1
|
Rapado-González Ó, Salta S, López-López R, Henrique R, Suárez-Cunqueiro MM, Jerónimo C. DNA methylation markers for oral cancer detection in non- and minimally invasive samples: a systematic review. Clin Epigenetics 2024; 16:105. [PMID: 39138540 PMCID: PMC11323632 DOI: 10.1186/s13148-024-01716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
More than 50% of oral cancer (OC) patients are diagnosed with advanced-stage disease associated with poor prognosis and quality of life, supporting an urgent need to improve early OC detection. The identification of effective molecular markers by minimally invasive approaches has emerged as a promising strategy for OC screening. This systematic review summarizes and evaluates the performance of the DNA methylation markers identified in non- or minimally invasive samples for OC detection. PubMed's MEDLINE, Scopus, Embase, and Cochrane Library databases were systematically searched for studies that evaluated DNA methylation markers in non-invasive and/or minimally invasive samples (oral rinse/saliva, oral brush, and blood) from OC patients. Two investigators independently extracted data on study population characteristics, candidate methylation markers, testing samples, DNA methylation assay, and performance diagnostic outcomes. Methodological study quality was assessed with the Quality Assessment for Studies of Diagnostic Accuracy-2 tool. Thirty-one studies met the inclusion criteria for this systematic review. DNA methylation markers were evaluated in oral rinse/saliva (n = 17), oral brush (n = 9), and blood (n = 7) samples. Methylation-specific PCR (MSP) and quantitative-MSP were the most common DNA methylation assays. Regarding diagnostic performance values for salivary, oral brush, and blood DNA methylation markers, sensitivity and specificity ranged between 3.4-100% and 21-100%, 9-100% and 26.8-100%, 22-70% and 45.45-100%, respectively. Different gene methylation panels showed good diagnostic performance for OC detection. This systematic review discloses the promising value of testing DNA methylation markers in non-invasive (saliva or oral rinse) or minimally invasive (oral brush or blood) samples as a novel strategy for OC detection. However, further validation in large, multicenter, and prospective study cohorts must be carried out to confirm the clinical value of specific DNA methylation markers in this setting.
Collapse
Affiliation(s)
- Óscar Rapado-González
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Sofia Salta
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706, Santiago de Compostela, Spain
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - María Mercedes Suárez-Cunqueiro
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706, Santiago de Compostela, Spain
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Tomusiak A, Floro A, Tiwari R, Riley R, Matsui H, Andrews N, Kasler HG, Verdin E. Development of an epigenetic clock resistant to changes in immune cell composition. Commun Biol 2024; 7:934. [PMID: 39095531 PMCID: PMC11297166 DOI: 10.1038/s42003-024-06609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/14/2024] [Indexed: 08/04/2024] Open
Abstract
Epigenetic clocks are age predictors that use machine-learning models trained on DNA CpG methylation values to predict chronological or biological age. Increases in predicted epigenetic age relative to chronological age (epigenetic age acceleration) are connected to aging-associated pathologies, and changes in epigenetic age are linked to canonical aging hallmarks. However, epigenetic clocks rely on training data from bulk tissues whose cellular composition changes with age. Here, we found that human naive CD8+ T cells, which decrease in frequency during aging, exhibit an epigenetic age 15-20 years younger than effector memory CD8+ T cells from the same individual. Importantly, homogenous naive T cells isolated from individuals of different ages show a progressive increase in epigenetic age, indicating that current epigenetic clocks measure two independent variables, aging and immune cell composition. To isolate the age-associated cell intrinsic changes, we created an epigenetic clock, the IntrinClock, that did not change among 10 immune cell types tested. IntrinClock shows a robust predicted epigenetic age increase in a model of replicative senescence in vitro and age reversal during OSKM-mediated reprogramming.
