1
|
Levillayer L, Brighelli C, Demeret C, Sakuntabhai A, Bureau JF. Role of two modules controlling the interaction between SKAP1 and SRC kinases comparison with SKAP2 architecture and consequences for evolution. PLoS One 2024; 19:e0296230. [PMID: 38483858 PMCID: PMC10939263 DOI: 10.1371/journal.pone.0296230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
SRC kinase associated phosphoprotein 1 (SKAP1), an adaptor for protein assembly, plays an important role in the immune system such as stabilizing immune synapses. Understanding how these functions are controlled at the level of the protein-protein interactions is necessary to describe these processes and to develop therapeutics. Here, we dissected the SKAP1 modular organization to recognize SRC kinases and compared it to that of its paralog SRC kinase associated phosphoprotein 2 (SKAP2). Different conserved motifs common to either both proteins or specific to SKAP2 were found using this comparison. Two modules harboring different binding properties between SKAP1 and SKAP2 were identified: one composed of two conserved motifs located in the second interdomain interacting at least with the SH2 domain of SRC kinases and a second one composed of the DIM domain modulated by the SH3 domain and the activation of SRC kinases. This work suggests a convergent evolution of the binding properties of some SRC kinases interacting specifically with either SKAP1 or SKAP2.
Collapse
Affiliation(s)
- Laurine Levillayer
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| | - Camille Brighelli
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| | - Caroline Demeret
- Institut Pasteur, Université de Paris-Cité, Laboratoire Interactomique, ARN et Immunité ‐ Interactomics, RNA and Immunity, Paris, France
| | - Anavaj Sakuntabhai
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| | - Jean-François Bureau
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| |
Collapse
|
2
|
Bouti P, Klein BJAM, Verkuijlen PJH, Schornagel K, van Alphen FPJ, Taris KKH, van den Biggelaar M, Hoogendijk AJ, van Bruggen R, Kuijpers TW, Matlung HL. SKAP2 acts downstream of CD11b/CD18 and regulates neutrophil effector function. Front Immunol 2024; 15:1344761. [PMID: 38487529 PMCID: PMC10937362 DOI: 10.3389/fimmu.2024.1344761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
Background The importance of CD11b/CD18 expression in neutrophil effector functions is well known. Beyond KINDLIN3 and TALIN1, which are involved in the induction of the high-affinity binding CD11b/CD18 conformation, the signaling pathways that orchestrate this response remain incompletely understood. Method We performed an unbiased screening method for protein selection by biotin identification (BioID) and investigated the KINDLIN3 interactome. We used liquid chromatography with tandem mass spectrometry as a powerful analytical tool. Generation of NB4 CD18, KINDLIN3, or SKAP2 knockout neutrophils was achieved using CRISPR-Cas9 technology, and the cells were examined for their effector function using flow cytometry, live cell imaging, microscopy, adhesion, or antibody-dependent cellular cytotoxicity (ADCC). Results Among the 325 proteins significantly enriched, we identified Src kinase-associated phosphoprotein 2 (SKAP2), a protein involved in actin polymerization and integrin-mediated outside-in signaling. CD18 immunoprecipitation in primary or NB4 neutrophils demonstrated the presence of SKAP2 in the CD11b/CD18 complex at a steady state. Under this condition, adhesion to plastic, ICAM-1, or fibronectin was observed in the absence of SKAP2, which could be abrogated by blocking the actin rearrangements with latrunculin B. Upon stimulation of NB4 SKAP2-deficient neutrophils, adhesion to fibronectin was enhanced whereas CD18 clustering was strongly reduced. This response corresponded with significantly impaired CD11b/CD18-dependent NADPH oxidase activity, phagocytosis, and cytotoxicity against tumor cells. Conclusion Our results suggest that SKAP2 has a dual role. It may restrict CD11b/CD18-mediated adhesion only under resting conditions, but its major contribution lies in the regulation of dynamic CD11b/CD18-mediated actin rearrangements and clustering as required for cellular effector functions of human neutrophils.
