1
|
Awad A, Alcala AJ, Cowles MW, Sheikh SZ. Chromatin profiling to identify biomarkers in inflammatory bowel diseases. Curr Opin Gastroenterol 2025:00001574-990000000-00193. [PMID: 40304726 DOI: 10.1097/mog.0000000000001104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
PURPOSE OF REVIEW Chromatin plays a critical role in gene regulation and disease pathogenesis. In inflammatory bowel disease (IBD), alterations in chromatin structure contribute to disease heterogeneity and impact treatment responses. This review explores chromatin accessibility and chromatin-associated proteins as biomarkers for IBD and highlights recent technological advancements enabling targeted biomarker discovery and novel therapies. RECENT FINDINGS Advancements in high-throughput sequencing have enabled genome-wide profiling of chromatin interactions in IBD. Studies have identified distinct chromatin landscapes in Crohn's disease (CD) and ulcerative colitis (UC), revealing stable regulatory shifts independent of inflammation. SUMMARY Chromatin profiling offers a novel approach for identifying biomarkers and therapeutic targets in IBD. Integrating chromatin accessibility data with transcriptomic and epigenomic analyses can refine disease classification and guide personalized treatment strategies. Emerging techniques compatible with formalin-fixed paraffin-embedded (FFPE) samples enhance clinical applicability, bridging the gap between molecular research and precision gastroenterology.
Collapse
Affiliation(s)
- Ayesh Awad
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill
| | | | | | - Shehzad Z Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill
| |
Collapse
|
2
|
Diotallevi A, Amatori S, Persico G, Buffi G, Sordini E, Giorgio M, Fanelli M, Galluzzi L. Histone H3 K4 trimethylation occurs mainly at the origins of polycistronic transcription in the genome of Leishmania infantum promastigotes and intracellular amastigotes. BMC Genomics 2025; 26:167. [PMID: 39979847 PMCID: PMC11841261 DOI: 10.1186/s12864-025-11350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Trypanosomatids include the genera Trypanosoma and Leishmania, which are the etiological agents of important human diseases. These pathogens present unique mechanisms of gene expression characterized by functionally unrelated genes positioned in tandem and organized into polycistronic transcription units transcribed in a large pre-mRNA by RNA Polymerase II. Since most of the genome is constitutively transcribed, gene expression is primarily controlled by post-transcriptional processes. As in other organisms, histones in trypanosomatids contain a considerable number of post-translational modifications, highly conserved across evolution, such as the acetylation and methylation of some lysines on histone H3 and H4. These modifications have been mainly studied in Trypanosoma spp. The aim of this work was to elucidate the distribution of histone H3 lysine 4 trimethylation (H3K4me3) over the chromatin landscape of Leishmania infantum, the causative agent of canine and human leishmaniasis in the Mediterranean region. To this end, we investigated by chromatin immunoprecipitation (ChIP)-sequencing either the promastigotes (the flagellated motile form) and the amastigotes (the intracellular form) in an in vitro infection model. RESULTS The chromatin was prepared from THP-1 cells non infected, THP-1 cells infected with L. infantum MHOM/FR/78/LEM75, and THP-1 cells non infected and mixed with L. infantum MHOM/FR/78/LEM75 promastigotes. ChIP was conducted using anti-H3K4me3 or anti-H3K27me3 antibodies and ChIP-seq was performed on an Ion S5 sequencer. We showed that histone H3K4me3 is mainly enriched at transcription start sites (67%) or internally within the polycistronic transcription units (30%), with no differences between L. infantum promastigotes and amastigotes. Moreover, the enriched regions co-localize with another hallmark of transcriptional activation (histone H3 acetylation) in L. major, a species characterized by a high degree of synteny with L. infantum. CONCLUSIONS These findings expand our knowledge of the epigenomics of Leishmania parasites, focusing on epigenetic markers associated with transcription in L. infantum, and will contribute to elucidate the transcriptional mechanisms in these pathogens.
