1
|
Balde A, Benjakul S, Nazeer RA. A review on NLRP3 inflammasome modulation by animal venom proteins/peptides: mechanisms and therapeutic insights. Inflammopharmacology 2025; 33:1013-1031. [PMID: 39934538 DOI: 10.1007/s10787-025-01656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
The venom peptides from terrestrial as well as aquatic species have demonstrated potential in regulating the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a sophisticated assemblage present in immune cells responsible for detecting and responding to external mediators. The NLRP3 inflammasome plays a role in several pathological conditions such as type 2 diabetes, hyperglycemia, Alzheimer's disease, obesity, autoimmune disorders, and cardiovascular disorders. Venom peptides derived from animal venoms have been discovered to selectively induce certain signalling pathways, such as the NLRP3 inflammasome, mitogen-activated protein kinase (MAPK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Experimental evidence has demonstrated that venom peptides can regulate the expression and activation of the NLRP3 inflammasome, resulting in the secretion of pro-inflammatory cytokines including interleukin (IL)-1β and IL-18. Furthermore, these peptides have been discovered to impede the activation of the NLRP3 inflammasome, therefore diminishing inflammation and tissue injury. The functional properties of venom proteins and peptides obtained from snakes, bees, wasps, and scorpions have been thoroughly investigated, specifically targeting the NLRP3 inflammasome pathway, venom proteins and peptides have shown promise as therapeutic agents for the treatment of certain inflammatory disorders. This review discusses the pathophysiology of NLRP3 inflammasome in the onset of various diseases, role of venom as therapeutics. Further, various venom components and their role in the modulation of NLRP3 inflammasome are discoursed. A substantial number of venomous animals and their toxins are yet unexplored, and to comprehensively grasp the mechanisms of action of them and their potential as therapeutic agents, additional research is required which can lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
2
|
Dioguardi M, Cantore S, Sovereto D, Sanesi L, Martella A, Almasri L, Musella G, Lo Muzio L, Ballini A. Therapeutic Potential of Solenopsis invicta Venom: A Scoping Review of Its Bioactive Molecules, Biological Aspects, and Health Applications. Biomolecules 2024; 14:1499. [PMID: 39766206 PMCID: PMC11673062 DOI: 10.3390/biom14121499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Solenopsis invicta, a South American ant species from the Formicidae family (subfamily Myrmicinae), has recently established a stable settlement in Europe, raising public health concerns due to its venomous stings. The venom of S. invicta is rich in bioactive molecules, particularly piperidine alkaloids such as solenopsin A and peptides (Sol 1-4). These compounds have been implicated in various health applications, including antimicrobial, anti-inflammatory, and antitumour activities. While previous reviews have focused on the ecological and allergenic risks posed by S. invicta, this scoping review aims to evaluate the potential therapeutic uses of S. invicta venom by summarizing existing scientific evidence and providing a novel synthesis of recent research on its bioactive components. Furthermore, this study, by describing the unique biological aspects of S. invicta, provides an overview of its direct impact on public health, highlighting new findings on the venom's role in inhibiting bacterial biofilm formation and modulating cancer growth pathways through gene regulation. A search of databases (PubMed, Scopus, Science Direct, and Cochrane Library) identified 12,340 articles, from which 11 studies met the eligibility criteria. These studies included seven microbiological investigations and four studies on tumour cell lines and animal models. The findings suggest that S. invicta venom could inhibit biofilm formation, combat fungal infections, and suppress tumour growth. However, further research, including clinical trials, is required to fully elucidate the safety and efficacy of these bioactive molecules in human medicine, for their potential use in drug discovery to counteract several diseases, including cancer.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (L.S.); (G.M.); (L.L.M.); (A.B.)
| | - Stefania Cantore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio, 7, 80138 Naples, Italy
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (L.S.); (G.M.); (L.L.M.); (A.B.)
| | - Lorenzo Sanesi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (L.S.); (G.M.); (L.L.M.); (A.B.)
| | - Angelo Martella
- DataLab, Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy;
| | - Lynn Almasri
- King’s College London, University of London, Strand, London WC2R 2LS, UK;
| | - Gennaro Musella
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (L.S.); (G.M.); (L.L.M.); (A.B.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (L.S.); (G.M.); (L.L.M.); (A.B.)