Collapse
Affiliation(s)
- Alan Tomusiak
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
- Department of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, 90089, CA, USA
| | - Ariel Floro
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
- Department of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, 90089, CA, USA
| | - Ritesh Tiwari
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Rebeccah Riley
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Hiroyuki Matsui
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Nicolas Andrews
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Herbert G Kasler
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA.
| |
Collapse
|
3
|
Rapado-González Ó, Costa-Fraga N, Bao-Caamano A, López-Cedrún JL, Álvarez-Rodríguez R, Crujeiras AB, Muinelo-Romay L, López-López R, Díaz-Lagares Á, Suárez-Cunqueiro MM. Genome-wide DNA methylation profiling in tongue squamous cell carcinoma. Oral Dis 2024; 30:259-271. [PMID: 36398465 DOI: 10.1111/odi.14444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/14/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To provide a comprehensive characterization of DNA methylome of oral tongue squamous cell carcinoma (OTSCC) and identify novel tumor-specific DNA methylation markers for early detection using saliva. MATERIAL AND METHODS Genome-wide DNA methylation analysis including six OTSCC matched adjacent non-tumoral tissue and saliva was performed using Infinium MethylationEPIC array. Differentially methylated levels of selected genes in our OTSCC cohort were further validated using OTSCC methylation data from The Cancer Genome Atlas database (TCGA). The methylation levels of a set of tumor-specific hypermethylated genes associated with a downregulated expression were evaluated in saliva. Receiver operating characteristic (ROC) curves were performed to assess the diagnostic value of DNA methylation markers. RESULTS A total of 25,890 CpGs (20,505 hypomethylated and 5385 hypermethylated) were differentially methylated (DMCpGs) between OTSCC and adjacent non-tumoral tissue. Hypermethylation of 11 tumor-specific genes was validated in OTSCC TCGA cohort. Of these 11 genes, A2BP1, ANK1, ALDH1A2, GFRA1, TTYH1, and PDE4B were also hypermethylated in saliva. These six salivary methylated genes showed high diagnostic accuracy (≥0.800) for discriminating patients from controls. CONCLUSIONS This is the first largest genome-wide DNA methylation study on OTSCC that identifies a group of novel tumor-specific DNA methylation markers with diagnostic potential in saliva.
Collapse
Affiliation(s)
- Óscar Rapado-González
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Nicolás Costa-Fraga
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS, SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Aida Bao-Caamano
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS, SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - José Luis López-Cedrún
- Department of Oral and Maxillofacial Surgery, Complexo Hospitalario Universitario de A Coruña (CHUAC, SERGAS), A Coruña, Spain
| | - Roberto Álvarez-Rodríguez
- Department of Pathology, Complexo Hospitalario Universitario de A Coruña (CHUAC, SERGAS), A Coruña, Spain
| | - Ana Belén Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS, SERGAS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Muinelo-Romay
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), Santiago de Compostela, Spain
| | - Ángel Díaz-Lagares
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS, SERGAS), Santiago de Compostela, Spain
| | - María Mercedes Suárez-Cunqueiro
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), Santiago de Compostela, Spain
| |
Collapse
|
4
|
Hernández HG, Aranzazu-Moya GC, Pinzón-Reyes EH. Aberrant AHRR, ADAMTS2 and FAM184 DNA Methylation: Candidate Biomarkers in the Oral Rinse of Heavy Smokers. Biomedicines 2023; 11:1797. [PMID: 37509437 PMCID: PMC10376800 DOI: 10.3390/biomedicines11071797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE To identify DNA methylation patterns of heavy smokers in oral rinse samples. METHODS Genome-wide DNA methylation data was imported from Gene Expression Omnibus GSE70977 using the GEOquery package. Two independent sets were analyzed: (a) 71 epigenomes of cancer-free subjects (heavy smokers n = 37 vs. non-smokers n = 31); for concordance assessment (b) 139 oral-cancer patients' epigenomes (heavy smokers n = 92 vs. non-smokers n = 47). Differential DNA methylation for CpG positions and at the regional level was determined using Limma and DMRcate Bioconductor packages. The linear model included sex, age, and alcohol consumption. The statistical threshold was set to p < 0.05. Functional gene prioritization analysis was performed for gene-targeted analysis. RESULTS In individuals without cancer and heavy smokers, the FAM184B gene was found with two CpG positions differentially hypermethylated (p = 0.012 after FDR adjustment), in a region of 48 bp with an absolute methylation difference >10% between groups (p = 1.76 × 10-8). In the analysis corresponding to oral-cancer patients, we found AHRR differentially hypomethylated cancer patients, but also in subjects without oral cancer in the targeted analyses. Remarkably, ADAMTS2 was found differentially hypermethylated in heavy smokers without a diagnosis of cancer in two consecutive probes cg05575921 (p = 3.13 × 10-7) and cg10208897 (p = 1.36 × 10-5). CONCLUSIONS Differentially methylated AHRR, ADAMTS2, and FAM184B genes are biomarker candidates in oral rinse samples.