Collapse
Affiliation(s)
- Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d'Augusto 2, Fano (PU), 61029, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d'Augusto 2, Fano (PU), 61029, Italy
| | - Giuseppe Persico
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Milan, Italy
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Gloria Buffi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d'Augusto 2, Fano (PU), 61029, Italy
| | - Enrica Sordini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d'Augusto 2, Fano (PU), 61029, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Milan, Italy
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d'Augusto 2, Fano (PU), 61029, Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d'Augusto 2, Fano (PU), 61029, Italy.
| |
Collapse
|
3
|
Mar D, Babenko IM, Zhang R, Noble WS, Denisenko O, Vaisar T, Bomsztyk K. A High-Throughput PIXUL-Matrix-Based Toolbox to Profile Frozen and Formalin-Fixed Paraffin-Embedded Tissues Multiomes. J Transl Med 2024; 104:100282. [PMID: 37924947 PMCID: PMC10872585 DOI: 10.1016/j.labinv.2023.100282] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Large-scale high-dimensional multiomics studies are essential to unravel molecular complexity in health and disease. We developed an integrated system for tissue sampling (CryoGrid), analytes preparation (PIXUL), and downstream multiomic analysis in a 96-well plate format (Matrix), MultiomicsTracks96, which we used to interrogate matched frozen and formalin-fixed paraffin-embedded (FFPE) mouse organs. Using this system, we generated 8-dimensional omics data sets encompassing 4 molecular layers of intracellular organization: epigenome (H3K27Ac, H3K4m3, RNA polymerase II, and 5mC levels), transcriptome (messenger RNA levels), epitranscriptome (m6A levels), and proteome (protein levels) in brain, heart, kidney, and liver. There was a high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles confirmed known organ-specific superenhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic profiles, known to be poorly correlated with transcriptomic data, can be more accurately predicted by the full suite of multiomics data, compared with using epigenomic, transcriptomic, or epitranscriptomic measurements individually.
Collapse
Affiliation(s)
- Daniel Mar
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Ilona M Babenko
- Diabetes Institute, University of Washington, Seattle, Washington
| | - Ran Zhang
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, Seattle, Washington
| | - Tomas Vaisar
- Diabetes Institute, University of Washington, Seattle, Washington
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; Matchstick Technologies, Inc, Kirkland, Washington.
| |
Collapse
|
4
|
Andreani C, Bartolacci C, Persico G, Casciaro F, Amatori S, Fanelli M, Giorgio M, Galié M, Tomassoni D, Wang J, Zhang X, Bick G, Coppari R, Marchini C, Amici A. SIRT6 promotes metastasis and relapse in HER2-positive breast cancer. Sci Rep 2023; 13:22000. [PMID: 38081972 PMCID: PMC10713583 DOI: 10.1038/s41598-023-49199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The histone deacetylase sirtuin 6 (SIRT6) has been endowed with anti-cancer capabilities in many tumor types. Here, we investigate the impact of SIRT6-overexpression (SIRT6-OE) in Delta16HER2 mice, which are a bona fide model of HER2-positive breast cancer. After an initial delay in the tumor onset, SIRT6-OE induces a more aggressive phenotype of Delta16HER2 tumors promoting the formation of higher number of tumor foci and metastases than controls. This phenotype of SIRT6-OE tumors is associated with cancer stem cell (CSC)-like features and tumor dormancy, and low senescence and oxidative DNA damage. Accordingly, a sub-set of HER2-positive breast cancer patients with concurrent SIRT6-OE has a significant poorer relapse-free survival (RFS) probability than patients with low expression of SIRT6. ChIP-seq, RNA-seq and RT-PCR experiments indicate that SIRT6-OE represses the expression of the T-box transcription factor 3 (Tbx3) by deacetylation of H3K9ac. Accordingly, loss-of-function mutations of TBX3 or low TBX3 expression levels are predictive of poor prognosis in HER2-positive breast cancer patients. Our work indicates that high levels of SIRT6 are indicative of poor prognosis and high risk of metastasis in HER2-positive breast cancer and suggests further investigation of TBX3 as a downstream target of SIRT6 and co-marker of poor-prognosis. Our results point to a breast cancer subtype-specific effect of SIRT6 and warrant future studies dissecting the mechanisms of SIRT6 regulation in different breast cancer subtypes.