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (L.S.); (G.M.); (L.L.M.); (A.B.)
| |
Collapse
|
3
|
Mo Y, Shi Q, Qi G, Chen K. Potential anti-tumor effects of Solenopsis invicta venom. Front Immunol 2023; 14:1200659. [PMID: 37283754 PMCID: PMC10239855 DOI: 10.3389/fimmu.2023.1200659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Affiliation(s)
- Yizhang Mo
- Department of Spine Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingxing Shi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, Guangdong, China
| | - Guojun Qi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, Guangdong, China
| | - Kebing Chen
- Department of Spine Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Abstract
Ants have outstanding capacity to mediate inter- and intraspecific interactions by producing structurally diverse metabolites from numerous secretory glands. Since Murray Blum's pioneering studies dating from the 1950s, there has been a growing interest in arthropod toxins as natural products. Over a dozen different alkaloid classes have been reported from approximately 40 ant genera in five subfamilies, with peak diversity within the Myrmicinae tribe Solenopsidini. Most ant alkaloids function as venom, but some derive from other glands with alternative functions. They are used in defense (e.g., alarm, repellants) or offense (e.g., toxins) but also serve as antimicrobials and pheromones. We provide an overview of ant alkaloid diversity and function with an evolutionary perspective. We conclude that more directed integrative research is needed. We suggest that comparative phylogenetics will illuminate compound diversification, while molecular approaches will elucidate genetic origins. Biological context, informed by natural history, remains critical not only for research about focal species, but also to guide applied research.
Collapse
Affiliation(s)
- Eduardo Gonçalves Paterson Fox
- Departamento de Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21044-020, Brazil;
| | - Rachelle M M Adams
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio 43210, USA;
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC 20560, USA
| |
Collapse
|
5
|
Heravi MM, Abedian‐Dehaghani N, Zadsirjan V, Rangraz Y. Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Neda Abedian‐Dehaghani
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Yalda Rangraz
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
6
|
The Role of Ceramide Metabolism and Signaling in the Regulation of Mitophagy and Cancer Therapy. Cancers (Basel) 2021; 13:cancers13102475. [PMID: 34069611 PMCID: PMC8161379 DOI: 10.3390/cancers13102475] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Sphingolipids are membrane-associated lipids that are involved in signal transduction pathways regulating cell death, growth, and migration. In cancer cells, sphingolipids regulate pathways relevant to cancer therapy, such as invasion, metastasis, apoptosis, and lethal mitophagy. Notable sphingolipids include ceramide, a sphingolipid that induces death and lethal mitophagy, and sphingosine-1 phosphate, a sphingolipid that induces survival and chemotherapeutic resistance. These sphingolipids participate in regulating the process of mitophagy, where cells encapsulate damaged mitochondria in double-membrane vesicles (called autophagosomes) for degradation. Lethal mitophagy is an anti-tumorigenic mechanism mediated by ceramide, where cells degrade many mitochondria until the cancer cell dies in an apoptosis-independent manner. Abstract Sphingolipids are bioactive lipids responsible for regulating diverse cellular functions such as proliferation, migration, senescence, and death. These lipids are characterized by a long-chain sphingosine backbone amide-linked to a fatty acyl chain with variable length. The length of the fatty acyl chain is determined by specific ceramide synthases, and this fatty acyl length also determines the sphingolipid’s specialized functions within the cell. One function in particular, the regulation of the selective autophagy of mitochondria, or mitophagy, is closely regulated by ceramide, a key regulatory sphingolipid. Mitophagy alterations have important implications for cancer cell proliferation, response to chemotherapeutics, and mitophagy-mediated cell death. This review will focus on the alterations of ceramide synthases in cancer and sphingolipid regulation of lethal mitophagy, concerning cancer therapy.
