts have focused on limited subsets featuring distinct motifs. Here we present a global definition, classification and analysis of >700 structures of cystine-dense peptides, providing a unifying framework for these molecules.
Collapse
Affiliation(s)
- Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mesfin M Gewe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christopher Mehlin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ashok D Bandaranayake
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - William A Johnsen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter B Rupert
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mi-Youn Brusniak
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Midori Clarke
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Skyler E Burke
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Kristina Pilat
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shanon M Turnbaugh
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Damon May
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Alex Watson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Man Kid Chan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Roland K Strong
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
15
|
Parisi K, Shafee TMA, Quimbar P, van der Weerden NL, Bleackley MR, Anderson MA. The evolution, function and mechanisms of action for plant defensins. Semin Cell Dev Biol 2018; 88:107-118. [PMID: 29432955 DOI: 10.1016/j.semcdb.2018.02.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/18/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
Plant defensins are an extensive family of small cysteine rich proteins characterised by a conserved cysteine stabilised alpha beta protein fold which resembles the structure of insect and vertebrate defensins. However, secondary structure and disulphide topology indicates two independent superfamilies of defensins with similar structures that have arisen via an extreme case of convergent evolution. Defensins from plants and insects belong to the cis-defensin superfamily whereas mammalian defensins belong to the trans-defensin superfamily. Plant defensins are produced by all species of plants and although the structure is highly conserved, the amino acid sequences are highly variable with the exception of the cysteine residues that form the stabilising disulphide bonds and a few other conserved residues. The majority of plant defensins are components of the plant innate immune system but others have evolved additional functions ranging from roles in sexual reproduction and development to metal tolerance. This review focuses on the antifungal mechanisms of plant defensins. The activity of plant defensins is not limited to plant pathogens and many of the described mechanisms have been elucidated using yeast models. These mechanisms are more complex than simple membrane permeabilisation induced by many small antimicrobial peptides. Common themes that run through the characterised mechanisms are interactions with specific lipids, production of reactive oxygen species and induction of cell wall stress. Links between sequence motifs and functions are highlighted where appropriate. The complexity of the interactions between plant defensins and fungi helps explain why this protein superfamily is ubiquitous in plant innate immunity.
Collapse
Affiliation(s)
- Kathy Parisi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Thomas M A Shafee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Pedro Quimbar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Nicole L van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia.
| |
Collapse
|
16
|
Koehbach J. Structure-Activity Relationships of Insect Defensins. Front Chem 2017; 5:45. [PMID: 28748179 PMCID: PMC5506212 DOI: 10.3389/fchem.2017.00045] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Insects make up the largest and most diverse group of organisms on earth with several million species to exist in total. Considering the sheer number of insect species and the vast variety of ways they interact with their environment through chemistry, it is clear that they have significant potential as a source of new lead molecules. They have adapted to a range of ecological habitats and exhibit a symbiotic lifestyle with various microbes such as bacteria and fungi. Accordingly, numerous antimicrobial compounds have been identified including for example defensin peptides. Insect defensins were found to have broad-spectrum activity against various gram-positive/negative bacteria as well as fungi. They exhibit a unique structural topology involving the complex arrangement of three disulfide bonds as well as an alpha helix and beta sheets, which is known as cysteine-stabilized αβ motif. Their stability and amenability to peptide engineering make them promising candidates for the development of novel antibiotics lead molecules. This review highlights the current knowledge regarding the structure-activity relationships of insect defensin peptides and provides basis for future studies focusing on the rational design of novel cysteine-rich antimicrobial peptides.
Collapse
Affiliation(s)
- Johannes Koehbach
- School of Biomedical Sciences, University of QueenslandSt. Lucia, QLD, Australia
| |
Collapse
|