1
|
Özpolat BD. Annelids as models of germ cell and gonad regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:126-143. [PMID: 38078561 PMCID: PMC11060932 DOI: 10.1002/jez.b.23233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
Germ cells (reproductive cells and their progenitors) give rise to the next generation in sexually reproducing organisms. The loss or removal of germ cells often leads to sterility in established research organisms such as the fruit fly, nematodes, frog, and mouse. The failure to regenerate germ cells in these organisms reinforced the dogma of germline-soma barrier in which germ cells are set-aside during embryogenesis and cannot be replaced by somatic cells. However, in stark contrast, many animals including segmented worms (annelids), hydrozoans, planaria, sea stars, sea urchins, and tunicates can regenerate germ cells. Here I review germ cell and gonad regeneration in annelids, a rich history of research that dates back to the early 20th century in this highly regenerative group. Examples include annelids from across the annelid phylogeny, across developmental stages, and reproductive strategies. Adult annelids regenerate germ cells as a part of regeneration, grafting, and asexual reproduction. Annelids can also recover germ cells after ablation of germ cell progenitors in the embryos. I present a framework to investigate cellular sources of germ cell regeneration in annelids, and discuss the literature that supports different possibilities within this framework, where germ-soma separation may or may not be preserved. With contemporary genetic-lineage tracing and bioinformatics tools, and several genetically enabled annelid models, we are at the brink of answering the big questions that puzzled many for over more than a century.
Collapse
Affiliation(s)
- B Duygu Özpolat
- Department of Biology, Washington University in St. Louis, St. Louis, United States, United States
| |
Collapse
|
2
|
Álvarez-Campos P, García-Castro H, Emili E, Pérez-Posada A, Del Olmo I, Peron S, Salamanca-Díaz DA, Mason V, Metzger B, Bely AE, Kenny NJ, Özpolat BD, Solana J. Annelid adult cell type diversity and their pluripotent cellular origins. Nat Commun 2024; 15:3194. [PMID: 38609365 PMCID: PMC11014941 DOI: 10.1038/s41467-024-47401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Many annelids can regenerate missing body parts or reproduce asexually, generating all cell types in adult stages. However, the putative adult stem cell populations involved in these processes, and the diversity of cell types generated by them, are still unknown. To address this, we recover 75,218 single cell transcriptomes of the highly regenerative and asexually-reproducing annelid Pristina leidyi. Our results uncover a rich cell type diversity including annelid specific types as well as novel types. Moreover, we characterise transcription factors and gene networks that are expressed specifically in these populations. Finally, we uncover a broadly abundant cluster of putative stem cells with a pluripotent signature. This population expresses well-known stem cell markers such as vasa, piwi and nanos homologues, but also shows heterogeneous expression of differentiated cell markers and their transcription factors. We find conserved expression of pluripotency regulators, including multiple chromatin remodelling and epigenetic factors, in piwi+ cells. Finally, lineage reconstruction analyses reveal computational differentiation trajectories from piwi+ cells to diverse adult types. Our data reveal the cell type diversity of adult annelids by single cell transcriptomics and suggest that a piwi+ cell population with a pluripotent stem cell signature is associated with adult cell type differentiation.
Collapse
Affiliation(s)
- Patricia Álvarez-Campos
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) & Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Helena García-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Elena Emili
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Alberto Pérez-Posada
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Irene Del Olmo
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) & Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sophie Peron
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - David A Salamanca-Díaz
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Vincent Mason
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Bria Metzger
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 05432, USA
- Department of Biology, Washington University in St. Louis. 1 Brookings Dr. Saint Louis, Saint Louis, MO, 63130, USA
| | - Alexandra E Bely
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Nathan J Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand
| | - B Duygu Özpolat
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 05432, USA.
- Department of Biology, Washington University in St. Louis. 1 Brookings Dr. Saint Louis, Saint Louis, MO, 63130, USA.