Collapse
Affiliation(s)
- Panagiota Bouti
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Bart J. A. M. Klein
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Paul J. H. Verkuijlen
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Karin Schornagel
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Floris P. J. van Alphen
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Kees-Karel H. Taris
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Maartje van den Biggelaar
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Arie J. Hoogendijk
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology and Infectious Diseases, Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L. Matlung
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Liu C, Raab M, Gui Y, Rudd CE. Multi-functional adaptor SKAP1: regulator of integrin activation, the stop-signal, and the proliferation of T cells. Front Immunol 2023; 14:1192838. [PMID: 37325633 PMCID: PMC10264576 DOI: 10.3389/fimmu.2023.1192838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
T-cell activation is a complex process involving a network of kinases and downstream molecular scaffolds or adaptors that integrate surface signals with effector functions. One key immune-specific adaptor is Src kinase-associated phosphoprotein 1 (SKAP1), which is also known as src kinase-associated protein of 55 kDa (SKAP55). This mini-review explains how SKAP1 plays multiple roles in regulating integrin activation, the "stop-signal", and the optimization of the cell cycling of proliferating T cells through interactions with various mediators, including the Polo-like kinase 1 (PLK1). Ongoing research on SKAP1 and its binding partners will likely provide important insights into the regulation of immune function and have implications for the development of new treatments for disease states such as cancer and autoimmunity.
Collapse
Affiliation(s)
- Chen Liu
- Faculté de Medicine, Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- Division of Immunology-Oncology, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Frankfurt, Germany
| | - Yirui Gui
- Faculté de Medicine, Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- Division of Immunology-Oncology, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Christopher E. Rudd
- Faculté de Medicine, Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- Division of Immunology-Oncology, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Pu Y, Wei J, Wu Y, Zhao K, Wu Y, Wu S, Yang X, Xing C. THUMPD3-AS1 facilitates cell growth and aggressiveness by the miR-218-5p/SKAP1 axis in colorectal cancer. Cell Biochem Biophys 2022; 80:483-494. [PMID: 35538197 DOI: 10.1007/s12013-022-01074-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is a malignant cancer with a high mortality. Accumulating studies have revealed that mRNAs involved in ceRNA (competing endogenous RNA) network are implicated in the tumorigenesis and development of CRC. Here, we aimed to elucidate the ceRNA network involving Src kinase associated phosphoprotein 1 (SKAP1) in the biological characteristics of CRC. METHODS Expression levels of genes in colon adenocarcinoma (COAD) samples and prognosis of COAD patients were predicted using publicly available online tool. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clony formation and Transwell assays were conducted to test the biological functions of SKAP1 and THUMPD3 antisense RNA 1 (THUMPD3-AS1) in CRC cells. Western blot was used to measure the protein levels of SKAP1. Gene expression in CRC cells was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). The interaction between miR-218-5p and THUMPD3-AS1 (or SKAP1) was verified by RNA pulldown and luciferase reporter assays. RESULTS SKAP1 was upregulated in COAD tissues and CRC cells and it reflected a poor prognosis in patients with COAD. SKAP1 knockdown inhibited CRC (HT-29 and HCT-116) cell proliferation, migration and invasion. Mechanistically, THUMPD3-AS1 acted as a ceRNA to sponge miR-218-5p and subsequently upregulated SKAP1 expression in CRC cells. SKAP1 overexpression reversed the suppressive effect of THUMPD3-AS1 knockdown on proliferation, migration and invision of CRC cells. CONCLUSIONS THUMPD3-AS1 promotes CRC cell growth and aggressiveness by regulating the miR-218-5p/SKAP1 axis.
Collapse
Affiliation(s)
- Yuwei Pu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Jinrong Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yong Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Kui Zhao
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yongyou Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Shu Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
5
|
Dadwal N, Mix C, Reinhold A, Witte A, Freund C, Schraven B, Kliche S. The Multiple Roles of the Cytosolic Adapter Proteins ADAP, SKAP1 and SKAP2 for TCR/CD3 -Mediated Signaling Events. Front Immunol 2021; 12:703534. [PMID: 34295339 PMCID: PMC8290198 DOI: 10.3389/fimmu.2021.703534] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
T cells are the key players of the adaptive immune response. They coordinate the activation of other immune cells and kill malignant and virus-infected cells. For full activation T cells require at least two signals. Signal 1 is induced after recognition of MHC/peptide complexes presented on antigen presenting cells (APCs) by the clonotypic TCR (T-cell receptor)/CD3 complex whereas Signal 2 is mediated via the co-stimulatory receptor CD28, which binds to CD80/CD86 molecules that are present on APCs. These signaling events control the activation, proliferation and differentiation of T cells. In addition, triggering of the TCR/CD3 complex induces the activation of the integrin LFA-1 (leukocyte function associated antigen 1) leading to increased ligand binding (affinity regulation) and LFA-1 clustering (avidity regulation). This process is termed "inside-out signaling". Subsequently, ligand bound LFA-1 transmits a signal into the T cells ("outside-in signaling") which enhances T-cell interaction with APCs (adhesion), T-cell activation and T-cell proliferation. After triggering of signal transducing receptors, adapter proteins organize the proper processing of membrane proximal and intracellular signals as well as the activation of downstream effector molecules. Adapter proteins are molecules that lack enzymatic or transcriptional activity and are composed of protein-protein and protein-lipid interacting domains/motifs. They organize and assemble macromolecular complexes (signalosomes) in space and time. Here, we review recent findings regarding three cytosolic adapter proteins, ADAP (Adhesion and Degranulation-promoting Adapter Protein), SKAP1 and SKAP2 (Src Kinase Associated Protein 1 and 2) with respect to their role in TCR/CD3-mediated activation, proliferation and integrin regulation.