Collapse
Affiliation(s)
- Cristina Andreani
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
- Department of Internal Medicine, University of Cincinnati, 45219, Cincinnati, OH, USA.
| | - Caterina Bartolacci
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
- Department of Internal Medicine, University of Cincinnati, 45219, Cincinnati, OH, USA
| | - Giuseppe Persico
- Department of Experimental Oncology, IRCCS-European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Francesca Casciaro
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Stefano Amatori
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61032, Fano, Italy
| | - Mirco Fanelli
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61032, Fano, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, IRCCS-European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Mirco Galié
- Department of Neuroscience, Biomedicine and Movement, Section of Anatomy and Histology, University of Verona, 37134, Verona, Italy
| | - Daniele Tomassoni
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Junbiao Wang
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati, 45219, Cincinnati, OH, USA
| | - Gregory Bick
- Department of Cancer Biology, University of Cincinnati, 45219, Cincinnati, OH, USA
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Cristina Marchini
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Augusto Amici
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| |
Collapse
|
5
|
Henikoff S, Henikoff JG, Ahmad K, Paranal RM, Janssens DH, Russell ZR, Szulzewsky F, Kugel S, Holland EC. Epigenomic analysis of formalin-fixed paraffin-embedded samples by CUT&Tag. Nat Commun 2023; 14:5930. [PMID: 37739938 PMCID: PMC10516967 DOI: 10.1038/s41467-023-41666-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023] Open
Abstract
For more than a century, formalin-fixed paraffin-embedded (FFPE) sample preparation has been the preferred method for long-term preservation of biological material. However, the use of FFPE samples for epigenomic studies has been difficult because of chromatin damage from long exposure to high concentrations of formaldehyde. Previously, we introduced Cleavage Under Targeted Accessible Chromatin (CUTAC), an antibody-targeted chromatin accessibility mapping protocol based on CUT&Tag. Here we show that simple modifications of our CUTAC protocol either in single tubes or directly on slides produce high-resolution maps of paused RNA Polymerase II at enhancers and promoters using FFPE samples. We find that transcriptional regulatory element differences produced by FFPE-CUTAC distinguish between mouse brain tumors and identify and map regulatory element markers with high confidence and precision, including microRNAs not detectable by RNA-seq. Our simple workflows make possible affordable epigenomic profiling of archived biological samples for biomarker identification, clinical applications and retrospective studies.
Collapse
Affiliation(s)
- Steven Henikoff
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Jorja G Henikoff
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kami Ahmad
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ronald M Paranal
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Derek H Janssens
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Zachary R Russell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sita Kugel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
6
|
Mar D, Babenko IM, Zhang R, Noble WS, Denisenko O, Vaisar T, Bomsztyk K. MultiomicsTracks96: A high throughput PIXUL-Matrix-based toolbox to profile frozen and FFPE tissues multiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533031. [PMID: 36993219 PMCID: PMC10055122 DOI: 10.1101/2023.03.16.533031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background The multiome is an integrated assembly of distinct classes of molecules and molecular properties, or "omes," measured in the same biospecimen. Freezing and formalin-fixed paraffin-embedding (FFPE) are two common ways to store tissues, and these practices have generated vast biospecimen repositories. However, these biospecimens have been underutilized for multi-omic analysis due to the low throughput of current analytical technologies that impede large-scale studies. Methods Tissue sampling, preparation, and downstream analysis were integrated into a 96-well format multi-omics workflow, MultiomicsTracks96. Frozen mouse organs were sampled using the CryoGrid system, and matched FFPE samples were processed using a microtome. The 96-well format sonicator, PIXUL, was adapted to extract DNA, RNA, chromatin, and protein from tissues. The 96-well format analytical platform, Matrix, was used for chromatin immunoprecipitation (ChIP), methylated DNA immunoprecipitation (MeDIP), methylated RNA immunoprecipitation (MeRIP), and RNA reverse transcription (RT) assays followed by qPCR and sequencing. LC-MS/MS was used for protein analysis. The Segway genome segmentation algorithm was used to identify functional genomic regions, and linear regressors based on the multi-omics data were trained to predict protein expression. Results MultiomicsTracks96 was used to generate 8-dimensional datasets including RNA-seq measurements of mRNA expression; MeRIP-seq measurements of m6A and m5C; ChIP-seq measurements of H3K27Ac, H3K4m3, and Pol II; MeDIP-seq measurements of 5mC; and LC-MS/MS measurements of proteins. We observed high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles (ChIP-seq: H3K27Ac, H3K4m3, Pol II; MeDIP-seq: 5mC) was able to recapitulate and predict organ-specific super-enhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic expression profiles can be more accurately predicted by the full suite of multi-omics data, compared to using epigenomic, transcriptomic, or epitranscriptomic measurements individually. Conclusions The MultiomicsTracks96 workflow is well suited for high dimensional multi-omics studies - for instance, multiorgan animal models of disease, drug toxicities, environmental exposure, and aging as well as large-scale clinical investigations involving the use of biospecimens from existing tissue repositories.