Collapse
Affiliation(s)
- Hernán Guillermo Hernández
- School of Dentistry, Universidad Santo Tomás, Bucaramanga 680001, Colombia
- PhD Program in Dentistry, Universidad Santo Tomás, Bucaramanga 680001, Colombia
| | | | - Efraín Hernando Pinzón-Reyes
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680003, Colombia
| |
Collapse
|
5
|
Rossi R, Gissi DB, Gabusi A, Fabbri VP, Balbi T, Tarsitano A, Morandi L. A 13-Gene DNA Methylation Analysis Using Oral Brushing Specimens as an Indicator of Oral Cancer Risk: A Descriptive Case Report. Diagnostics (Basel) 2022; 12:diagnostics12020284. [PMID: 35204376 PMCID: PMC8870863 DOI: 10.3390/diagnostics12020284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Analysis of genetic or epigenetic markers from saliva or brushing specimens has been proposed as a diagnostic aid to identify patients at risk of developing oral cancer. However, no reliable non-invasive molecular method for this purpose is commercially available. In the present report, we describe the potential application of a procedure based on a 13-gene DNA methylation analysis using oral brushing samples from a patient affected by oral leukoplakia who developed two metachronous oral carcinomas during the follow-up period. A positive or a negative score was calculated for each brushing sample based on a predefined cut-off value. In this patient, a positive score was detected in the oral leukoplakia diagnosed more than 2 years before the development of oral squamous cell carcinoma and subsequently in clinically healthy mucosa 8 months before the appearance of a secondary tumor. This suggests a potential role of our procedure as an indicator of oral cancer risk.
Collapse
Affiliation(s)
- Roberto Rossi
- Section of Oral Sciences, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (R.R.); (A.G.)
| | - Davide B. Gissi
- Section of Oral Sciences, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (R.R.); (A.G.)
- Correspondence: ; Tel.: +39-05-1208-8123 (ext. 40125)
| | - Andrea Gabusi
- Section of Oral Sciences, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (R.R.); (A.G.)
| | - Viscardo Paolo Fabbri
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology “M. Malpighi”, Bellaria Hospital, 40125 Bologna, Italy;
| | - Tiziana Balbi
- Unit of Anatomic Pathology S. Orsola Hospital, IRCCS Azienda Ospedaliero Universitaria, 40138 Bologna, Italy;
| | - Achille Tarsitano
- Maxillo-Facial Surgery Unit, Department of Biomedical and Neuromotor Sciences, IRCCS Azienda Ospedaliero Universitaria Bologna, University of Bologna, 40138 Bologna, Italy;
| | - Luca Morandi
- Functional and Molecular Neuroimaging Unit, Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy;
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| |
Collapse
|
6
|
Bae SW, Berlth F, Jeong KY, Park JH, Choi JH, Park SH, Suh YS, Kong SH, Park DJ, Lee HJ, Lee C, Kim JI, Youn H, Choi H, Cheon GJ, Kang KW, Yang HK. Glucose metabolic profiles evaluated by PET associated with molecular characteristic landscape of gastric cancer. Gastric Cancer 2022; 25:149-160. [PMID: 34363529 DOI: 10.1007/s10120-021-01223-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although FDG-PET is widely used in cancer, its role in gastric cancer (GC) is still controversial due to variable [18F]fluorodeoxyglucose ([18F]FDG) uptake. Here, we sought to develop a genetic signature to predict high FDG-avid GC to plan individualized PET and investigate the molecular landscape of GC and its association with glucose metabolic profiles noninvasively evaluated by [18F]FDG-PET. METHODS Based on a genetic signature, PETscore, representing [18F]FDG avidity, was developed by imaging data acquired from thirty patient-derived xenografts (PDX). The PETscore was validated by [18F]FDG-PET data and gene expression data of human GC. The PETscore was associated with genomic and transcriptomic profiles of GC using The Cancer Genome Atlas. RESULTS Five genes, PLS1, PYY, HBQ1, SLC6A5, and NAT16, were identified for the predictive model for [18F]FDG uptake of GC. The PETscore was validated in independent PET data of human GC with qRT-PCR and RNA-sequencing. By applying PETscore on TCGA, a significant association between glucose uptake and tumor mutational burden as well as genomic alterations were identified. CONCLUSION Our findings suggest that molecular characteristics are underlying the diverse metabolic profiles of GC. Diverse glucose metabolic profiles may apply to precise diagnostic and therapeutic approaches for GC.
