1
|
Godoi APDS, Sobral GG, da Silva Vieira JC, Carneiro GF, Conceição FR, da Silva ER, Mendonça M. Phenotypical and molecular characterization of Rhodococcus equi isolated from foals in the Agreste region of Pernambuco - Brazil. Braz J Microbiol 2025; 56:1321-1331. [PMID: 40048142 PMCID: PMC12095708 DOI: 10.1007/s42770-025-01640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/13/2025] [Indexed: 05/22/2025] Open
Abstract
Equine rhodococcosis is caused by Rhodococcus equi, an intracellular coccobacillus whose main virulence factor is a plasmid that harbors genes encoding proteins from the Vap family, with the vapA gene being the most important in equine isolates. Furthermore, other factors observed in R. equi strains, such as antimicrobial resistance and biofilm production, may represent significant challenges in the treatment of affected animals. The objective of this study was to characterize four isolates of R. equi from foals in the state of Pernambuco, Brazil. All isolates were identified as R. equi through biochemical tests, amplification of the choE gene, and sequencing of 16 S rRNA. PCR analysis revealed that three isolates were positive for the plasmid virulence genes (vapA, -C, -D, -E, -F, -H and traA), although vapD was absent in one of the three isolates. One isolate did not present any virulence genes, possibly due to the loss of the plasmid after repeated passages at 37ºC. In the antimicrobial susceptibility test, all isolates were susceptible to erythromycin, clarithromycin, azithromycin, rifampicin, gentamicin, and doxycycline. However, all isolates were capable of forming biofilms, with moderate biofilm formation in isolates Rhodo1 and Rhodo2, and weak biofilm formation in isolates Rhodo3 and Rhodo4, which may be associated with increased antimicrobial tolerance. This molecular characterization demonstrated, for the first time, the presence of the virulence plasmid in R. equi isolates from foals in Northeast Brazil, as well as their capacity for biofilm formation.
Collapse
Affiliation(s)
- Alysson Paulo Dos Santos Godoi
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, Recife, Pernambuco, 52171-900, Brazil
- Programa de Pós-Graduação em Sanidade e Reprodução de Animais de Produção, Universidade Federal do Agreste de Pernambuco, Avenida Bom Pastor, Boa Vista, Garanhuns, 55292-270, Pernambuco, Brazil
| | - Gilvannya Gonçalves Sobral
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, Recife, Pernambuco, 52171-900, Brazil
| | - Júlio César da Silva Vieira
- Programa de Pós-Graduação em Sanidade e Reprodução de Animais de Produção, Universidade Federal do Agreste de Pernambuco, Avenida Bom Pastor, Boa Vista, Garanhuns, 55292-270, Pernambuco, Brazil
| | - Gustavo Ferrer Carneiro
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, Recife, Pernambuco, 52171-900, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | - Elizabete Rodrigues da Silva
- Programa de Pós-Graduação em Sanidade e Reprodução de Animais de Produção, Universidade Federal do Agreste de Pernambuco, Avenida Bom Pastor, Boa Vista, Garanhuns, 55292-270, Pernambuco, Brazil
| | - Marcelo Mendonça
- Programa de Pós-Graduação em Sanidade e Reprodução de Animais de Produção, Universidade Federal do Agreste de Pernambuco, Avenida Bom Pastor, Boa Vista, Garanhuns, 55292-270, Pernambuco, Brazil.
| |
Collapse
|
2
|
Abstract
Saccharibacteria (TM7), which are obligate episymbionts growing on the surface of host bacteria, may play an important role in oral disease, such as periodontitis (1, 2). As TM7 is a newly cultured lineage of bacteria, its research is limited by the small number of isolated representatives relative to the number of TM7 genomes assembled from culture-independent studies (3–5). A comprehensive view of both TM7 taxa and TM7 strain-level variations remains opaque. In this study, we expanded our previously developed TM7 baiting method into using many host bacteria in parallel, which allowed us to obtain 37 TM7 strains from the human oral cavity. These strains were further classified into low-enrichment (LE, n = 24) and high-enrichment (HE, n = 13) groups based on their proficiency at propagating on host bacteria. Of the 13 HE strains, 10 belong to “Candidatus Nanosynbacter sp.” strain HMT-352 (human microbial taxon) (6), enabling us to explore both the phenotypic and genomic strain variations within a single TM7 species. We show that TM7 HMT-352 strains exhibit a diverse host range and varied growth dynamics during the establishment of their episymbiotic relationship with host bacteria. Furthermore, despite HMT-352 strains sharing a majority of their genes, we identified several gene clusters that may play a pivotal role in host affinity. More importantly, our comparative analyses also provide TM7 gene candidates associated with strain-level phenotypic variation that may be important for episymbiotic interactions with host bacteria. IMPORTANCE Candidate phylum radiation (CPR) bacteria comprise a poorly understood phylum that is estimated to encompass ∼26% of all diversity of domain bacteria. Among CPR bacteria, the Saccharibacteria lineage (TM7) is of particular interest, as it is found in high abundance in the mammal microbiome and has been associated with oral disease. While many CPR genomes, TM7 included, have been acquired through culture-independent methods, only a small number of representatives have been isolated. Such isolated representatives, however, shed light on the physiology, pathogenesis, and episymbiotic interactions of TM7. Combined with genomic analyses, experiments involving isolated representatives can distinguish phylogenetic to phenotypic discrepancies and better identify genes of importance. In this study, we utilized multiple host bacteria in parallel to isolate TM7 bacteria and examined strain-level variation in TM7 to reveal key genes that may drive TM7-host interactions. Our findings accentuate that broad phylogenetic characterization of CPR is the next step in understanding these bacteria.
Collapse
|
3
|
Phenotypic Characterization of Rhodococcus equi Biofilm Grown In Vitro and Inhibiting and Dissolving Activity of Azithromycin/Rifampicin Treatment. Pathogens 2019; 8:pathogens8040284. [PMID: 31817114 PMCID: PMC6963269 DOI: 10.3390/pathogens8040284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 01/11/2023] Open
Abstract
Microbial biofilm has been implicated in a wide range of chronic infections. In spite of the fact that Rhodococcus equi is a recognized cause of chronic disease in animals and humans, few studies have focused on the sessile phenotype of R.equi. The aim of this research was to phenotypically characterize the biofilm development of R. equi and its answerability for hypo-responsiveness to macrolides and rifampicin. Biofilm formation is initiated by bacterial adhesion to the surface. In this work, the ability of R. equi to adhere to the surface of human lung epithelial cells was detected by a fluorometric adhesion test performed on 40 clinical isolates. Subsequently, the capability of R. equi to produce biofilm was investigated by colorimetric, fluorescence and scanning electron microscopy analysis, revealing a general slow growth of rhodococcal biofilm and different sessile phenotypes among field isolates, some also including filamented bacteria. Azithromycin treatment produced a higher long-term inhibition and dissolution of R. equi biofilms than rifampicin, while the two antibiotics combined boosted the anti-biofilm effect in a statistically significant manner, although this was not equally effective for all R. equi isolates. Increasing the MIC concentrations of drugs tenfold alone and in combination did not completely eradicate pre-formed R. equi biofilms, while a rifampicin-resistant isolate produced an exceptionally abundant extracellular matrix. These results have strengthened the hypothesis that biofilm production may occur as an antibiotic tolerance system in R. equi, potentially determining persistence and, eventually, chronic infection.
Collapse
|