Collapse
|
7
|
Amatori S, Persico G, Cantatore F, Rusin M, Formica M, Giorgi L, Macedi E, Casciaro F, Errico Provenzano A, Gambardella S, Noberini R, Bonaldi T, Fusi V, Giorgio M, Fanelli M. Small molecule-induced epigenomic reprogramming of APL blasts leading to antiviral-like response and c-MYC downregulation. Cancer Gene Ther 2022; 30:671-682. [PMID: 36536122 DOI: 10.1038/s41417-022-00576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
AbstractAcute promyelocytic leukemia (APL) is an aggressive subtype of acute myeloid leukemia (AML) in which the PML/RARα fusion protein exerts oncogenic activities by recruiting repressive complexes to the promoter of specific target genes. Other epigenetic perturbations, as alterations of histone H3 lysine 9 trimethylation (H3K9me3), have been frequently found in AMLs and are associated with leukemogenesis and leukemia progression. Here, we characterized the epigenomic effects of maltonis, a novel maltol-derived molecule, in APL cells. We demonstrate that maltonis treatments induce a profound remodulation of the histone code, reducing global H3K9me3 signal and modulating other histone post-translational modifications. Transcriptomic and epigenomic analyses revealed that maltonis exposure induces changes of genes expression associated with a genomic redistribution of histone H3 lysine 4 trimethylation (H3K4me3) and lysine 27 acetylation (H3K27ac). Upregulation of interferon alpha and gamma response and downregulation of c-MYC target genes, in function of c-MYC reduced expression (monitored in all the hematopoietic neoplasms tested), represent the most significant modulated pathways. These data demonstrate the ability of maltonis to epigenetically reprogram the gene expression profile of APL cells, inducing an intriguing antiviral-like response, concomitantly with the downregulation of c-MYC-related pathways, thus making it an attractive candidate for antileukemic therapy.
Collapse
|
8
|
Persico G, Casciaro F, Amatori S, Rusin M, Cantatore F, Perna A, Auber LA, Fanelli M, Giorgio M. Histone H3 Lysine 4 and 27 Trimethylation Landscape of Human Alzheimer's Disease. Cells 2022; 11:734. [PMID: 35203383 PMCID: PMC8870338 DOI: 10.3390/cells11040734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epigenetic remodeling is emerging as a critical process for both the onset and progression of Alzheimer's disease (AD), the most common form of neurodegenerative dementia. However, it is not clear to what extent the distribution of histone modifications is involved in AD. METHODS To investigate histone H3 modifications in AD, we compared the genome-wide distributions of H3K4me3 and H3K27me3 in entorhinal cortices from severe sporadic AD patients and from age-matched healthy individuals of both sexes. RESULTS AD samples were characterized by typical average levels and distributions of the H3K4me3 and H3K27me3 signals. However, AD patients showed a lower H3K4me3 and higher H3K27me3 signal, particularly in males. Interestingly, the genomic sites found differentially trimethylated at the H3K4 between healthy and AD samples involve promoter regions of genes belonging to AD-related pathways such as glutamate receptor signaling. CONCLUSIONS The signatures of H3K4me3 and H3K27me3 identified in AD patients validate the role of epigenetic chromatin remodeling in neurodegenerative disease and shed light on the genomic adaptive mechanisms involved in AD.
