1
|
Lei L, Jiang L, Hu Y, Chen M, Huang J, Chen J, Zeng Q. The comprehensive assessment of epigenetics changes during skin development. FUNDAMENTAL RESEARCH 2025; 5:228-240. [PMID: 40166100 PMCID: PMC11955039 DOI: 10.1016/j.fmre.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 12/01/2022] Open
Abstract
Epigenetic regulation is critical to multiple physiological and pathological processes. However, little is known regarding the epigenetic changes during neonatal skin development and skin aging, and in response to ultraviolet (UV) exposure. The transcriptomes of human skin samples from different ages or irradiated with different types and doses of UV light were analyzed using R (version 4.0.3) software. The epigenetic landscape of the skin, including histone modifications, genetic imprinting and m6A modification, which are mainly involved in collagen formation, extracellular matrix organization, immune function and keratinization, underwent significant changes during neonatal to adult development. Epigenetic effectors such as IGF2BP2, GATA2, GATA3, CPA4 and CDK1 were significantly correlated with extracellular matrix organization, and VEGFA, CDK1 and PRKCB with skin immune function. The m6A readers such as IGF2BP2, IGF2BP3, HNRNPA2B1 and EIF3G showed significant correlation with extracellular matrix organization, metabolism, or antigen processing and presentation. Small doses of UV exposure only induced changes in the expression levels of some epigenetic effectors, without any significant effect on the overall epigenetic landscape. However, the minimal erythema dose of UV exposure altered multiple epigenetic effectors regulating extracellular matrix organization, cell-matrix adhesion, innate immune response, mitochondrial function and mRNA processing. In addition, epigenetic changes following UV exposure were more pronounced in the elderly skin compared to the younger skin. In conclusion, histone modifications, genetic imprinting and m6A modification play critical roles during skin development, and a large dose of UV exposure can significantly change the expression of multiple epigenetic effectors.
Collapse
Affiliation(s)
- Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Menglu Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
2
|
Suzuki E, Nakabayashi K, Aoto S, Ogata T, Kuroki Y, Miyado M, Fukami M, Matsubara K. DNA methylation changes in the genome of patients with hypogonadotropic hypogonadism. Heliyon 2024; 10:e37648. [PMID: 39309794 PMCID: PMC11416509 DOI: 10.1016/j.heliyon.2024.e37648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Although some Mendelian neurodevelopmental disorders have been shown to entail specific DNA methylation changes designated as epi-signatures, it remains unknown whether epi-signatures are consistent features of other genetic disorders. Here, we analyzed DNA methylation profiles of patients with hypogonadotropic hypogonadism (HH), a rare neuroendocrine disorder typically caused by monogenic or oligogenic mutations. First, we performed microarray-based genome-wide methylation analyses of nine patients with HH due to ANOS1, SOX2, or SOX10 variants and 12 control individuals. The results showed that 1118 probes were differentially methylated in one or more patients. The differentially methylated probes were highly variable among patients. No significant methylation changes were observed in genes functionally associated with ANOS1, SOX2, or SOX10. Then, we performed pyrosequencing of six selected CpG sites in the nine patients and 35 additional HH patients. The results of the patients were compared with those of 48 fertile men. There were no common methylation changes among these patients, with the exception of hypermethylation of two CpG sites in the ZNF245 promoter of three patients. Hypermethylation of the promoter has previously been reported as a very rare epigenetic polymorphism in the general population. These results indicate that genomes of HH patients have considerable DNA methylation changes; however, these changes are more likely to be physiological epigenetic variations than disease-specific epi-signatures. Our data suggest a possible association between hypermethylation of the ZNF254 promoter and HH, which needs to be examined in future studies.
Collapse
Affiliation(s)
- Erina Suzuki
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Saki Aoto
- Medical Genome Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoko Kuroki
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
3
|
Perez Y, Velmeshev D, Wang L, White M, Siebert C, Baltazar J, Dutton NG, Wang S, Haeussler M, Chamberlain S, Kriegstein A. Single cell analysis of dup15q syndrome reveals developmental and postnatal molecular changes in autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559056. [PMID: 37790331 PMCID: PMC10543006 DOI: 10.1101/2023.09.22.559056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Duplication 15q (dup15q) syndrome is the most common genetic cause of autism spectrum disorder (ASD). Due to a higher genetic and phenotypic homogeneity compared to idiopathic autism, dup15q syndrome provides a well-defined setting to investigate ASD mechanisms. Previous bulk gene expression studies identified shared molecular changes in ASD. However, how cell type specific changes compare across different autism subtypes and how they change during development is largely unknown. In this study, we used single cell and single nucleus mRNA sequencing of dup15q cortical organoids from patient iPSCs, as well as post-mortem patient brain samples. We find cell-type specific dysregulated programs that underlie dup15q pathogenesis, which we validate by spatial resolved transcriptomics using brain tissue samples. We find degraded identity and vulnerability of deep-layer neurons in fetal stage organoids and highlight increased molecular burden of postmortem upper-layer neurons implicated in synaptic signaling, a finding shared between idiopathic ASD and dup15q syndrome. Gene co-expression network analysis of organoid and postmortem excitatory neurons uncovers modules enriched with autism risk genes. Organoid developmental modules were involved in transcription regulation via chromatin remodeling, while postmortem modules were associated with synaptic transmission and plasticity. The findings reveal a shifting landscape of ASD cellular vulnerability during brain development.
