1
|
Qin C, Qin Y, Zhou S. Methylations in dilated cardiomyopathy and heart failure. Front Cardiovasc Med 2025; 12:1559550. [PMID: 40290189 PMCID: PMC12021892 DOI: 10.3389/fcvm.2025.1559550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by impaired expansion or contraction of the left or both ventricles in the absence of abnormal load conditions (such as primary valve disease) or severe coronary artery disease that can lead to ventricular remodeling. Genetic mutations, infections, inflammation, autoimmune diseases, exposure to toxins, and endocrine or neuromuscular factors have all been implicated in the causation of DCM. Cardiomyopathy, particularly DCM, often has genetic underpinnings, with established or suspected genetic origins. Up to 40% of DCM cases involve probable or confirmed genetic variations. The significance of RNA modification in the pathogenesis of hypertension, cardiac hypertrophy, and atherosclerosis is well-established. Of late, RNA methylation has garnered attention for its involvement in DCM. This review examines the biological mechanisms and effects of RNA methylation in DCM and heart failure.
Collapse
Affiliation(s)
- Cong Qin
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yansong Qin
- Undergraduate School, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Zhou
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Shameem M, Olson SL, Marron Fernandez de Velasco E, Kumar A, Singh BN. Cardiac Fibroblasts: Helping or Hurting. Genes (Basel) 2025; 16:381. [PMID: 40282342 PMCID: PMC12026832 DOI: 10.3390/genes16040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Cardiac fibroblasts (CFs) are the essential cell type for heart morphogenesis and homeostasis. In addition to maintaining the structural integrity of the heart tissue, muscle fibroblasts are involved in complex signaling cascades that regulate cardiomyocyte proliferation, migration, and maturation. While CFs serve as the primary source of extracellular matrix proteins (ECM), tissue repair, and paracrine signaling, they are also responsible for adverse pathological changes associated with cardiovascular disease. Following activation, fibroblasts produce excessive ECM components that ultimately lead to fibrosis and cardiac dysfunction. Decades of research have led to a much deeper understanding of the role of CFs in cardiogenesis. Recent studies using the single-cell genomic approach have focused on advancing the role of CFs in cellular interactions, and the mechanistic implications involved during cardiovascular development and disease. Arguably, the unique role of fibroblasts in development, tissue repair, and disease progression categorizes them into the friend or foe category. This brief review summarizes the current understanding of cardiac fibroblast biology and discusses the key findings in the context of development and pathophysiological conditions.
Collapse
Affiliation(s)
- Mohammad Shameem
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Shelby L. Olson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Akhilesh Kumar
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bhairab N. Singh
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Morival J, Hazelwood A, Lammerding J. Feeling the force from within - new tools and insights into nuclear mechanotransduction. J Cell Sci 2025; 138:JCS263615. [PMID: 40059756 PMCID: PMC11959624 DOI: 10.1242/jcs.263615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
The ability of cells to sense and respond to mechanical signals is essential for many biological processes that form the basis of cell identity, tissue development and maintenance. This process, known as mechanotransduction, involves crucial feedback between mechanical force and biochemical signals, including epigenomic modifications that establish transcriptional programs. These programs, in turn, reinforce the mechanical properties of the cell and its ability to withstand mechanical perturbation. The nucleus has long been hypothesized to play a key role in mechanotransduction due to its direct exposure to forces transmitted through the cytoskeleton, its role in receiving cytoplasmic signals and its central function in gene regulation. However, parsing out the specific contributions of the nucleus from those of the cell surface and cytoplasm in mechanotransduction remains a substantial challenge. In this Review, we examine the latest evidence on how the nucleus regulates mechanotransduction, both via the nuclear envelope (NE) and through epigenetic and transcriptional machinery elements within the nuclear interior. We also explore the role of nuclear mechanotransduction in establishing a mechanical memory, characterized by a mechanical, epigenetic and transcriptomic cell state that persists after mechanical stimuli cease. Finally, we discuss current challenges in the field of nuclear mechanotransduction and present technological advances that are poised to overcome them.
