1
|
Räisänen M, Kaasinen E, Jäntti M, Taira A, Siili E, Bützow R, Heikinheimo O, Pasanen A, Karhu A, Berta DG, Välimäki N, Aaltonen LA. Chromatin state origins of uterine leiomyoma. Nat Commun 2025; 16:4307. [PMID: 40341524 PMCID: PMC12062214 DOI: 10.1038/s41467-025-59646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Aberrations in the regulatory genome play a pivotal role in population-level disease predisposition. Annotation of the regulatory regions using appropriate primary tissues - instead of cell lines affected by selection and other confounding factors - could shed new light into mechanisms underlying common conditions. We test this approach in uterine leiomyomas, highly prevalent benign neoplasms of the myometrium, by creating 15-state chromatin annotations for myometrium and uterine leiomyomas. Integration with RNA-seq, ATAC-seq, HiChIP and methylation data enables us to compare the epigenomes of myometrium and ULs with distinct driver mutations, highlighting the role of bivalent regions in the neoplastic process. Subsequently, a genome wide association study meta-analysis is performed, using three different cohorts. Disease association loci are enriched at active chromatin, especially at enhancers, and harbor tumor- and driver mutation-specific chromatin states. At SATB2 locus we show the effect of the risk genotype already in the normal tissue. Integration of genome-wide association studies and deep regulatory genomics data from the correct tissue type represents a powerful approach in understanding population-level disease predisposition.
Collapse
Affiliation(s)
- Maritta Räisänen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Eevi Kaasinen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Maija Jäntti
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Aurora Taira
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Emma Siili
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ralf Bützow
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annukka Pasanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Auli Karhu
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Davide G Berta
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Esposito T, Pentimalli F, Giordano A, Cortellino S. Vitamins and dietary supplements in cancer treatment: is there a need for increased usage? Expert Rev Anticancer Ther 2025:1-24. [PMID: 40322898 DOI: 10.1080/14737140.2025.2501077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Vitamins are essential for homeostasis and proper functioning of organisms. These micronutrients prevent tumor onset by functioning as antioxidants and enzymatic cofactors involved in anti-stress and immune responses, modulating epigenetic regulators, and shaping the microbiota composition. Unbalanced diets and sedentary lifestyles contribute to obesity, associated with increasing cancer risk. Cancer patients often exhibit vitamin deficiencies due to chronic inflammation, anticancer therapies, and tumor-induced metabolic changes, leading to malnutrition and cachexia. AREAS COVERED This review critically analyzes preclinical and clinical studies, sourced from PubMed and ClinicalTrials.gov databases, that investigate the potential benefits of vitamin supplementation and dietary interventions, such as intermittent fasting and ketogenic diets, in mouse tumor models and cancer patients. This analysis elucidates the limitations of such interventions and suggests optimal dietary strategies to prevent cancer and enhance patients' quality of life and prognosis. EXPERT OPINION To date, clinical studies have found no substantial benefit of over-the-counter vitamin supplements and dietary interventions on cancer patients' health and prognosis. To prevent the spread of useless and potentially harmful products by the nutraceutical industry, establishing a regulatory authority is necessary to monitor and ensure product quality and validity before commercialization.
Collapse
Affiliation(s)
- Teresa Esposito
- Department of Clinical Dietetics and Metabolic Diseases, Cavalier Raffaele Apicella Hospital, ASL Napoli 3 Sud, Naples, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe De Gennaro", Bari, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Salvatore Cortellino
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, Naples, Italy
- S.H.R.O. Italia Foundation ETS, Turin, Italy
| |
Collapse
|
3
|
Wang X, He J, Sun M, Wang S, Qu J, Shi H, Rao B. High-dose vitamin C as a metabolic treatment of cancer: a new dimension in the era of adjuvant and intensive therapy. Clin Transl Oncol 2025; 27:1366-1382. [PMID: 39259387 DOI: 10.1007/s12094-024-03553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/04/2024] [Indexed: 09/13/2024]
Abstract
The anti-cancer mechanism of High-dose Vitamin C (HDVC) is mainly to participate in the Fenton reaction, hydroxylation reaction, and epigenetic modification, which leads to the energy crisis, metabolic collapse, and severe peroxidation stress that results in the proliferation inhibition or death of cancer cells. However, the mainstream view is that HDVC does not significantly improve cancer treatment outcomes. In clinical work and scientific research, we found that some drugs or therapies can significantly improve the anti-cancer effects of HDVC, such as PD-1 inhibitors that can increase the anti-cancer effects of cancerous HDVC by nearly three times. Here, the adjuvant and intensive therapy and synergistic mechanisms including HDVC combined application of chemoradiotherapies multi-vitamins, targeted drugs, immunotherapies, and oncolytic virus are discussed in detail. Adjuvant and intensive therapy of HDVC can significantly improve the therapeutic effect of HDVC in the metabolic treatment of cancer, but more clinical evidence is needed to support its clinical application.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jia He
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Minmin Sun
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shiwan Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxiu Qu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Hanping Shi
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Benqiang Rao
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.