Collapse
Affiliation(s)
- Seong-Woo Bae
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Felix Berlth
- Department of General, Visceral and Transplant Surgery, University of Mainz, Mainz, Germany
| | - Kyoung-Yun Jeong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hyeon Park
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jong-Ho Choi
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Shin-Hoo Park
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Do-Joong Park
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyuk-Joon Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jong-Il Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyewon Youn
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Gi Jeong Cheon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Keon Wook Kang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Han-Kwang Yang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
7
|
Hier J, Vachon O, Bernstein A, Ibrahim I, Mlynarek A, Hier M, Alaoui-Jamali MA, Maschietto M, da Silva SD. Portrait of DNA methylated genes predictive of poor prognosis in head and neck cancer and the implication for targeted therapy. Sci Rep 2021; 11:10012. [PMID: 33976322 PMCID: PMC8113272 DOI: 10.1038/s41598-021-89476-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
Abstract
In addition to chronic infection with human papilloma virus (HPV) and exposure to environmental carcinogens, genetic and epigenetic factors act as major risk factors for head and neck cancer (HNC) development and progression. Here, we conducted a systematic review in order to assess whether DNA hypermethylated genes are predictive of high risk of developing HNC and/or impact on survival and outcomes in non-HPV/non-tobacco/non-alcohol associated HNC. We identified 85 studies covering 32,187 subjects where the relationship between DNA methylation, risk factors and survival outcomes were addressed. Changes in DNA hypermethylation were identified for 120 genes. Interactome analysis revealed enrichment in complex regulatory pathways that coordinate cell cycle progression (CCNA1, SFN, ATM, GADD45A, CDK2NA, TP53, RB1 and RASSF1). However, not all these genes showed significant statistical association with alcohol consumption, tobacco and/or HPV infection in the multivariate analysis. Genes with the most robust HNC risk association included TIMP3, DCC, DAPK, CDH1, CCNA1, MGMT, P16, MINT31, CD44, RARβ. From these candidates, we further validated CD44 at translational level in an independent cohort of 100 patients with tongue cancer followed-up beyond 10 years. CD44 expression was associated with high-risk of tumor recurrence and metastasis (P = 0.01) in HPV-cases. In summary, genes regulated by methylation play a modulatory function in HNC susceptibility and it represent a critical therapeutic target to manage patients with advanced disease.
Collapse
Affiliation(s)
- Jessica Hier
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Olivia Vachon
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Allison Bernstein
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Iman Ibrahim
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Alex Mlynarek
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Michael Hier
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Moulay A Alaoui-Jamali
- Segal Cancer Centre of the Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Mariana Maschietto
- Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP) and Boldrini Children's Center, Campinas, Sao Paulo, Brazil
| | - Sabrina Daniela da Silva
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada. .,Segal Cancer Centre of the Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Saliva Gene Promoter Hypermethylation as a Biomarker in Oral Cancer. J Clin Med 2021; 10:jcm10091931. [PMID: 33947071 PMCID: PMC8124791 DOI: 10.3390/jcm10091931] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Oral carcinogenesis is a multistep process characterized by a summation of multiple genetic and epigenetic alterations in key regulatory genes. The silencing of genes by aberrant promoter hypermethylation is thought to be an important epigenetic event in cancer development and progression which has great potential as a biomarker for early diagnosis, tumor molecular subtyping, prognosis, monitoring, and therapy. Aberrant DNA methylation has been detected in different liquid biopsies, which may represent a potential alternative to solid biopsies. The detection of methylated genes in saliva may have clinical application for noninvasive oral cancer screening and early diagnosis. Here, we review the current evidence on gene promoter hypermethylation in saliva.