Collapse
Affiliation(s)
- Nirdosh Dadwal
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Charlie Mix
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Amelie Witte
- Coordination Center of Clinical Trials, University Medicine Greifswald, Greifswald, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
6
|
Rudd CE. How the Discovery of the CD4/CD8-p56 lck Complexes Changed Immunology and Immunotherapy. Front Cell Dev Biol 2021; 9:626095. [PMID: 33791292 PMCID: PMC8005572 DOI: 10.3389/fcell.2021.626095] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
The past 25 years have seen enormous progress in uncovering the receptors and signaling mechanisms on T-cells that activate their various effecter functions. Until the late 1980s, most studies on T-cells had focused on the influx of calcium and the levels of cAMP/GMP in T-cells. My laboratory then uncovered the interaction of CD4 and CD8 co-receptors with the protein-tyrosine kinase p56lck which are now widely accepted as the initiators of the tyrosine phosphorylation cascade leading to T-cell activation. The finding explained how immune recognition receptors expressed by many immune cells, which lack intrinsic catalytic activity, can transduce activation signals via non-covalent association with non-receptor tyrosine kinases. The discovery also established the concept that a protein tyrosine phosphorylation cascade operated in T-cells. In this vein, we and others then showed that the CD4- and CD8-p56lck complexes phosphorylate the TCR complexes which led to the identification of other protein-tyrosine kinases such as ZAP-70 and an array of substrates that are now central to studies in T-cell immunity. Other receptors such as B-cell receptor, Fc receptors and others were also subsequently found to use src kinases to control cell growth. In T-cells, p56lck driven phosphorylation targets include co-receptors such as CD28 and CTLA-4 and immune cell-specific adaptor proteins such as LAT and SLP-76 which act to integrate signals proximal to surface receptors. CD4/CD8-p56lck regulated events in T-cells include intracellular calcium mobilization, integrin activation and the induction of transcription factors for gene expression. Lastly, the identification of the targets of p56lck in the TCR and CD28 provided the framework for the development of chimeric antigen receptor (CAR) therapy in the treatment of cancer. In this review, I outline a history of the development of events that led to the development of the "TCR signaling paradigm" and its implications to immunology and immunotherapy.
Collapse
Affiliation(s)
- Christopher E. Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Universite de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Raab M, Strebhardt K, Rudd CE. Immune adaptor SKAP1 acts a scaffold for Polo-like kinase 1 (PLK1) for the optimal cell cycling of T-cells. Sci Rep 2019; 9:10462. [PMID: 31320682 PMCID: PMC6639320 DOI: 10.1038/s41598-019-45627-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
While the immune cell adaptor protein SKAP1 mediates LFA-1 activation induced by antigen-receptor (TCR/CD3) ligation on T-cells, it is unclear whether the adaptor interacts with other mediators of T-cell function. In this context, the serine/threonine kinase, polo-like kinase (PLK1) regulates multiple steps in the mitotic and cell cycle progression of mammalian cells. Here, we show that SKAP1 is phosphorylated by and binds to PLK1 for the optimal cycling of T-cells. PLK1 binds to the N-terminal residue serine 31 (S31) of SKAP1 and the interaction is needed for optimal PLK1 kinase activity. Further, siRNA knock-down of SKAP1 reduced the rate of T-cell division concurrent with a delay in the expression of PLK1, Cyclin A and pH3. Reconstitution of these KD cells with WT SKAP1, but not the SKAP1 S31 mutant, restored normal cell division. SKAP1-PLK1 binding is dynamically regulated during the cell cycle of T-cells. Our findings identify a novel role for SKAP1 in the regulation of PLK1 and optimal cell cycling needed for T-cell clonal expansion in response to antigenic activation.
Collapse
Affiliation(s)
- Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, CB2 1Q, Cambridge, UK.
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christopher E Rudd
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, CB2 1Q, Cambridge, UK.
- Centre de Recherch-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, Quebec, H1T 2M4, Canada.
- Département de Medicine, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|