Collapse
Affiliation(s)
- Giuseppe Persico
- Department of Experimental Oncology, IRCCS—European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy; (G.P.); (M.R.)
| | - Francesca Casciaro
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Stefano Amatori
- Molecular Pathology Laboratory “PaoLa”, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d’Augusto 2, 61032 Fano (PU), Italy; (S.A.); (F.C.)
| | - Martina Rusin
- Department of Experimental Oncology, IRCCS—European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy; (G.P.); (M.R.)
- Molecular Pathology Laboratory “PaoLa”, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d’Augusto 2, 61032 Fano (PU), Italy; (S.A.); (F.C.)
| | - Francesco Cantatore
- Molecular Pathology Laboratory “PaoLa”, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d’Augusto 2, 61032 Fano (PU), Italy; (S.A.); (F.C.)
| | - Amalia Perna
- Department of Pathology, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA;
| | - Lavinia Alberi Auber
- Swiss Integrative Center of Human Health, Pass. du Cardinal 13, 1700 Fribourg, Switzerland;
- Department of Medicine, University of Fribourg, Chem. du Musée, 1700 Fribourg, Switzerland
| | - Mirco Fanelli
- Molecular Pathology Laboratory “PaoLa”, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d’Augusto 2, 61032 Fano (PU), Italy; (S.A.); (F.C.)
| | - Marco Giorgio
- Department of Experimental Oncology, IRCCS—European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy; (G.P.); (M.R.)
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| |
Collapse
|
9
|
The Current State of Chromatin Immunoprecipitation (ChIP) from FFPE Tissues. Int J Mol Sci 2022; 23:ijms23031103. [PMID: 35163027 PMCID: PMC8834906 DOI: 10.3390/ijms23031103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer cells accumulate epigenomic aberrations that contribute to cancer initiation and progression by altering both the genomic stability and the expression of genes. The awareness of such alterations could improve our understanding of cancer dynamics and the identification of new therapeutic strategies and biomarkers to refine tumor classification and treatment. Formalin fixation and paraffin embedding (FFPE) is the gold standard to preserve both tissue integrity and organization, and, in the last decades, a huge number of biological samples have been archived all over the world following this procedure. Recently, new chromatin immunoprecipitation (ChIP) techniques have been developed to allow the analysis of histone post-translational modifications (PTMs) and transcription factor (TF) distribution in FFPE tissues. The application of ChIP to genome-wide chromatin studies using real archival samples represents an unprecedented opportunity to conduct retrospective clinical studies thanks to the possibility of accessing large cohorts of samples and their associated diagnostic records. However, although recent attempts to standardize have been made, fixation and storage conditions of clinical specimens are still extremely variable and can affect the success of chromatin studies. The procedures introduced in the last few years dealt with this problem proponing successful strategies to obtain high-resolution ChIP profiles from FFPE archival samples. In this review, we compare the different FFPE-ChIP techniques, highlighting their strengths, limitations, common features, and peculiarities, as well as pitfalls and caveats related to ChIP studies in FFPE samples, in order to facilitate their application.