Collapse
|
7
|
Silva RCMC, Fox EGP, Gomes FM, Feijó DF, Ramos I, Koeller CM, Costa TFR, Rodrigues NS, Lima AP, Atella GC, Miranda K, Schoijet AC, Alonso GD, de Alcântara Machado E, Heise N. Venom alkaloids against Chagas disease parasite: search for effective therapies. Sci Rep 2020; 10:10642. [PMID: 32606423 PMCID: PMC7327076 DOI: 10.1038/s41598-020-67324-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/01/2020] [Indexed: 11/09/2022] Open
Abstract
Chagas disease is an important disease affecting millions of patients in the New World and is caused by a protozoan transmitted by haematophagous kissing bugs. It can be treated with drugs during the early acute phase; however, effective therapy against the chronic form of Chagas disease has yet to be discovered and developed. We herein tested the activity of solenopsin alkaloids extracted from two species of fire ants against the protozoan parasite Trypanosoma cruzi, the aetiologic agent of Chagas disease. Although IC50 determinations showed that solenopsins are more toxic to the parasite than benznidazole, the drug of choice for Chagas disease treatment, the ant alkaloids presented a lower selectivity index. As a result of exposure to the alkaloids, the parasites became swollen and rounded in shape, with hypertrophied contractile vacuoles and intense cytoplasmic vacuolization, possibly resulting in osmotic stress; no accumulation of multiple kinetoplasts and/or nuclei was detected. Overexpressing phosphatidylinositol 3-kinase-an enzyme essential for osmoregulation that is a known target of solenopsins in mammalian cells-did not prevent swelling and vacuolization, nor did it counteract the toxic effects of alkaloids on the parasites. Additional experimental results suggested that solenopsins induced a type of autophagic and programmed cell death in T. cruzi. Solenopsins also reduced the intracellular proliferation of T. cruzi amastigotes in infected macrophages in a concentration-dependent manner and demonstrated activity against Trypanosoma brucei rhodesiense bloodstream forms, which is another important aetiological kinetoplastid parasite. The results suggest the potential of solenopsins as novel natural drugs against neglected parasitic diseases caused by kinetoplastids.
Collapse
Affiliation(s)
- Rafael C M Costa Silva
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Eduardo G P Fox
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Red Imported Fire Ant Research Centre, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Fabio M Gomes
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Daniel F Feijó
- Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Carolina M Koeller
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Department of Microbiology and Immunology, School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Tatiana F R Costa
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Nathalia S Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ana P Lima
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Kildare Miranda
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Alejandra C Schoijet
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), C1428ADN, Buenos Aires, Argentina
| | - Guillermo D Alonso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), C1428ADN, Buenos Aires, Argentina.
| | - Ednildo de Alcântara Machado
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
8
|
Uko NE, Güner OF, Matesic DF, Bowen JP. Akt Pathway Inhibitors. Curr Top Med Chem 2020; 20:883-900. [DOI: 10.2174/1568026620666200224101808] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
Cancer is a devastating disease that has plagued humans from ancient times to this day. After
decades of slow research progress, promising drug development, and the identification of new targets,
the war on cancer was launched, in 1972. The P13K/Akt pathway is a growth-regulating cellular signaling
pathway, which in many human cancers is over-activated. Studies have demonstrated that a decrease
in Akt activity by Akt inhibitors is associated with a reduction in tumor cell proliferation. There have
been several promising drug candidates that have been studied, including but not limited to ipatasertib
(RG7440), 1; afuresertib (GSK2110183), 2; uprosertib (GSK2141795), 3; capivasertib (AZD5363), 4;
which reportedly bind to the ATP active site and inhibit Akt activity, thus exerting cytotoxic and antiproliferative
activities against human cancer cells. For most of the compounds discussed in this review,
data from preclinical studies in various cancers suggest a mechanistic basis involving hyperactivated
Akt signaling. Allosteric inhibitors are also known to alter the activity of kinases. Perifosine (KRX-
0401), 5, an alkylphospholipid, is known as the first allosteric Akt inhibitor to enter clinical development
and is mechanistically characterized as a PH-domain dependent inhibitor, non-competitive with
ATP. This results in a reduction in Akt enzymatic and cellular activities. Other small molecule (MK-
2206, 6, PHT-427, Akti-1/2) inhibitors with a similar mechanism of action, alter Akt activity through the
suppression of cell growth mediated by the inhibition of Akt membrane localization and subsequent activation.