Collapse
|
9
|
Adeoye J, Alade AA, Zhu WY, Wang W, Choi SW, Thomson P. Efficacy of hypermethylated DNA biomarkers in saliva and oral swabs for oral cancer diagnosis: Systematic review and meta-analysis. Oral Dis 2021; 28:541-558. [PMID: 33423350 DOI: 10.1111/odi.13773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVES This study aims to determine the diagnostic test accuracy (DTA) of hypermethylated DNA biomarkers in saliva and oral swabs for oral squamous cell carcinoma (OSCC) detection from the prevalidation studies available. MATERIALS AND METHODS Electronic database searching of PubMed, EMBASE, Cochrane Library, Scopus, Web of Science, and LILACS was conducted to identify relevant articles that were published between January 1, 2000, and August 1, 2020. RESULTS Meta-analysis was conducted based on 11 of 20 studies selected for review. Included studies had high bias concerns on the QUADAS-2 study assessment tool. We found that salivary and oral swab hypermethylation markers had better specificity than sensitivity for oral cancer detection. Summary sensitivity and specificity (95% CI) of hypermethylation panels were 86.2% (60-96.2) and 90.6% (85.9-93.9) while for individual markers, summary sensitivity and specificity (95% CI) were 70% (56.9-80.5) and 91.9% (80.3-96.9), respectively. Respective positive and negative likelihood ratios for combined markers were 9.2 (5.89-14.36) and 0.15 (0.05-0.5), and 8.61 (3.39-21.87) and 0.33 (0.22-0.49) for single-application biomarkers. CONCLUSION DNA hypermethylation biomarkers especially in combination have acceptable DTA that warrants further optimization with rigorous biomarker evaluation methods for conclusive determination of their efficacy.
Collapse
Affiliation(s)
- John Adeoye
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.,Oral Cancer Research Group, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Azeez Arisekola Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA.,Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Wang-Yong Zhu
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Weilan Wang
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.,Oral Cancer Research Group, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Siu-Wai Choi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.,Oral Cancer Research Group, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Peter Thomson
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.,Oral Cancer Research Group, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Wu X, Huang Q, Javed R, Zhong J, Gao H, Liang H. Effect of tobacco smoking on the epigenetic age of human respiratory organs. Clin Epigenetics 2019; 11:183. [PMID: 31801625 PMCID: PMC6894291 DOI: 10.1186/s13148-019-0777-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Smoking leads to the aging of organs. However, no studies have been conducted to quantify the effect of smoking on the aging of respiratory organs and the aging-reversing ability of smoking cessation. RESULTS We collected genome-wide methylation datasets of buccal cells, airway cells, esophagus tissue, and lung tissue from non-smokers, smokers, and ex-smokers. We used the "epigenetic clock" method to quantify the epigenetic age acceleration in the four organs. The statistical analyses showed the following: (1) Smoking increased the epigenetic age of airway cells by an average of 4.9 years and lung tissue by 4.3 years. (2) After smoking ceased, the epigenetic age acceleration in airway cells (but not in lung tissue) slowed to a level that non-smokers had. (3) The epigenetic age acceleration in airway cells and lung tissue showed no gender difference. CONCLUSIONS Smoking can accelerate the epigenetic age of human respiratory organs, but the effect varies among organs and can be reversed by smoking cessation. Our study provides a powerful incentive to reduce tobacco consumption autonomously.
Collapse
Affiliation(s)
- Xiaohui Wu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.,Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong, China
| | - Qingsheng Huang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Ruheena Javed
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jiayong Zhong
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huan Gao
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huiying Liang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
11
|
Gissi DB, Tarsitano A, Gabusi A, Rossi R, Attardo G, Lenzi J, Marchetti C, Montebugnoli L, Foschini MP, Morandi L. 13-gene DNA Methylation Analysis from Oral Brushing: A Promising Non Invasive Tool in the Follow-up of Oral Cancer Patients. J Clin Med 2019; 8:jcm8122107. [PMID: 31810211 PMCID: PMC6947392 DOI: 10.3390/jcm8122107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Background: This study aimed to evaluate the prognostic value of a non-invasive sampling procedure based on 13-gene DNA methylation analysis in the follow-up of patients previously treated for oral squamous cell carcinoma (OSCC). Methods: The study population included 49 consecutive patients treated for OSCC. Oral brushing sample collection was performed at two different times: before any cancer treatment in the tumor mass and during patient follow-up almost 6 months after OSCC treatment, within the regenerative area after OSCC resection. Each sample was considered positive or negative in relation to a predefined cut-off value. Results: Before any cancer treatment, 47/49 specimens exceeded the score and were considered as positive. Six months after OSCC resection, 16/49 specimens also had positive scores in the samples collected from the regenerative area. During the follow-up period, 7/49 patients developed locoregional relapse: 6/7 patients had a positive score in the regenerative area after OSCC resection. The presence of a positive score after oral cancer treatment was the most powerful variable related to the appearance of locoregional relapse. Conclusion: 13-gene DNA methylation analysis by oral brushing may have a clinical application as a prognostic non-invasive tool in the follow-up of patients surgically treated for OSCC.