Collapse
|
10
|
Casciaro F, Persico G, Rusin M, Amatori S, Montgomery C, Rutkowsky JR, Ramsey JJ, Cortopassi G, Fanelli M, Giorgio M. The Histone H3 K4me3, K27me3, and K27ac Genome-Wide Distributions Are Differently Influenced by Sex in Brain Cortexes and Gastrocnemius of the Alzheimer’s Disease PSAPP Mouse Model. EPIGENOMES 2021; 5:epigenomes5040026. [PMID: 34968250 PMCID: PMC8715457 DOI: 10.3390/epigenomes5040026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Women represent the majority of Alzheimer’s disease patients and show typical symptoms. Genetic, hormonal, and behavioral mechanisms have been proposed to explain sex differences in dementia prevalence. However, whether sex differences exist in the epigenetic landscape of neuronal tissue during the progression of the disease is still unknown. Methods: To investigate the differences of histone H3 modifications involved in transcription, we determined the genome-wide profiles of H3K4me3, H3K27ac, and H3K27me3 in brain cortexes of an Alzheimer mouse model (PSAPP). Gastrocnemius muscles were also tested since they are known to be different in the two sexes and are affected during the disease progression. Results: Correlation analysis distinguished the samples based on sex for H3K4me3 and H3K27me3 but not for H3K27ac. The analysis of transcription starting sites (TSS) signal distribution, and analysis of bounding sites revealed that gastrocnemius is more influenced than brain by sex for the three histone modifications considered, exception made for H3K27me3 distribution on the X chromosome which showed sex-related differences in promoters belonging to behavior and cellular or neuronal spheres in mice cortexes. Conclusions: H3K4me3, H3K27ac, and H3K27me3 signals are slightly affected by sex in brain, with the exception of H3K27me3, while a higher number of differences can be found in gastrocnemius.
Collapse
Affiliation(s)
- Francesca Casciaro
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Giuseppe Persico
- Department of Experimental Oncology, IRCCS—European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy; (G.P.); (M.R.)
| | - Martina Rusin
- Department of Experimental Oncology, IRCCS—European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy; (G.P.); (M.R.)
- Molecular Pathology Laboratory “PaoLa”, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d’Augusto 2, 61032 Fano (PU), Italy; (S.A.); (M.F.)
| | - Stefano Amatori
- Molecular Pathology Laboratory “PaoLa”, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d’Augusto 2, 61032 Fano (PU), Italy; (S.A.); (M.F.)
| | - Claire Montgomery
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (C.M.); (J.R.R.); (J.J.R.); (G.C.)
| | - Jennifer R. Rutkowsky
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (C.M.); (J.R.R.); (J.J.R.); (G.C.)
| | - Jon J. Ramsey
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (C.M.); (J.R.R.); (J.J.R.); (G.C.)
| | - Gino Cortopassi
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (C.M.); (J.R.R.); (J.J.R.); (G.C.)
| | - Mirco Fanelli
- Molecular Pathology Laboratory “PaoLa”, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d’Augusto 2, 61032 Fano (PU), Italy; (S.A.); (M.F.)
| | - Marco Giorgio
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Department of Experimental Oncology, IRCCS—European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy; (G.P.); (M.R.)
- Correspondence: ; Tel.: +39-04-9827-6060
| |
Collapse
|
11
|
Maehara K, Tomimatsu K, Harada A, Tanaka K, Sato S, Fukuoka M, Okada S, Handa T, Kurumizaka H, Saitoh N, Kimura H, Ohkawa Y. Modeling population size independent tissue epigenomes by ChIL-seq with single thin sections. Mol Syst Biol 2021; 17:e10323. [PMID: 34730297 PMCID: PMC8564819 DOI: 10.15252/msb.202110323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022] Open
Abstract
Recent advances in genome-wide technologies have enabled analyses using small cell numbers of even single cells. However, obtaining tissue epigenomes with cell-type resolution from large organs and tissues still remains challenging, especially when the available material is limited. Here, we present a ChIL-based approach for analyzing the diverse cellular dynamics at the tissue level using high-depth epigenomic data. "ChIL for tissues" allows the analysis of a single tissue section and can reproducibly generate epigenomic profiles from several tissue types, based on the distribution of target epigenomic states, tissue morphology, and number of cells. The proposed method enabled the independent evaluation of changes in cell populations and gene activation in cells from regenerating skeletal muscle tissues, using a statistical model of RNA polymerase II distribution on gene loci. Thus, the integrative analyses performed using ChIL can elucidate in vivo cell-type dynamics of tissues.