Collapse
Affiliation(s)
- Yonatan Perez
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dmitry Velmeshev
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Current address: Bryan Research Building, Duke University, Durham, NC27710, USA
| | - Li Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew White
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Clara Siebert
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Baltazar
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Natalia Garcia Dutton
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shaohui Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Stormy Chamberlain
- Departments of Genetics and Genome Sciences and Pediatrics, Connecticut Children's Medical Center, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Akbari V, Garant JM, O'Neill K, Pandoh P, Moore R, Marra MA, Hirst M, Jones SJM. Genome-wide detection of imprinted differentially methylated regions using nanopore sequencing. eLife 2022; 11:e77898. [PMID: 35787786 PMCID: PMC9255983 DOI: 10.7554/elife.77898] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/16/2022] [Indexed: 01/02/2023] Open
Abstract
Imprinting is a critical part of normal embryonic development in mammals, controlled by defined parent-of-origin (PofO) differentially methylated regions (DMRs) known as imprinting control regions. Direct nanopore sequencing of DNA provides a means to detect allelic methylation and to overcome the drawbacks of methylation array and short-read technologies. Here, we used publicly available nanopore sequencing data for 12 standard B-lymphocyte cell lines to acquire the genome-wide mapping of imprinted intervals in humans. Using the sequencing data, we were able to phase 95% of the human methylome and detect 94% of the previously well-characterized, imprinted DMRs. In addition, we found 42 novel imprinted DMRs (16 germline and 26 somatic), which were confirmed using whole-genome bisulfite sequencing (WGBS) data. Analysis of WGBS data in mouse (Mus musculus), rhesus monkey (Macaca mulatta), and chimpanzee (Pan troglodytes) suggested that 17 of these imprinted DMRs are conserved. Some of the novel imprinted intervals are within or close to imprinted genes without a known DMR. We also detected subtle parental methylation bias, spanning several kilobases at seven known imprinted clusters. At these blocks, hypermethylation occurs at the gene body of expressed allele(s) with mutually exclusive H3K36me3 and H3K27me3 allelic histone marks. These results expand upon our current knowledge of imprinting and the potential of nanopore sequencing to identify imprinting regions using only parent-offspring trios, as opposed to the large multi-generational pedigrees that have previously been required.
Collapse
Affiliation(s)
- Vahid Akbari
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
- Department of Medical Genetics, University of British ColumbiaVancouverCanada
| | - Jean-Michel Garant
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
| | - Kieran O'Neill
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
| | - Pawan Pandoh
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
- Department of Medical Genetics, University of British ColumbiaVancouverCanada
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Steven JM Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
- Department of Medical Genetics, University of British ColumbiaVancouverCanada
| |
Collapse
|
5
|
Frequency and clinical characteristics of distinct etiologies in patients with Silver-Russell syndrome diagnosed based on the Netchine-Harbison clinical scoring system. J Hum Genet 2022; 67:607-611. [PMID: 35606504 DOI: 10.1038/s10038-022-01048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
Silver-Russel syndrome (SRS) is a representative imprinting disorder (ID) characterized by growth failure and diagnosed by clinical features. Recently, international consensus has recommended using the Netchine-Harbison clinical scoring system (NH-CSS) as clinical diagnostic criteria. Loss of methylation of H19/IGF2:intergenic differentially methylated region (H19LOM) and maternal uniparental disomy chromosome 7 (UPD(7)mat) are common etiologies of SRS; however, other IDs, pathogenic variants (PVs) of genes, and pathogenic copy number variants (PCNVs) have been reported in patients meeting NH-CSS. To clarify the frequency and clinical characteristics of each etiology, we conducted (epi)genetic analysis in 173 patients satisfying NH-CSS. H19LOM and UPD(7)mat were identified in 34.1%. PCNVs, other IDs, and PVs were in 15.0%. Patients with all six NH-CSS items were most frequently observed with H19LOM and UPD(7)mat. This study confirmed the suitability of NH-CSS as clinical diagnostic criteria, the (epi)genetic heterogeneity of SRS, and showed the necessity of further discussion regarding the "SRS spectrum".