The natural product solenopsin has been identified as an inhibitor of Akt. A few promising solenopsin
derivatives have emerged through pharmacophore modeling, energy-based calculations, and
property predictions.
Collapse
Affiliation(s)
- Nne E. Uko
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - Osman F. Güner
- Department of Chemistry and Physics, Santa Rosa Junior College, Santa Rosa, CA, United States
| | - Diane F. Matesic
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - J. Phillip Bowen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| |
Collapse
|
9
|
Ou W, Lu GS, An D, Han F, Huang PQ. Two-Step Catalytic Transformation of N
-Benzyllactams to Alkaloids (±)-Solenopsin, (±)-Solenopsin A, and (+)-Julifloridine. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901752] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wei Ou
- Department of Chemistry; Fujian Provincial Key Laboratory of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; 361005 Xiamen Fujian P. R. China
| | - Guang-Sheng Lu
- Department of Chemistry; Fujian Provincial Key Laboratory of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; 361005 Xiamen Fujian P. R. China
| | - Dong An
- Department of Chemistry; Fujian Provincial Key Laboratory of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; 361005 Xiamen Fujian P. R. China
| | - Feng Han
- Department of Chemistry; Fujian Provincial Key Laboratory of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; 361005 Xiamen Fujian P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry; Fujian Provincial Key Laboratory of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; 361005 Xiamen Fujian P. R. China
| |
Collapse
|
10
|
Bell JD, Harkiss AH, Wellaway CR, Sutherland A. Stereoselective synthesis of 2,6-trans-4-oxopiperidines using an acid-mediated 6-endo-trig cyclisation. Org Biomol Chem 2018; 16:6410-6422. [PMID: 30011344 DOI: 10.1039/c8ob01363b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An acid-mediated 6-endo-trig cyclisation of amine-substituted enones has been developed for the stereoselective synthesis of trans-6-alkyl-2-methyl-4-oxopiperidines. Performed under conditions that prevent removal of the Boc-protecting group or acetal formation, the key cyclisation was found to generate cleanly the 4-oxopiperidine products in high overall yields from a wide range of alkyl substituted enones. The synthetic utility of the trans-6-alkyl-2-methyl-4-oxopiperidines formed from this process was demonstrated with the total synthesis of the quinolizidine alkaloid, (+)-myrtine and the piperidine alkaloid, (-)-solenopsin A.
Collapse
Affiliation(s)
- Jonathan D Bell
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | |
Collapse
|
11
|
Pathak GP, Shah R, Kennedy BE, Murphy JP, Clements D, Konda P, Giacomantonio M, Xu Z, Schlaepfer IR, Gujar S. RTN4 Knockdown Dysregulates the AKT Pathway, Destabilizes the Cytoskeleton, and Enhances Paclitaxel-Induced Cytotoxicity in Cancers. Mol Ther 2018; 26:2019-2033. [PMID: 30078441 DOI: 10.1016/j.ymthe.2018.05.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/14/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Reticulon-4 (RTN4), commonly known as a neurite outgrowth inhibitor (Nogo), is emerging as an important player in human cancers. Clinically, we found lower RTN4 expression in patient-derived tumors was associated with significantly better survival in lung, breast, cervical, and renal cancer patients. To identify the role of RTN4 in cancer biology, we performed mass spectrometry-based quantitative proteomic analysis on cancer cells following RTN4 knockdown and found its link with pro-survival as well as cytoskeleton-related processes. Subsequent mechanistic investigations revealed that RTN4 regulates lipid homeostasis, AKT signaling, and cytoskeleton modulation. In particular, downregulation of RTN4 reduced sphingomyelin synthesis and impaired plasma membrane localization of AKT, wherein AKT phosphorylation, involved in many cancers, was significantly reduced without any comparable effect on AKT-related upstream kinases, in a sphingolipid-dependent manner. Furthermore, knockdown of RTN4 retarded proliferation of cancer cells in vitro as well as tumor xenografts in mice. Finally, RTN4 knockdown affected tubulin stability and promoted higher cytotoxic effects with chemotherapeutic paclitaxel in cancer cells both in vitro and in vivo. In summary, RTN4 is involved in carcinogenesis and represents a molecular candidate that may be targeted to achieve desired antitumor effects in clinics.