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
- Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Chen R, Cheng Y, Zhang Y, Chen J. Identification and expression analysis of Oxfibrillin gene involved in the regeneration process of Ophryotrocha xiamen (Annelida, Dorcilleidae). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105102. [PMID: 37995918 DOI: 10.1016/j.dci.2023.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Regeneration of lost body parts is a widespread phenomenon across annelids. However, the molecular inducers of the cell sources for this reparative morphogenesis have not been identified. We have identified a regeneration-related gene Oxfibrillin from the transcriptome analysis of a polychaeta, Ophryotrocha xiamen, which is found to be a well-suited model to study the mechanisms of regeneration. Fibrillins are large glycoproteins that assemble to form the microfibrils and regulate growth factors or other transfer processes. Here, we obtained the 31,274 bp genomic DNA sequences of Oxfibrillin. The coding sequence length was 5784 bp encoding 1927 amino acids with a VWD domain, EGF/cb-EGF domains, a TR domain, and a transmembrane domain. Oxfibrillin was positioned within the subgroup of invertebrates and showed low scores for homology to mammalian fibrillin. In gene expression analysis, Oxfibrillin genes were constantly upregulated during the early regeneration process and then remained stable until the formation of the complete tail which indicated that it might be a vital factor to affect posterior regeneration process. Therefore, the Oxfibrillin of O. xiamen might play important roles in the regeneration process.
Collapse
Affiliation(s)
- Ruanni Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yunying Cheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yuting Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
4
|
Kostyuchenko RP, Nikanorova DD, Amosov AV. Germ Line/Multipotency Genes Show Differential Expression during Embryonic Development of the Annelid Enchytraeus coronatus. BIOLOGY 2023; 12:1508. [PMID: 38132334 PMCID: PMC10740902 DOI: 10.3390/biology12121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Germ line development and the origin of the primordial germ cells (PGCs) are very variable and may occur across a range of developmental stages and in several developmental contexts. In establishing and maintaining germ line, a conserved set of genes is involved. On the other hand, these genes are expressed in multipotent/pluripotent cells that may give rise to both somatic and germline cells. To begin elucidating mechanisms by which the germ line is specified in Enchytraeus coronatus embryos, we identified twenty germline/multipotency genes, homologs of Vasa, PL10, Piwi, Nanos, Myc, Pumilio, Tudor, Boule, and Bruno, using transcriptome analysis and gene cloning, and characterized their expression by whole-mount in situ hybridization. To answer the question of the possible origin of PGCs in this annelid, we carried out an additional description of the early embryogenesis. Our results suggest that PGCs derive from small cells originating at the first two divisions of the mesoteloblasts. PGCs form two cell clusters, undergo limited proliferation, and migrate to the developing gonadal segments. In embryos and juvenile E. coronatus, homologs of the germline/multipotency genes are differentially expressed in both germline and somatic tissue including the presumptive germ cell precursors, posterior growth zone, developing foregut, and nervous system.
Collapse
Affiliation(s)
- Roman P. Kostyuchenko
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia; (D.D.N.); (A.V.A.)
| | | | | |
Collapse
|
5
|
Paré L, Bideau L, Baduel L, Dalle C, Benchouaia M, Schneider SQ, Laplane L, Clément Y, Vervoort M, Gazave E. Transcriptomic landscape of posterior regeneration in the annelid Platynereis dumerilii. BMC Genomics 2023; 24:583. [PMID: 37784028 PMCID: PMC10546743 DOI: 10.1186/s12864-023-09602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/18/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Restorative regeneration, the capacity to reform a lost body part following amputation or injury, is an important and still poorly understood process in animals. Annelids, or segmented worms, show amazing regenerative capabilities, and as such are a crucial group to investigate. Elucidating the molecular mechanisms that underpin regeneration in this major group remains a key goal. Among annelids, the nereididae Platynereis dumerilii (re)emerged recently as a front-line regeneration model. Following amputation of its posterior part, Platynereis worms can regenerate both differentiated tissues of their terminal part as well as a growth zone that contains putative stem cells. While this regeneration process follows specific and reproducible stages that have been well characterized, the transcriptomic landscape of these stages remains to be uncovered. RESULTS We generated a high-quality de novo Reference transcriptome for the annelid Platynereis dumerilii. We produced and analyzed three RNA-sequencing datasets, encompassing five stages of posterior regeneration, along with blastema stages and non-amputated tissues as controls. We included two of these regeneration RNA-seq datasets, as well as embryonic and tissue-specific datasets from the literature to produce a Reference transcriptome. We used this Reference transcriptome to perform in depth analyzes of RNA-seq data during the course of regeneration to reveal the important dynamics of the gene expression, process with thousands of genes differentially expressed between stages, as well as unique and specific gene expression at each regeneration stage. The study of these genes highlighted the importance of the nervous system at both early and late stages of regeneration, as well as the enrichment of RNA-binding proteins (RBPs) during almost the entire regeneration process. CONCLUSIONS In this study, we provided a high-quality de novo Reference transcriptome for the annelid Platynereis that is useful for investigating various developmental processes, including regeneration. Our extensive stage-specific transcriptional analysis during the course of posterior regeneration sheds light upon major molecular mechanisms and pathways, and will foster many specific studies in the future.