Collapse
Affiliation(s)
- Julien Morival
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Anna Hazelwood
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
4
|
Zaragoza MV, Bui TA, Widyastuti HP, Mehrabi M, Cang Z, Sha Y, Grosberg A, Nie Q. LMNA-Related Dilated Cardiomyopathy: Single-Cell Transcriptomics during Patient-Derived iPSC Differentiation Support Cell Type and Lineage-Specific Dysregulation of Gene Expression and Development for Cardiomyocytes and Epicardium-Derived Cells with Lamin A/C Haploinsufficiency. Cells 2024; 13:1479. [PMID: 39273049 PMCID: PMC11394257 DOI: 10.3390/cells13171479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. The molecular mechanisms of the disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA-related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA-mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (four from Patients and eight from Controls) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for cardiac progenitors to cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Data integration and comparative analyses of Patient and Control cells found cell type and lineage-specific differentially expressed genes (DEGs) with enrichment, supporting pathway dysregulation. Top DEGs and enriched pathways included 10 ZNF genes and RNA polymerase II transcription in pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CMs; LMNA and epigenetic regulation, as well as DDIT4 and mTORC1 signaling in EPDCs. Top DEGs also included XIST and other X-linked genes, six imprinted genes (SNRPN, PWAR6, NDN, PEG10, MEG3, MEG8), and enriched gene sets related to metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs, as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model.
Collapse
Affiliation(s)
- Michael V. Zaragoza
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Thuy-Anh Bui
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
| | - Halida P. Widyastuti
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
| | - Mehrsa Mehrabi
- Biomedical Engineering and Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Zixuan Cang
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Yutong Sha
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Anna Grosberg
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
- Biomedical Engineering and Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Qing Nie
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Zaragoza MV, Bui TA, Widyastuti HP, Mehrabi M, Cang Z, Sha Y, Grosberg A, Nie Q. LMNA -Related Dilated Cardiomyopathy: Single-Cell Transcriptomics during Patient-derived iPSC Differentiation Support Cell type and Lineage-specific Dysregulation of Gene Expression and Development for Cardiomyocytes and Epicardium-Derived Cells with Lamin A/C Haploinsufficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598335. [PMID: 38915555 PMCID: PMC11195187 DOI: 10.1101/2024.06.12.598335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
LMNA -Related Dilated Cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C ( LMNA ) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. Molecular mechanisms of disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA -Related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (4 Patient and 8 Control) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for Cardiac Progenitors to Cardiomyocytes (CM) and Epicardium-Derived Cells (EPDC). Data integration and comparative analyses of Patient and Control cells found cell type and lineage differentially expressed genes (DEG) with enrichment to support pathway dysregulation. Top DEG and enriched pathways included: 10 ZNF genes and RNA polymerase II transcription in Pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CM; LMNA and epigenetic regulation and DDIT4 and mTORC1 signaling in EPDC. Top DEG also included: XIST and other X-linked genes, six imprinted genes: SNRPN , PWAR6 , NDN , PEG10 , MEG3 , MEG8 , and enriched gene sets in metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model.
Collapse
|
6
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Santini GT, Shah PP, Karnay A, Jain R. Aberrant chromatin organization at the nexus of laminopathy disease pathways. Nucleus 2022; 13:300-312. [PMID: 36503349 PMCID: PMC9746625 DOI: 10.1080/19491034.2022.2153564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Garrett T. Santini
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Parisha P. Shah
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ashley Karnay
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
8
|
Zhang Y, Lin Y, Zhang Y, Wang Y, Li Z, Zhu Y, Liu H, Ju W, Cui C, Chen M. Familial atrial myopathy in a large multigenerational heart-hand syndrome pedigree carrying an LMNA missense variant in rod 2B domain (p.R335W). Heart Rhythm 2021; 19:466-475. [PMID: 34808346 DOI: 10.1016/j.hrthm.2021.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The literature on laminopathy with ventricular phenotype is extensive. However, the pathogenicity of LMNA variations in atrial lesions still lacks research. OBJECTIVE The purpose of this study was to characterize the atrial phenotypes and possible mechanisms in a large Chinese family with heart-hand syndrome carrying a LMNA missense variant in rod 2B domain (c.1003C>T p.R335W). METHODS Clinical characteristics were collected on the basis of the pedigree investigation. Comprehensive functional analyses, including molecular dynamic (MD) simulation, cellular, and animal functional assays, determined the pathogenicity in atrial myopathy. RESULTS In the pedigree investigation, 6 of 13 of the mutation carriers showed heterogeneous cardiac phenotypes and 8 carriers also had brachydactyly. In silico molecular dynamics simulations predicted increased binding energy of the R335W mutant lamin A. Atrial cardiomyocytes (HL-1, human induced pluripotent stem cell-derived atrial cardiomyocytes) expressing R335W showed abnormal nuclear morphology, compromised DNA repair, and dysfunctional contraction. Adult zebrafish expressing mutant lamin A showed increased P wave duration in the electrocardiogram, decreased peak A wave velocity in echocardiography, and atrial lesions under the transmission electron microscope. CONCLUSION LMNA p.R335W mutation leads to familial heart-hand syndrome characterized by an overlapping phenotype of prominent atrial lesions and brachydactyly. The unstable lamin dimerization and impaired DNA repair are possible mechanisms underlying cardiac phenotypes. Our findings consolidated the genetic role in the course of atrial arrhythmias and cardiac aging, which is helpful in the diagnosis and treatment of cardiac laminopathy.