Collapse
Affiliation(s)
- Gopal P Pathak
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Rashmi Shah
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Barry E Kennedy
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - J Patrick Murphy
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Derek Clements
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Prathyusha Konda
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | | | - Zhaolin Xu
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Isabel R Schlaepfer
- Division of Medical Oncology, Genitourinary Cancer Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Department of Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Centre for Innovative and Collaborative Health Systems Research, IWK Health Centre, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
12
|
Niu Q, Zhao W, Wang J, Li C, Yan T, Lv W, Wang G, Duan W, Zhang T, Wang K, Zhou D. LicA induces autophagy through ULK1/Atg13 and ROS pathway in human hepatocellular carcinoma cells. Int J Mol Med 2018; 41:2601-2608. [PMID: 29484365 PMCID: PMC5846666 DOI: 10.3892/ijmm.2018.3499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/07/2018] [Indexed: 11/05/2022] Open
Abstract
Chemotherapy is the best choice for the vast majority of hepatocellular carcinoma patients at late stage, but few effective chemotherapy drugs are available in clinic. Licochalcone A (LicA) is a new chemotherapy drug inducing apoptosis as Bcl-2 inhibitor, but few studies report on LicA-induced autophagy. This study investigated the phenomenon and mechanisms of LicA-induced autophagy looking for a targeted combination drug. Human hepatocellular carcinoma cells (HCCs) were treated with LicA, to detect markers of autophagy and to investigate the mechanisms. In order to investigate the role of reactive oxygen species (ROS) in LicA-induced autophagy, ROS, glutathione (GSH) and O2− were measured in LicA treated HCCs, and antioxidant N-Acetyl-L-cysteine (NAC) was cotreated with LicA in HCCs, then mechanisms of ROS-induced autophagy was investigated in LicA or LicA combined with NAC treated HCCs. Finally, the LicA-induced apoptosis was detected in LicA combined with NAC treated HCCs. We first report that LicA can induce autophagy through ULK1/Atg13 and ROS pathway in HCCs, suppression of LicA-induced ROS through antioxidant NAC can enhance LicA-induced apoptosis, promoting the function of LicA killing HCCs. LicA can activate the ULK1/Atg13 complex which is upstream of autophagy, additionally, LicA also can promote ROS generation, ROS trigger the expression level of TSC1/2 complex, PRAS40, CTMP, PP2A, PDK1 and Rubicon change, these molecules are upstream of autophagy. In conclusion, LicA can induce autophagy through ULK1/Atg13 and ROS pathway in HCCs, LicA combined with NAC can enhance LicA-induced apoptosis. Our results may provide a novel design for clinical hepatocellular carcinoma therapy trials.
