1
|
Fukui K, Kondo N, Murakawa T, Baba S, Kumasaka T, Yano T. dUTP pyrophosphatases from hyperthermophilic eubacterium and archaeon: Structural and functional examinations on the suitability for PCR application. Protein Sci 2024; 33:e5185. [PMID: 39440877 PMCID: PMC11497495 DOI: 10.1002/pro.5185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Deoxyuridine triphosphate pyrophosphatase (DUT) suppresses incorporation of uracil into genomic DNA during replication. Thermostable DUTs from hyperthermophilic archaea such as Thermococcus pacificus enhance PCR amplification by preventing misincorporation of dUTP generated by spontaneous deamination of dCTP. However, it is necessary to elucidate whether DUTs do not cause dNTP imbalances during PCR by unwanted side activity. Moreover, it has been unknown what structural features define the thermostability of those DUTs. Here, DUT from a hyperthermophilic eubacterium, Aquifex aeolicus (Aa-DUT), was characterized together with those from T. pacificus (Tp-DUT). Aa-DUT was as thermostable as Tp-DUT up to at least 95°C. The crystal structures of the two thermostable enzymes were determined, which revealed that the structures of Aa-DUT and Tp-DUT resembled those of monofunctional and bifunctional DUTs, respectively. Generally, bifunctional DUTs harbor the dCTP deaminase activity in addition to the DUT activity. However, not only Aa-DUT but also Tp-DUT showed poor activity towards dCTP, indicating both enzymes are monofunctional. We further examined eight types of parameters related to thermostability of protein structure and found that the thermostability of Aa-DUT and Tp-DUT might be accomplished by increased numbers of ion pairs on the protein surface. Finally, we verified that Aa-DUT promoted PCR amplification with Pfu DNA polymerase to the same extent as Tp-DUT. Collectively, we conclude that both DUTs from hyperthermophiles maintain the enzymatic activity at high temperatures without consuming dCTP due to the lack of the deaminate activity.
Collapse
Affiliation(s)
- Kenji Fukui
- Department of Biochemistry, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Naoyuki Kondo
- Department of Molecular GeneticsInstitute of Biomedical Science, Kansai Medical UniversityHirakataOsakaJapan
| | - Takeshi Murakawa
- Department of Biochemistry, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Seiki Baba
- Structural Biology DivisionJapan Synchrotron Radiation Research Institute (JASRI)Sayo‐gunHyogoJapan
| | - Takashi Kumasaka
- Structural Biology DivisionJapan Synchrotron Radiation Research Institute (JASRI)Sayo‐gunHyogoJapan
| | - Takato Yano
- Department of Biochemistry, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| |
Collapse
|
2
|
Liang H, Mower JP, Chia CP. Functional Prokaryotic-Like Deoxycytidine Triphosphate Deaminases and Thymidylate Synthase in Eukaryotic Social Amoebae: Vertical, Endosymbiotic, or Horizontal Gene Transfer? Mol Biol Evol 2023; 40:msad268. [PMID: 38064674 PMCID: PMC10733785 DOI: 10.1093/molbev/msad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/22/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023] Open
Abstract
The de novo synthesis of deoxythymidine triphosphate uses several pathways: gram-negative bacteria use deoxycytidine triphosphate deaminase to convert deoxycytidine triphosphate into deoxyuridine triphosphate, whereas eukaryotes and gram-positive bacteria instead use deoxycytidine monophosphate deaminase to transform deoxycytidine monophosphate to deoxyuridine monophosphate. It is then unusual that in addition to deoxycytidine monophosphate deaminases, the eukaryote Dictyostelium discoideum has 2 deoxycytidine triphosphate deaminases (Dcd1Dicty and Dcd2Dicty). Expression of either DcdDicty can fully rescue the slow growth of an Escherichia coli dcd knockout. Both DcdDicty mitigate the hydroxyurea sensitivity of a Schizosaccharomyces pombe deoxycytidine monophosphate deaminase knockout. Phylogenies show that Dcd1Dicty homologs may have entered the common ancestor of the eukaryotic groups of Amoebozoa, Obazoa, Metamonada, and Discoba through an ancient horizontal gene transfer from a prokaryote or an ancient endosymbiotic gene transfer from a mitochondrion, followed by horizontal gene transfer from Amoebozoa to several other unrelated groups of eukaryotes. In contrast, the Dcd2Dicty homologs were a separate horizontal gene transfer from a prokaryote or a virus into either Amoebozoa or Rhizaria, followed by a horizontal gene transfer between them. ThyXDicty, the D. discoideum thymidylate synthase, another enzyme of the deoxythymidine triphosphate biosynthesis pathway, was suggested previously to be acquired from the ancestral mitochondria or by horizontal gene transfer from alpha-proteobacteria. ThyXDicty can fully rescue the E. coli thymidylate synthase knockout, and we establish that it was obtained by the common ancestor of social amoebae not from mitochondria but from a bacterium. We propose horizontal gene transfer and endosymbiotic gene transfer contributed to the enzyme diversity of the deoxythymidine triphosphate synthesis pathway in most social amoebae, many Amoebozoa, and other eukaryotes.