Collapse
Affiliation(s)
- Davide B. Gissi
- Section of Oral Sciences, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40159 Bologna, Italy; (A.G.); (R.R.); (L.M.)
- Correspondence: ; Tel.: +39-0512088123
| | - Achille Tarsitano
- Section of Maxillo-Facial Surgery at Policlinico S. Orsola-Malpighi, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (A.T.); (C.M.)
| | - Andrea Gabusi
- Section of Oral Sciences, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40159 Bologna, Italy; (A.G.); (R.R.); (L.M.)
| | - Roberto Rossi
- Section of Oral Sciences, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40159 Bologna, Italy; (A.G.); (R.R.); (L.M.)
| | - Giuseppe Attardo
- Section of Anatomic Pathology at Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy; (G.A.); (M.P.F.)
| | - Jacopo Lenzi
- Section of Hygiene, Department of Biomedical and Neuromotor Sciences, Public Health and Medical Statistics, University of Bologna, 40126 Bologna, Italy
| | - Claudio Marchetti
- Section of Maxillo-Facial Surgery at Policlinico S. Orsola-Malpighi, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (A.T.); (C.M.)
| | - Lucio Montebugnoli
- Section of Oral Sciences, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40159 Bologna, Italy; (A.G.); (R.R.); (L.M.)
| | - Maria P. Foschini
- Section of Anatomic Pathology at Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy; (G.A.); (M.P.F.)
| | - Luca Morandi
- Functional MR Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy;
| |
Collapse
|
12
|
Langevin SM, Kuhnell D, Niu L, Biesiada J, Leung YK, Deka R, Chen A, Medvedovic M, Kelsey KT, Kasper S, Zhang X. Comprehensive mapping of the methylation landscape of 16 CpG-dense regions in oral and pharyngeal squamous cell carcinoma. Epigenomics 2019; 11:987-1002. [PMID: 31215230 DOI: 10.2217/epi-2018-0172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: The goal of this study was to comprehensively interrogate and map DNA methylation across 16 CpG-dense regions previously associated with oral and pharyngeal squamous cell carcinoma (OPSCC). Materials & methods: Targeted multiplex bisulfite amplicon sequencing was performed on four OPSCC cell lines and primary non-neoplastic oral epithelial cells. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed for a subset of associated genes. Results: There was clear differential methylation between one or more OPSCC cell lines and control cells for the majority of CpG-dense regions. Conclusion: Targeted multiplex bisulfite amplicon sequencing allowed us to efficiently map methylation across the entire region of interest with a high degree of sensitivity and helps shed light on novel differentially methylated regions that may have value as biomarkers of OPSCC.
Collapse
Affiliation(s)
- Scott M Langevin
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.,Cincinnati Cancer Center, Cincinnati, OH 45267, USA
| | - Damaris Kuhnell
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Liang Niu
- Division of Biostatistics & Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jacek Biesiada
- Division of Biostatistics & Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yuet-Kin Leung
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA.,Division of Environmental Genetics & Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ranjan Deka
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mario Medvedovic
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA.,Division of Biostatistics & Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912, USA.,Department of Pathology & Laboratory Medicine, Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Susan Kasper
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA.,Division of Environmental Genetics & Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiang Zhang
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA.,Division of Environmental Genetics & Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
13
|
Epigenetic Modifications as Biomarkers of Tumor Development, Therapy Response, and Recurrence across the Cancer Care Continuum. Cancers (Basel) 2018; 10:cancers10040101. [PMID: 29614786 PMCID: PMC5923356 DOI: 10.3390/cancers10040101] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023] Open
Abstract
Aberrant epigenetic modifications are an early event in carcinogenesis, with the epigenetic landscape continuing to change during tumor progression and metastasis—these observations suggest that specific epigenetic modifications could be used as diagnostic and prognostic biomarkers for many cancer types. DNA methylation, post-translational histone modifications, and non-coding RNAs are all dysregulated in cancer and are detectable to various degrees in liquid biopsies such as sputum, urine, stool, and blood. Here, we will focus on the application of liquid biopsies, as opposed to tissue biopsies, because of their potential as non-invasive diagnostic tools and possible use in monitoring therapy response and progression to metastatic disease. This includes a discussion of septin-9 (SEPT9) DNA hypermethylation for detecting colorectal cancer, which is by far the most developed epigenetic biomarker assay. Despite their potential as prognostic and diagnostic biomarkers, technical issues such as inconsistent methodology between studies, overall low yield of epigenetic material in samples, and the need for improved histone and non-coding RNA purification methods are limiting the use of epigenetic biomarkers. Once these technical limitations are overcome, epigenetic biomarkers could be used to monitor cancer development, disease progression, therapeutic response, and recurrence across the entire cancer care continuum.