Collapse
Affiliation(s)
- Qiang Niu
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Wei Zhao
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Jin Wang
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Chunming Li
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Tao Yan
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Wei Lv
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Guojing Wang
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Weihong Duan
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Tao Zhang
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Kunnan Wang
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Dinghua Zhou
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| |
Collapse
|
13
|
Therapeutic effects of the euglenoid ichthyotoxin, euglenophycin, in colon cancer. Oncotarget 2017; 8:104347-104358. [PMID: 29262645 PMCID: PMC5732811 DOI: 10.18632/oncotarget.22238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed cancers and the 3rd leading cause of cancer-related mortality. The emergence of drug resistance poses a major challenge in CRC care or treatment. This can be addressed by determining cancer mechanisms, discovery of druggable targets, and development of new drugs. In search for novel agents, aquatic microorganisms offer a vastly untapped pharmacological source that can be developed for cancer therapeutics. In this study, we characterized the anti-colorectal cancer potential of euglenophycin, a microalgal toxin from Euglena sanguinea. The toxin (49.1-114.6 μM) demonstrated cytotoxic, anti-proliferative, anti-clonogenic, and anti-migration effects against HCT116, HT29, and SW620 CRC cells. We identified G1 cell cycle arrest and cell type - dependent modulation of autophagy as mechanisms of growth inhibition. We validated euglenophycin’s anti-tumorigenic activity in vivo using CRL:Nu(NCr)Foxn1nu athymic nude mouse CRC xenograft models. Intraperitoneal toxin administration (100 mg/kg; 5 days) decreased HCT116 and HT29 xenograft tumor volumes (n=10 each). Tumor inhibition was associated with reduced expression of autophagy negative regulator mechanistic target of rapamycin (mTOR) and decreased trend of serum pro-inflammatory cytokines. Together, these results provide compelling evidence that euglenophycin can be a promising anti-colorectal cancer agent targeting multiple cancer-promoting processes. Furthermore, this study supports expanding natural products drug discovery to freshwater niches as prospective sources of anti-cancer compounds.
Collapse
|
14
|
Evidence for biochemical barrier restoration: Topical solenopsin analogs improve inflammation and acanthosis in the KC-Tie2 mouse model of psoriasis. Sci Rep 2017; 7:11198. [PMID: 28894119 PMCID: PMC5593857 DOI: 10.1038/s41598-017-10580-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease affecting 2.5–6 million patients in the United States. The cause of psoriasis remains unknown. Previous human and animal studies suggest that patients with a susceptible genetic background and some stimulus, such as barrier disruption, leads to a coordinated signaling events involving cytokines between keratinocytes, endothelial cells, T cells, macrophages and dendritic cells. Ceramides are endogenous skin lipids essential for maintaining skin barrier function and loss of ceramides may underlie inflammatory and premalignant skin. Ceramides act as a double-edged sword, promoting normal skin homeostasis in the native state, but can be metabolized to sphingosine-1-phosphate (S1P), linked to inflammation and tumorigenesis. To overcome this difficulty, we synthesized solenopsin analogs which biochemically act as ceramides, but cannot be metabolized to S1P. We assess their in vivo bioactivity in a well-established mouse model of psoriasis, the KC-Tie2 mouse. Topical solenopsin derivatives normalized cutaneous hyperplasia in this model, decreased T cell infiltration, interleukin (IL)-22 transcription, and reversed the upregulation of calprotectin and Toll-like receptor (TLR) 4 in inflamed skin. Finally, they stimulated interleukin (IL)-12 production in skin dendritic cells. Thus suggesting barrier restoration has both a biochemical and physical component, and both are necessary for optimal barrier restoration.
Collapse
|
15
|
Chamcheu JC, Adhami VM, Esnault S, Sechi M, Siddiqui IA, Satyshur KA, Syed DN, Dodwad SJM, Chaves-Rodriquez MI, Longley BJ, Wood GS, Mukhtar H. Dual Inhibition of PI3K/Akt and mTOR by the Dietary Antioxidant, Delphinidin, Ameliorates Psoriatic Features In Vitro and in an Imiquimod-Induced Psoriasis-Like Disease in Mice. Antioxid Redox Signal 2017; 26:49-69. [PMID: 27393705 PMCID: PMC5206770 DOI: 10.1089/ars.2016.6769] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM The treatment of psoriasis remains elusive, underscoring the need for identifying novel disease targets and mechanism-based therapeutic approaches. We recently reported that the PI3K/Akt/mTOR pathway that is frequently deregulated in many malignancies is also clinically relevant for psoriasis. We