| |
Collapse
|
4
|
Agathocleous M. The physiological functions of ascorbate in the development of cancer. Dis Model Mech 2025; 18:dmm052201. [PMID: 40213851 PMCID: PMC12010911 DOI: 10.1242/dmm.052201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
The metabolite ascorbate (vitamin C) is synthesized endogenously in most animals or, in humans and some other species, obtained from the diet. Its role in cancer development is controversial. Addition of ascorbate to cultured cells or high-dose administration in animals can inhibit growth of many cancers, but most of these effects are caused by non-physiological biochemical activities. Few experiments have tested the physiological roles of ascorbate in cancer development by depleting it in physiological settings. Ascorbate depletion inhibits the activity of ten-eleven translocation (TET) enzymes in hematopoietic and leukemia cells and accelerates myeloid leukemia development. Many clinical trials have tested ascorbate supplementation in cancers and shown little or no evidence that it has a beneficial role. I propose that depletion experiments are needed to define the cancers in which ascorbate has a physiological role, establish its cellular and molecular targets, and provide a rationale for clinical trials.
Collapse
Affiliation(s)
- Michalis Agathocleous
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
5
|
Xie Z, Fernandez J, Lasho T, Finke C, Amundson M, McCullough KB, LaPlant BR, Mangaonkar AA, Gangat N, Reichard KK, Elliott M, Witzig TE, Patnaik MM. High-dose IV ascorbic acid therapy for patients with CCUS with TET2 mutations. Blood 2024; 144:2456-2461. [PMID: 39352751 PMCID: PMC11628862 DOI: 10.1182/blood.2024024962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
ABSTRACT This phase 2 trial assessed high-dose IV ascorbic acid in TET2 mutant clonal cytopenia. Eight of 10 patients were eligible for response assessment, with no responses at week 20 by International Working Group Myelodysplasia Syndromes/Neoplasms criteria. This trial was registered at www.clinicaltrials.gov as #NCT03418038.
Collapse
Affiliation(s)
- Zhuoer Xie
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Jenna Fernandez
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Terra Lasho
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Christy Finke
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Michelle Amundson
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | - Betsy R. LaPlant
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | - Naseema Gangat
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Kaaren K. Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Michelle Elliott
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Thomas E. Witzig
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Mrinal M. Patnaik
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
6
|
Oren O, Small AM, Libby P. Clonal hematopoiesis and atherosclerosis. J Clin Invest 2024; 134:e180066. [PMID: 39352379 PMCID: PMC11444192 DOI: 10.1172/jci180066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) has emerged as a previously unrecognized, potent, age-related, and common risk factor for atherosclerosis. Somatic mutations in certain known leukemia driver genes give rise to clones of mutant cells in peripheral blood. The increased risk of developing hematologic malignancy does not, on its own, explain excess mortality in individuals with CHIP. Cardiovascular disease accounts for much of this gap. Experimental evidence supports the causality of certain CHIP mutations in accelerated atherosclerosis. CHIP due to mutations in different driver genes varies in their promotion of atherosclerotic events and in the region of augmented atherosclerotic involvement. For example, CHIP due to mutations in DNMT3a appears less atherogenic than CHIP that arises from TET2 or JAK2, forms of CHIP that incite inflammation. The recognition of certain CHIP mutations as promoters of atherosclerotic risk has opened new insights into understanding of the pathophysiology of this disease. The accentuated cardiovascular risk and involvement of distinct pathways of various forms of CHIP also inform novel approaches to allocation of targeted therapies, affording a step toward personalized medicine.
Collapse
Affiliation(s)
- Ohad Oren
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aeron M Small
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Honer MA, Ferman BI, Gray ZH, Bondarenko EA, Whetstine JR. Epigenetic modulators provide a path to understanding disease and therapeutic opportunity. Genes Dev 2024; 38:473-503. [PMID: 38914477 PMCID: PMC11293403 DOI: 10.1101/gad.351444.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The discovery of epigenetic modulators (writers, erasers, readers, and remodelers) has shed light on previously underappreciated biological mechanisms that promote diseases. With these insights, novel biomarkers and innovative combination therapies can be used to address challenging and difficult to treat disease states. This review highlights key mechanisms that epigenetic writers, erasers, readers, and remodelers control, as well as their connection with disease states and recent advances in associated epigenetic therapies.