Collapse
Affiliation(s)
- Yike Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping Lin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanjuan Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanqing Wang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhaomin Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hailei Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weizhu Ju
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Cui
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Minglong Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Morival JLP, Widyastuti HP, Nguyen CHH, Zaragoza MV, Downing TL. DNA methylation analysis reveals epimutation hotspots in patients with dilated cardiomyopathy-associated laminopathies. Clin Epigenetics 2021; 13:139. [PMID: 34246298 PMCID: PMC8272901 DOI: 10.1186/s13148-021-01127-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/03/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Mutations in LMNA, encoding lamin A/C, lead to a variety of diseases known as laminopathies including dilated cardiomyopathy (DCM) and skeletal abnormalities. Though previous studies have investigated the dysregulation of gene expression in cells from patients with DCM, the role of epigenetic (gene regulatory) mechanisms, such as DNA methylation, has not been thoroughly investigated. Furthermore, the impact of family-specific LMNA mutations on DNA methylation is unknown. Here, we performed reduced representation bisulfite sequencing on ten pairs of fibroblasts and their induced pluripotent stem cell (iPSC) derivatives from two families with DCM due to distinct LMNA mutations, one of which also induces brachydactyly. RESULTS Family-specific differentially methylated regions (DMRs) were identified by comparing the DNA methylation landscape of patient and control samples. Fibroblast DMRs were found to enrich for distal regulatory features and transcriptionally repressed chromatin and to associate with genes related to phenotypes found in tissues affected by laminopathies. These DMRs, in combination with transcriptome-wide expression data and lamina-associated domain (LAD) organization, revealed the presence of inter-family epimutation hotspots near differentially expressed genes, most of which were located outside LADs redistributed in LMNA-related DCM. Comparison of DMRs found in fibroblasts and iPSCs identified regions where epimutations were persistent across both cell types. Finally, a network of aberrantly methylated disease-associated genes revealed a potential molecular link between pathways involved in bone and heart development. CONCLUSIONS Our results identified both shared and mutation-specific laminopathy epimutation landscapes that were consistent with lamin A/C mutation-mediated epigenetic aberrancies that arose in somatic and early developmental cell stages.
Collapse
Affiliation(s)
- Julien L. P. Morival
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2408 Engineering III, Irvine, CA 92697 USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA USA
| | - Halida P. Widyastuti
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics and Genomics and Department of Biological Chemistry, University of California Irvine, 2042 Hewitt Hall, Irvine, CA 92697 USA
| | - Cecilia H. H. Nguyen
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics and Genomics and Department of Biological Chemistry, University of California Irvine, 2042 Hewitt Hall, Irvine, CA 92697 USA
| | - Michael V. Zaragoza
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics and Genomics and Department of Biological Chemistry, University of California Irvine, 2042 Hewitt Hall, Irvine, CA 92697 USA
| | - Timothy L. Downing
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2408 Engineering III, Irvine, CA 92697 USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA USA
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA USA
| |
Collapse
|