also provided rationale for developing delphinidin (Del), a dietary antioxidant for the management of psoriasis. This study utilized high-throughput biophysical and biochemical approaches and in vitro and in vivo models to identify molecular targets regulated by Del in psoriasis. RESULTS A kinome-level screen and Kds analyses against a panel of 102 human kinase targets showed that Del binds to three lipid (PIK3CG, PIK3C2B, and PIK3CA) and six serine/threonine (PIM1, PIM3, mTOR, S6K1, PLK2, and AURKB) kinases, five of which belong to the PI3K/Akt/mTOR pathway. Surface plasmon resonance and in silico molecular modeling corroborated Del's direct interactions with three PI3Ks (α/c2β/γ), mTOR, and p70S6K. Del treatment of interleukin-22 or TPA-stimulated normal human epidermal keratinocytes (NHEKs) significantly inhibited proliferation, activation of PI3K/Akt/mTOR components, and secretion of proinflammatory cytokines and chemokines. To establish the in vivo relevance of these findings, an imiquimod (IMQ)-induced Balb/c mouse psoriasis-like skin model was employed. Topical treatment of Del significantly decreased (i) hyperproliferation and epidermal thickness, (ii) skin infiltration by immune cells, (iii) psoriasis-related cytokines/chemokines, (iv) PI3K/Akt/mTOR pathway activation, and (v) increased differentiation when compared with controls. Innovation and Conclusion: Our observation that Del inhibits key kinases involved in psoriasis pathogenesis and alleviates IMQ-induced murine psoriasis-like disease suggests a novel PI3K/AKT/mTOR pathway modulator that could be developed to treat psoriasis. Antioxid. Redox Signal. 26, 49-69.
Collapse
Affiliation(s)
- Jean Christopher Chamcheu
- 1 Department of Dermatology, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin
| | - Vaqar M Adhami
- 1 Department of Dermatology, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin
| | - Stephane Esnault
- 2 Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin
| | - Mario Sechi
- 3 Department of Chemistry and Pharmacy, University of Sassari , Sassari, Italy
| | - Imtiaz A Siddiqui
- 1 Department of Dermatology, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin
| | - Kenneth A Satyshur
- 4 Small Molecule Screening Facility, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin.,5 Middleton VA Medical Center , Madison, Wisconsin
| | - Deeba N Syed
- 1 Department of Dermatology, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin
| | - Shah-Jahan M Dodwad
- 1 Department of Dermatology, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin
| | - Maria-Ines Chaves-Rodriquez
- 1 Department of Dermatology, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin.,6 Centro de Investigación en Biotecnología Instituto Tecnológico de Costa Rica , Cartago, Republica de Costa Rica
| | - B Jack Longley
- 1 Department of Dermatology, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin
| | - Gary S Wood
- 1 Department of Dermatology, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin
| | - Hasan Mukhtar
- 1 Department of Dermatology, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin
| |
Collapse
|
16
|
Mucka P, Levonyak N, Geretti E, Zwaans BMM, Li X, Adini I, Klagsbrun M, Adam RM, Bielenberg DR. Inflammation and Lymphedema Are Exacerbated and Prolonged by Neuropilin 2 Deficiency. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2803-2812. [PMID: 27751443 DOI: 10.1016/j.ajpath.2016.07.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Abstract
The vasculature influences the progression and resolution of tissue inflammation. Capillaries express vascular endothelial growth factor (VEGF) receptors, including neuropilins (NRPs), which regulate interstitial fluid flow. NRP2, a receptor of VEGFA and semaphorin (SEMA) 3F ligands, is expressed in the vascular and lymphatic endothelia. Previous studies have demonstrated that blocking VEGF receptor 2 attenuates VEGFA-induced vascular permeability. The inhibition of NRP2 was hypothesized to decrease vascular permeability as well. Unexpectedly, massive tissue swelling and edema were observed in Nrp2-/- mice compared with wild-type littermates after delayed-type hypersensitivity reactions. Vascular permeability was twofold greater in inflamed blood vessels in Nrp2-deficient mice compared to those in Nrp2-intact littermates. The addition of exogenous SEMA3F protein inhibited vascular permeability in Balb/cJ mice, suggesting that the loss of endogenous Sema3F activity in the Nrp2-deficient mice was responsible for the enhanced vessel leakage. Functional lymphatic capillaries are necessary for draining excess fluid after inflammation; however, Nrp2-mutant mice lacked superficial lymphatic capillaries, leading to 2.5-fold greater fluid retention and severe lymphedema after inflammation. In conclusion, Nrp2 deficiency increased blood vessel permeability and decreased lymphatic vessel drainage during inflammation, highlighting the importance of the NRP2/SEMA3F pathway in the modulation of tissue swelling and resolution of postinflammatory edema.