Collapse
Affiliation(s)
- Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Benjamin I Ferman
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Elena A Bondarenko
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
8
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
9
|
Vlasschaert C, Lanktree MB, Rauh MJ, Kelly TN, Natarajan P. Clonal haematopoiesis, ageing and kidney disease. Nat Rev Nephrol 2024; 20:161-174. [PMID: 37884787 PMCID: PMC10922936 DOI: 10.1038/s41581-023-00778-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) is a preclinical condition wherein a sizeable proportion of an individual's circulating blood cells are derived from a single mutated haematopoietic stem cell. CHIP occurs frequently with ageing - more than 10% of individuals over 65 years of age are affected - and is associated with an increased risk of disease across several organ systems and premature death. Emerging evidence suggests that CHIP has a role in kidney health, including associations with predisposition to acute kidney injury, impaired recovery from acute kidney injury and kidney function decline, both in the general population and among those with chronic kidney disease. Beyond its direct effect on the kidney, CHIP elevates the susceptibility of individuals to various conditions that can detrimentally affect the kidneys, including cardiovascular disease, obesity and insulin resistance, liver disease, gout, osteoporosis and certain autoimmune diseases. Aberrant pro-inflammatory signalling, telomere attrition and epigenetic ageing are potential causal pathophysiological pathways and mediators that underlie CHIP-related disease risk. Experimental animal models have shown that inhibition of inflammatory cytokine signalling can ameliorate many of the pathological effects of CHIP, and assessment of the efficacy and safety of this class of medications for human CHIP-associated pathology is ongoing.
Collapse
Affiliation(s)
| | - Matthew B Lanktree
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Guarnera L, Jha BK. TET2 mutation as prototypic clonal hematopoiesis lesion. Semin Hematol 2024; 61:51-60. [PMID: 38431463 PMCID: PMC10978279 DOI: 10.1053/j.seminhematol.2024.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
Loss of function TET2 mutation (TET2MT) is one of the most frequently observed lesions in clonal hematopoiesis (CH). TET2 a member TET-dioxygenase family of enzymes that along with TET1 and TET3, progressively oxidize 5-methyl cytosine (mC) resulting in regulated demethylation of promoter, enhancer and silencer elements of the genome. This process is critical for efficient transcription that determine cell lineage fate, proliferation and survival and the maintenance of the genomic fidelity with aging of the organism. Partial or complete loss-of-function TET2 mutations create regional and contextual DNA hypermethylation leading to gene silencing or activation that result in skewed myeloid differentiation and clonal expansion. In addition to myeloid skewing, loss of TET2 creates differentiation block and provides proliferative advantage to hematopoietic stem and progenitor cells (HSPCs). TET2MT is a prototypical lesion in CH, since the mutant clones dominate during stress hematopoiesis and often associates with evolution of myeloid malignancies. TET2MT clones has unique privilege to create and persist in pro-inflammatory milieu. Despite extensive knowledge regarding biochemical mechanisms underlying distorted myeloid differentiation, and enhanced self-replication of TET2MT HSPC, the mechanistic link of various pathogenesis associated with TET2 loss in CHIP is less understood. Here we review the recent development in TET2 biology and its probable mechanistic link in CH with aging and inflammation. We also explored the therapeutic strategies of targeting TET2MT associated CHIP and the utility of targeting TET2 in normal hematopoiesis and somatic cell reprograming. We explore the biochemical mechanisms and candidate therapies that emerged in last decade of research.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy; Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Babal K Jha
- Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Center for Immunotherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute (LRI) Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
11
|
Gurney M, Greipp PT, Gliem T, Knudson R, Al-Kali A, Gangat N, Lasho T, Mangaonkar AA, Finke CM, Patnaik MM. TET2 somatic copy number alterations and allelic imbalances in chronic myelomonocytic leukemia. Leuk Res 2023; 134:107391. [PMID: 37769597 DOI: 10.1016/j.leukres.2023.107391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Mark Gurney
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Patricia T Greipp
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA; Cytogenetics Core Facility, Mayo Clinic, Rochester, MN, USA
| | - Troy Gliem
- Cytogenetics Core Facility, Mayo Clinic, Rochester, MN, USA
| | - Ryan Knudson
- Cytogenetics Core Facility, Mayo Clinic, Rochester, MN, USA
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Terra Lasho
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
12
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Fan D, Liu X, Shen Z, Wu P, Zhong L, Lin F. Cell signaling pathways based on vitamin C and their application in cancer therapy. Biomed Pharmacother 2023; 162:114695. [PMID: 37058822 DOI: 10.1016/j.biopha.2023.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Vitamin C, a small organic molecule, is widely found in fruits and vegetables and is an essential nutrient in the human body. Vitamin C is closely associated with some human diseases such as cancer. Many studies have shown that high doses of vitamin C have anti-tumor ability and can target tumor cells in multiple targets. This review will describe vitamin C absorption and its function in cancer treatment. We will review the cellular signaling pathways associated with vitamin C against tumors depending on the different anti-cancer mechanisms. Based on this, we will further describe some applications of the use of vitamin C for cancer treatment in preclinical and clinical trials and the possible adverse events that can occur. Finally, this review also assesses the prospective advantages of vitamin C in oncology treatment and clinical applications.
Collapse
Affiliation(s)
- Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Faquan Lin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education,Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University.
| |
Collapse
|