Collapse
|
14
|
Wang R, van Leeuwen RW, Boers A, Klip HG, de Meyer T, Steenbergen RDM, van Criekinge W, van der Zee AGJ, Schuuring E, Wisman GBA. Genome-wide methylome analysis using MethylCap-seq uncovers 4 hypermethylated markers with high sensitivity for both adeno- and squamous-cell cervical carcinoma. Oncotarget 2018; 7:80735-80750. [PMID: 27738327 PMCID: PMC5348351 DOI: 10.18632/oncotarget.12598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Background Cytology-based screening methods for cervical adenocarcinoma (ADC) and to a lesser extent squamous-cell carcinoma (SCC) suffer from low sensitivity. DNA hypermethylation analysis in cervical scrapings may improve detection of SCC, but few methylation markers have been described for ADC. We aimed to identify novel methylation markers for the early detection of both ADC and SCC. Results Genome-wide methylation profiling for 20 normal cervices, 6 ADC and 6 SCC using MethylCap-seq yielded 53 candidate regions hypermethylated in both ADC and SCC. Verification and independent validation of the 15 most significant regions revealed 5 markers with differential methylation between 17 normals and 13 cancers. Quantitative methylation-specific PCR on cervical cancer scrapings resulted in detection rates ranging between 80% and 92% while between 94% and 99% of control scrapings tested negative. Four markers (SLC6A5, SOX1, SOX14 and TBX20) detected ADC and SCC with similar sensitivity. In scrapings from women referred with an abnormal smear (n=229), CIN3+ sensitivity was between 36% and 71%, while between 71% and 93% of adenocarcinoma in situ (AdCIS) were detected; and CIN0/1 specificity was between 88% and 98%. Compared to hrHPV, the combination SOX1/SOX14 showed a similar CIN3+ sensitivity (80% vs. 75%, respectively, P>0.2), while specificity improved (42% vs. 84%, respectively, P < 10-5). Conclusion SOX1 and SOX14 are methylation biomarkers applicable for screening of all cervical cancer types.
Collapse
Affiliation(s)
- Rong Wang
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands.,Department of Laboratory Medicine, Tianjin Medical University, Tianjin, China
| | - Robert W van Leeuwen
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Aniek Boers
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Harry G Klip
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Tim de Meyer
- Department of Mathematical Modeling, Statistics and Bio-informatics, University of Ghent, Ghent, Belgium
| | | | - Wim van Criekinge
- Department of Mathematical Modeling, Statistics and Bio-informatics, University of Ghent, Ghent, Belgium
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Ed Schuuring
- Department of Pathology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - G Bea A Wisman
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Morandi L, Gissi D, Tarsitano A, Asioli S, Gabusi A, Marchetti C, Montebugnoli L, Foschini MP. CpG location and methylation level are crucial factors for the early detection of oral squamous cell carcinoma in brushing samples using bisulfite sequencing of a 13-gene panel. Clin Epigenetics 2017; 9:85. [PMID: 28814981 PMCID: PMC5558660 DOI: 10.1186/s13148-017-0386-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 02/08/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is usually diagnosed at an advanced stage and is commonly preceded by oral premalignant lesions. The mortality rates have remained unchanged (50% within 5 years after diagnosis), and it is related to tobacco smoking and alcohol intake. Novel molecular markers for early diagnosis are urgently needed. The purpose of this study was to evaluate the diagnostic value of methylation level in a set of 18 genes by bisulfite next-generation sequencing. Methods With minimally invasive oral brushing, 28 consecutive OSCC, one squamous cell carcinoma with sarcomatoid features, six high-grade squamous intraepithelial lesions (HGSIL), 30 normal contralateral mucosa from the same patients, and 65 healthy donors were evaluated for DNA methylation analyzing 18 target genes by quantitative bisulfite next-generation sequencing. We further evaluated an independent cohort (validation dataset) made of 20 normal donors, one oral fibroma, 14 oral lichen planus (OLP), three