Collapse
Affiliation(s)
- Patrick Mucka
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Nicholas Levonyak
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Elena Geretti
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | | | - Xiaoran Li
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Irit Adini
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Michael Klagsbrun
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Rosalyn M Adam
- Department of Surgery, Harvard Medical School, Boston, Massachusetts; Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
17
|
Davis BP, Stucke EM, Khorki ME, Litosh VA, Rymer JK, Rochman M, Travers J, Kottyan LC, Rothenberg ME. Eosinophilic esophagitis-linked calpain 14 is an IL-13-induced protease that mediates esophageal epithelial barrier impairment. JCI Insight 2016; 1:e86355. [PMID: 27158675 DOI: 10.1172/jci.insight.86355] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We recently identified a genome-wide genetic association of eosinophilic esophagitis (EoE) at 2p23 spanning the calpain 14 (CAPN14) gene, yet the causal mechanism has not been elucidated. We now show that recombinant CAPN14 cleaves a calpain-specific substrate and is inhibited by 4 classical calpain inhibitors: MDL-28170, acetyl-calpastatin, E-64, and PD151746. CAPN14 is specifically induced (>100-fold) in esophageal epithelium after IL-13 treatment. Epithelial cells overexpressing CAPN14 display impaired epithelial architecture, characterized by acantholysis, epidermal clefting, and epidermolysis. CAPN14 overexpression impairs epithelial barrier function, as demonstrated by decreased transepithelial resistance (2.1-fold) and increased FITC-dextran flux (2.6-fold). Epithelium with gene-silenced CAPN14 demonstrates increased dilated intercellular spaces (5.5-fold) and less organized basal cell layering (1.5-fold) following IL-13 treatment. Finally, CAPN14 overexpression results in loss of desmoglein 1 (DSG1) expression, whereas the IL-13-induced loss of DSG1 is normalized by CAPN14 gene silencing. Importantly, these findings were specific to CAPN14, as they were not observed with modulation of CAPN1 expression. These results, along with the potent induction of CAPN14 by IL-13 and genetic linkage of EoE to the CAPN14 gene locus, demonstrate a molecular and cellular pathway that contributes to T helper type 2 responses in mucosal epithelium.
Collapse
Affiliation(s)
- Benjamin P Davis
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily M Stucke
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - M Eyad Khorki
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Vladislav A Litosh
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jeffrey K Rymer
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jared Travers
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Leah C Kottyan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
18
|
Arbiser JL, Bonner MY. Seborrheic Keratoses: The Rodney Dangerfield of Skin lesions, and Why They Should Get Our Respect. J Invest Dermatol 2016; 136:564-566. [PMID: 26902127 PMCID: PMC5925755 DOI: 10.1016/j.jid.2015.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/03/2015] [Indexed: 11/22/2022]
Abstract
Neel et al. have demonstrated that seborrheic keratosis, the most common of all skin tumors, is dependent on acutely transforming retrovirus AKT8 in rodent T-cell lymphoma signaling. The authors found that these lesions are hypersensitive to Akt inhibitors which bind to the ATP binding site of Akt. Cutaneous squamous cell carcinoma is resistant to Akt inhibitors. The implications of this study are not limited to seborrheic keratosis. The presence of wild type p53 (seborrheic keratosis) or mutant p53 (cutaneous squamous cell carcinoma) appears to dictate whether a lesion is sensitive to Akt inhibition or not.
Collapse
Affiliation(s)
- Jack L Arbiser
- Department of Dermatology, Emory School of Medicine, and Winship Cancer Institute, Atlanta, Georgia, USA; Dermatology Veterans Affairs Medical Center, Decatur, Georgia, USA.
| | - Michael Y Bonner
- Department of Dermatology, Emory School of Medicine, and Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|