Collapse
Affiliation(s)
- Kazumitsu Maehara
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Kosuke Tomimatsu
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Akihito Harada
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Kaori Tanaka
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Shoko Sato
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoTokyoJapan
| | - Megumi Fukuoka
- Division of Cancer BiologyThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Seiji Okada
- Division of PathophysiologyMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Tetsuya Handa
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoTokyoJapan
| | - Noriko Saitoh
- Division of Cancer BiologyThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Hiroshi Kimura
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Yasuyuki Ohkawa
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
12
|
Kaneko S, Mitsuyama T, Shiraishi K, Ikawa N, Shozu K, Dozen A, Machino H, Asada K, Komatsu M, Kukita A, Sone K, Yoshida H, Motoi N, Hayami S, Yoneoka Y, Kato T, Kohno T, Natsume T, von Keudell G, Saloura V, Yamaue H, Hamamoto R. Genome-Wide Chromatin Analysis of FFPE Tissues Using a Dual-Arm Robot with Clinical Potential. Cancers (Basel) 2021; 13:2126. [PMID: 33924956 PMCID: PMC8125448 DOI: 10.3390/cancers13092126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Although chromatin immunoprecipitation and next-generation sequencing (ChIP-seq) using formalin-fixed paraffin-embedded tissue (FFPE) has been reported, it remained elusive whether they retained accurate transcription factor binding. Here, we developed a method to identify the binding sites of the insulator transcription factor CTCF and the genome-wide distribution of histone modifications involved in transcriptional activation. Importantly, we provide evidence that the ChIP-seq datasets obtained from FFPE samples are similar to or even better than the data for corresponding fresh-frozen samples, indicating that FFPE samples are compatible with ChIP-seq analysis. H3K27ac ChIP-seq analyses of 69 FFPE samples using a dual-arm robot revealed that driver mutations in EGFR were distinguishable from pan-negative cases and were relatively homogeneous as a group in lung adenocarcinomas. Thus, our results demonstrate that FFPE samples are an important source for epigenomic research, enabling the study of histone modifications, nuclear chromatin structure, and clinical data.
Collapse
Affiliation(s)
- Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Toutai Mitsuyama
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan;
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (K.S.); (T.K.)
| | - Noriko Ikawa
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
| | - Kanto Shozu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
| | - Ai Dozen
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
| | - Hidenori Machino
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Ken Asada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Asako Kukita
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (A.K.); (K.S.)
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (A.K.); (K.S.)
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (H.Y.); (N.M.)
| | - Noriko Motoi
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (H.Y.); (N.M.)
| | - Shinya Hayami
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama 641-0011, Japan; (S.H.); (H.Y.)
| | - Yutaka Yoneoka
- Department of Gynecology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (Y.Y.); (T.K.)
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (Y.Y.); (T.K.)
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (K.S.); (T.K.)
| | - Toru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 100-8921, Japan;
- Robotic Biology Institute, Inc., Tokyo 135-0064, Japan
| | | | - Vassiliki Saloura
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Hiroki Yamaue
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama 641-0011, Japan; (S.H.); (H.Y.)
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| |
Collapse
|
13
|
FiTAc-seq: fixed-tissue ChIP-seq for H3K27ac profiling and super-enhancer analysis of FFPE tissues. Nat Protoc 2020; 15:2503-2518. [PMID: 32591768 DOI: 10.1038/s41596-020-0340-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/17/2020] [Indexed: 11/09/2022]
Abstract
Fixed-tissue ChIP-seq for H3K27 acetylation (H3K27ac) profiling (FiTAc-seq) is an epigenetic method for profiling active enhancers and promoters in formalin-fixed, paraffin-embedded (FFPE) tissues. We previously developed a modified ChIP-seq protocol (FiT-seq) for chromatin profiling in FFPE. FiT-seq produces high-quality chromatin profiles particularly for methylated histone marks but is not optimized for H3K27ac profiling. FiTAc-seq is a modified protocol that replaces the proteinase K digestion applied in FiT-seq with extended heating at 65 °C in a higher concentration of detergent and a minimized sonication step, to produce robust genome-wide H3K27ac maps from clinical samples. FiTAc-seq generates high-quality enhancer landscapes and super-enhancer (SE) annotation in numerous archived FFPE samples from distinct tumor types. This approach will be of great interest for both basic and clinical researchers. The entire protocol from FFPE blocks to sequence-ready library can be accomplished within 4 d.