proliferative verrucous leukoplakia (PVL), and two OSCC. Results Comparing OSCC with normal healthy donors and contralateral mucosa in 355 CpGs, we identified the following epigenetically altered genes: ZAP70, ITGA4, KIF1A, PARP15, EPHX3, NTM, LRRTM1, FLI1, MIR193, LINC00599, PAX1, and MIR137HG showing hypermethylation and MIR296, TERT, and GP1BB showing hypomethylation. The behavior of ZAP70, GP1BB, H19, EPHX3, and MIR193 fluctuated among different interrogated CpGs. The gap between normal and OSCC samples remained mostly the same (Kruskal-Wallis P values < 0.05), but the absolute values changed conspicuously. ROC curve analysis identified the most informative CpGs, and we correctly stratified OSCC and HGSIL from normal donors using a multiclass linear discriminant analysis in a 13-gene panel (AUC 0.981). Only the OSCC with sarcomatoid features was negative. Three contralateral mucosa were positive, a sign of a possible field cancerization. Among imprinted genes, only MIR296 showed loss of imprinting. DNMT1, TERC, and H19 together with the global methylation of long interspersed element 1 were unchanged. In the validation dataset, values over the threshold were detected in 2/2 OSCC, in 3/3 PVL, and in 2/14 OLP. Conclusions Our data highlight the importance of CpG location and correct estimation of DNA methylation level for highly accurate early diagnosis of OSCC. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0386-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luca Morandi
- "M. Malpighi" Section of Anatomic Pathology, Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, via Altura n.3, 40137 Bologna, Italy
| | - Davide Gissi
- Section of Oral Science, Department of Biomedical and Neuromuscular Sciences, University of Bologna, Bologna, Italy
| | - Achille Tarsitano
- Unit of Maxillofacial Surgery, S. Orsola Hospital Bologna, Bologna, Italy
| | - Sofia Asioli
- "M. Malpighi" Section of Anatomic Pathology, Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, via Altura n.3, 40137 Bologna, Italy
| | - Andrea Gabusi
- Section of Oral Science, Department of Biomedical and Neuromuscular Sciences, University of Bologna, Bologna, Italy
| | - Claudio Marchetti
- Unit of Maxillofacial Surgery, S. Orsola Hospital Bologna, Bologna, Italy
| | - Lucio Montebugnoli
- Section of Oral Science, Department of Biomedical and Neuromuscular Sciences, University of Bologna, Bologna, Italy
| | - Maria Pia Foschini
- "M. Malpighi" Section of Anatomic Pathology, Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, via Altura n.3, 40137 Bologna, Italy
| |
Collapse
|
16
|
Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy. Int J Mol Sci 2017; 18:ijms18071506. [PMID: 28704968 PMCID: PMC5535996 DOI: 10.3390/ijms18071506] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) is the sixth most prevalent cancer and one of the most aggressive malignancies worldwide. Despite continuous efforts to identify molecular markers for early detection, and to develop efficient treatments, the overall survival and prognosis of HNSCC patients remain poor. Accumulated scientific evidences suggest that epigenetic alterations, including DNA methylation, histone covalent modifications, chromatin remodeling and non-coding RNAs, are frequently involved in oral carcinogenesis, tumor progression, and resistance to therapy. Epigenetic alterations occur in an unsystematic manner or as part of the aberrant transcriptional machinery, which promotes selective advantage to the tumor cells. Epigenetic modifications also contribute to cellular plasticity during tumor progression and to the formation of cancer stem cells (CSCs), a small subset of tumor cells with self-renewal ability. CSCs are involved in the development of intrinsic or acquired therapy resistance, and tumor recurrences or relapse. Therefore, the understanding and characterization of epigenetic modifications associated with head and neck carcinogenesis, and the prospective identification of epigenetic markers associated with CSCs, hold the promise for novel therapeutic strategies to fight tumors. In this review, we focus on the current knowledge on epigenetic modifications observed in HNSCC and emerging Epi-drugs capable of sensitizing HNSCC to therapy.
Collapse
|