Collapse
Affiliation(s)
- Heng Liang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jeffrey P Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Catherine P Chia
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
3
|
Rácz GA, Nagy N, Várady G, Tóvári J, Apáti Á, Vértessy BG. Discovery of two new isoforms of the human DUT gene. Sci Rep 2023; 13:7760. [PMID: 37173337 PMCID: PMC10181998 DOI: 10.1038/s41598-023-32970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
In human cells two dUTPase isoforms have been described: one nuclear (DUT-N) and one mitochondrial (DUT-M), with cognate localization signals. In contrast, here we identified two additional isoforms; DUT-3 without any localization signal and DUT-4 with the same nuclear localization signal as DUT-N. Based on an RT-qPCR method for simultaneous isoform-specific quantification we analysed the relative expression patterns in 20 human cell lines of highly different origins. We found that the DUT-N isoform is expressed by far at the highest level, followed by the DUT-M and the DUT-3 isoform. A strong correlation between expression levels of DUT-M and DUT-3 suggests that these two isoforms may share the same promoter. We analysed the effect of serum starvation on the expression of dUTPase isoforms compared to non-treated cells and found that the mRNA levels of DUT-N decreased in A-549 and MDA-MB-231 cells, but not in HeLa cells. Surprisingly, upon serum starvation DUT-M and DUT-3 showed a significant increase in the expression, while the expression level of the DUT-4 isoform did not show any changes. Taken together our results indicate that the cellular dUTPase supply may also be provided in the cytoplasm and starvation stress induced expression changes are cell line dependent.
Collapse
Affiliation(s)
- Gergely Attila Rácz
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem Rkp. 3., Budapest, 1111, Hungary.
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, Budapest, Hungary.
| | - Nikolett Nagy
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest Pázmány Péter Sétány 1/C, Budapest, Hungary
| | - György Várady
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, Ráth Gy. U. 7-9, Budapest, 1122, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, Budapest, Hungary
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem Rkp. 3., Budapest, 1111, Hungary.
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, Budapest, Hungary.
| |
Collapse
|
4
|
Weng GX, Ling T, Hou W, Li SN, Chen T, Zhang Z, Wang DD, Xu LG. Mitochondrial DUT-M potentiates RLR-mediated antiviral signaling by enhancing VISA and TRAF2 association. Mol Immunol 2021; 132:117-125. [PMID: 33582548 DOI: 10.1016/j.molimm.2021.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Upon recognition of intracytoplasmic viral RNA, activated RIG-I is recruited to the mitochondrion-located adaptor protein VISA (also known as MAVS, CARDIF, and IPS-1). VISA then acts as a central signaling platform for linking RIG-I and downstream signaling components, such as TRAF2, 5, and 6, TBK1, and IKK, leading to activation of the kinases TBK1 and IKK. These activated kinases further phosphorylate the transcription factors IRF3/7 and NF-κB, leading to the induction of downstream antiviral genes. Here, we report a mitochondrial isoform, deoxyuridine triphosphate nucleotidohydrolase (dUTPase), DUT-M, as a positive regulator in RLR-VISA-mediated antiviral signaling. DUT-M interacts with VISA and RIG-I to facilitate the assembly of the VISA-TRAF2 complex and to augment the polyubiquitination of TRAF2, leading to potentiated activation of IRF3 dimerization and phosphorylation of P65, and enhanced VISA-mediated innate immune response. RLR-VISA-mediated IRF3 dimerization and P65 phosphorylation, were inhibited in DUT-knockdown and DUT-deficient 293 cells. Thus, DUT-M is a positive regulator of the RIG-I-VISA-mediated innate immune response to RNA viruses.
Collapse
Affiliation(s)
- Guang-Xiu Weng
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Ting Ling
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Wen Hou
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Sheng-Na Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Tian Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Zhi Zhang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Dan-Dan Wang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Liang-Guo Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China.
| |
Collapse
|