Collapse
|
14
|
Museum Epigenomics: Charting the Future by Unlocking the Past. Trends Ecol Evol 2020; 35:295-300. [DOI: 10.1016/j.tree.2019.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 02/03/2023]
|
15
|
Flebbe H, Hamdan FH, Kari V, Kitz J, Gaedcke J, Ghadimi BM, Johnsen SA, Grade M. Epigenome Mapping Identifies Tumor-Specific Gene Expression in Primary Rectal Cancer. Cancers (Basel) 2019; 11:cancers11081142. [PMID: 31404997 PMCID: PMC6721540 DOI: 10.3390/cancers11081142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Epigenetic alterations play a central role in cancer development and progression. The acetylation of histone 3 at lysine 27 (H3K27ac) specifically marks active genes. While chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-seq) analyses are commonly performed in cell lines, only limited data are available from primary tumors. We therefore examined whether cancer-specific alterations in H3K27ac occupancy can be identified in primary rectal cancer. Tissue samples from primary rectal cancer and matched mucosa were obtained. ChIP-seq for H3K27ac was performed and differentially occupied regions were identified. The expression of selected genes displaying differential occupancy between tumor and mucosa were examined in gene expression data from an independent patient cohort. Differential expression of four proteins was further examined by immunohistochemistry. ChIP-seq for H3K27ac in primary rectal cancer and matched mucosa was successfully performed and revealed differential binding on 44 regions. This led to the identification of genes with increased H3K27ac, i.e., RIPK2, FOXQ1, KRT23, and EPHX4, which were also highly upregulated in primary rectal cancer in an independent dataset. The increased expression of these four proteins was confirmed by immunohistochemistry. This study demonstrates the feasibility of ChIP-seq-based epigenome mapping of primary rectal cancer and confirms the value of H3K27ac occupancy to predict gene expression differences.
Collapse
Affiliation(s)
- Hannah Flebbe
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Feda H Hamdan
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
- Gene Regulatory Mechanisms and Molecular Epigenetics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Julia Kitz
- Institute of Pathology, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - B Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany.
- Gene Regulatory Mechanisms and Molecular Epigenetics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany.
| |
Collapse
|
16
|
Enhanced and controlled chromatin extraction from FFPE tissues and the application to ChIP-seq. BMC Genomics 2019; 20:249. [PMID: 30922218 PMCID: PMC6440302 DOI: 10.1186/s12864-019-5639-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/24/2019] [Indexed: 12/12/2022] Open
Abstract
Background Epigenetic dysregulation is involved in the etiology and progression of various human diseases. Formalin-fixed paraffin-embedded (FFPE) samples represent the gold standard for archiving pathology samples, and thus FFPE samples are a major resource of samples in clinical research. However, chromatin-based epigenetic assays in the clinical settings are limited to fresh or frozen samples, and are hampered by low chromatin yield in FFPE samples due to the lack of a reliable and efficient chromatin preparation method. Here, we introduce a new chromatin extraction method from FFPE tissues (Chrom-EX PE) for chromatin-based epigenetic assays. Results During rehydration of FFPE tissues, applying a tissue-level cross-link reversal into the deparaffinized tissue at 65 °C dramatically increased chromatin yield in the soluble fraction. The resulting chromatin is compatible with targeted ChIP-qPCR and genome-wide ChIP-seq approaches. The chromatin prepared by Chrom-EX PE showed a gradual fragmentation pattern with varying incubation temperature. At temperatures below 37 °C, the majority of soluble chromatin is over 1 kb. The soluble chromatin prepared in the range of 45–60 °C showed a typical nucleosomal pattern. And the majority of chromatin prepared at 65 °C is close to mononucleosomal size. These observations indicate that chromatin preparation from FFPE samples can be controlled for downstream chromatin-based epigenetic assays. Conclusions This study provided a new method that achieves efficient extraction of high-quality chromatin suitable for chromatin-based epigenetic assays with less damage on chromatin. This approach may provide a way to circumvent the over-fixed nature of FFPE tissues for future technology development. Electronic supplementary material The online version of this article (10.1186/s12864-019-5639-8) contains supplementary material, which is available to authorized users.
Collapse
|