Collapse
|
6
|
Fanis P, Morrou M, Tomazou M, Michailidou K, Spyrou GM, Toumba M, Skordis N, Neocleous V, Phylactou LA. Methylation status of hypothalamic Mkrn3 promoter across puberty. Front Endocrinol (Lausanne) 2022; 13:1075341. [PMID: 36714607 PMCID: PMC9880154 DOI: 10.3389/fendo.2022.1075341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Makorin RING finger protein 3 (MKRN3) is an important factor located on chromosome 15 in the imprinting region associated with Prader-Willi syndrome. Imprinted MKRN3 is expressed in hypothalamic regions essential for the onset of puberty and mutations in the gene have been found in patients with central precocious puberty. The pubertal process is largely controlled by epigenetic mechanisms that include, among other things, DNA methylation at CpG dinucleotides of puberty-related genes. In the present study, we investigated the methylation status of the Mkrn3 promoter in the hypothalamus of the female mouse before, during and after puberty. Initially, we mapped the 32 CpG dinucleotides in the promoter, the 5'UTR and the first 50 nucleotides of the coding region of the Mkrn3 gene. Moreover, we identified a short CpG island region (CpG islet) located within the promoter. Methylation analysis using bisulfite sequencing revealed that CpG dinucleotides were methylated regardless of developmental stage, with the lowest levels of methylation being found within the CpG islet region. In addition, the CpG islet region showed significantly lower methylation levels at the pre-pubertal stage when compared with the pubertal or post-pubertal stage. Finally, in silico analysis of transcription factor binding sites on the Mkrn3 CpG islet identified the recruitment of 29 transcriptional regulators of which 14 were transcriptional repressors. Our findings demonstrate the characterization and differential methylation of the CpG dinucleotides located in the Mkrn3 promoter that could influence the transcriptional activity in pre-pubertal compared to pubertal or post-pubertal period. Further studies are needed to clarify the possible mechanisms and effects of differential methylation of the Mkrn3 promoter.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Morrou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Child Endocrine Care, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- *Correspondence: Leonidas A. Phylactou,
| |
Collapse
|
7
|
Hara-Isono K, Matsubara K, Fuke T, Yamazawa K, Satou K, Murakami N, Saitoh S, Nakabayashi K, Hata K, Ogata T, Fukami M, Kagami M. Genome-wide methylation analysis in Silver-Russell syndrome, Temple syndrome, and Prader-Willi syndrome. Clin Epigenetics 2020; 12:159. [PMID: 33092629 PMCID: PMC7583213 DOI: 10.1186/s13148-020-00949-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background Imprinting disorders (IDs) show overlapping phenotypes, particularly in Silver–Russell syndrome (SRS), Temple syndrome (TS14), and Prader–Willi syndrome (PWS). These three IDs include fetal and postnatal growth failure, feeding difficulty, and muscular hypotonia as major clinical features. However, the mechanism that causes overlapping phenotypes has not been clarified. To investigate the presence or absence of methylation signatures associated with overlapping phenotypes, we performed genome-wide methylation analysis (GWMA). Results GWMA was carried out on 36 patients with three IDs (SRS [n = 16], TS14 [n = 7], PWS [n = 13]) and 11 child controls using HumanMethylation450 BeadChip including 475,000 CpG sites across the human genome. To reveal an aberrantly methylated region shared by SRS, TS14, and PWS groups, we compared genome-wide methylation data of the three groups with those of control subjects. All the identified regions were known as SRS-, TS14-, and PWS-related imprinting-associated differentially methylated regions (iDMRs), and there was no hypermethylated or hypomethylated region shared by different ID groups. To examine the methylation pattern shared by SRS, TS14, and PWS groups, we performed clustering analysis based on GWMA data. The result focusing on 620 probes at the 62 known iDMRs (except for SRS-, TS14-, and PWS-related iDMRs) classified patients into two categories: (1) category A, grossly normal methylation patterns mainly consisting of SRS group patients; and (2) category B, broad and mild hypermethylation patterns mainly consisting of TS14 and PWS group patients. However, we found no obvious relationship between these methylation patterns and phenotypes of patients. Conclusions GWMA in three IDs found no methylation signatures shared by SRS, TS14, and PWS groups. Although clustering analysis showed similar mild hypermethylation patterns in TS14 and PWS groups, further study is needed to clarify the effect of methylation patterns on the overlapping phenotypes.
Collapse
Affiliation(s)
- Kaori Hara-Isono
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Tomoko Fuke
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kazuki Yamazawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Medical Genetics Center, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Kazuhito Satou
- Department of Genome Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Nobuyuki Murakami
- Department of Pediatrics, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami Koshigaya, Koshigaya, 343-8555, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kenichiro Hata
- Department of Maternal Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|