Collapse
Affiliation(s)
- Louis Paré
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Loïc Bideau
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Loeiza Baduel
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Caroline Dalle
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Médine Benchouaia
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Stephan Q Schneider
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Lucie Laplane
- Université Paris I Panthéon-Sorbonne, CNRS UMR 8590 Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST), Paris, France
- Gustave Roussy, UMR 1287, Villejuif, France
| | - Yves Clément
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Michel Vervoort
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Eve Gazave
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France.
| |
Collapse
|
6
|
Álvarez-Campos P, García-Castro H, Emili E, Pérez-Posada A, Salamanca-Díaz DA, Mason V, Metzger B, Bely AE, Kenny N, Özpolat BD, Solana J. Annelid adult cell type diversity and their pluripotent cellular origins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.537979. [PMID: 37163014 PMCID: PMC10168269 DOI: 10.1101/2023.04.25.537979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Annelids are a broadly distributed, highly diverse, economically and environmentally important group of animals. Most species can regenerate missing body parts, and many are able to reproduce asexually. Therefore, many annelids can generate all adult cell types in adult stages. However, the putative adult stem cell populations involved in these processes, as well as the diversity of adult cell types generated by them, are still unknown. Here, we recover 75,218 single cell transcriptomes of Pristina leidyi, a highly regenerative and asexually-reproducing freshwater annelid. We characterise all major annelid adult cell types, and validate many of our observations by HCR in situ hybridisation. Our results uncover complex patterns of regionally expressed genes in the annelid gut, as well as neuronal, muscle and epidermal specific genes. We also characterise annelid-specific cell types such as the chaetal sacs and globin+ cells, and novel cell types of enigmatic affinity, including a vigilin+ cell type, a lumbrokinase+ cell type, and a diverse set of metabolic cells. Moreover, we characterise transcription factors and gene networks that are expressed specifically in these populations. Finally, we uncover a broadly abundant cluster of putative stem cells with a pluripotent signature. This population expresses well-known stem cell markers such as vasa, piwi and nanos homologues, but also shows heterogeneous expression of differentiated cell markers and their transcription factors. In these piwi+ cells, we also find conserved expression of pluripotency regulators, including multiple chromatin remodelling and epigenetic factors. Finally, lineage reconstruction analyses reveal the existence of differentiation trajectories from piwi+ cells to diverse adult types. Our data reveal the cell type diversity of adult annelids for the first time and serve as a resource for studying annelid cell types and their evolution. On the other hand, our characterisation of a piwi+ cell population with a pluripotent stem cell signature will serve as a platform for the study of annelid stem cells and their role in regeneration.
Collapse
Affiliation(s)
- Patricia Álvarez-Campos
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) & Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Helena García-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Elena Emili
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Alberto Pérez-Posada
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | | | - Vincent Mason
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Bria Metzger
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, USA, 05432
- Department of Biology, Washington University in St. Louis. 1 Brookings Dr. Saint Louis, MO, USA, 63130
| | | | - Nathan Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, Aotearoa New Zealand
| | - B Duygu Özpolat
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, USA, 05432
- Department of Biology, Washington University in St. Louis. 1 Brookings Dr. Saint Louis, MO, USA, 63130
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
7
|
de Souza TTC, Castro GB, Bernegossi AC, Felipe MC, Pinheiro FR, Colombo-Corbi V, Girolli DA, Gorni GR, Corbi JJ. Pristina longiseta reproduction test: chronic exposure to environmental contaminants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23578-23588. [PMID: 36327072 DOI: 10.1007/s11356-022-23861-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Aquatic worms are considered a suitable group to evaluate the effects of contaminants on the environment, although one of the main challenges is to use the species of local occurrence. Recently, Pristina longiseta was suggested to be used in acute bioassays. In this context, this study aimed to establish a chronic exposure for ecotoxicological bioassays using the cosmopolitan species of occurrence in Brazilian freshwater P. longiseta. Firstly, we tested three exposure times (4, 7, and 10 days) under the presence or absence of aeration for reproduction outputs. After determining the best configuration (7 days without aeration), we assessed the effects of the chronic exposures using the standardized reference substance potassium chloride (KCl), the antibiotic sulfamethoxazole (SMX), the flame retardant tetrabromobisphenol A (TBBPA), and the sugarcane vinasse. Our results showed suitability for applying the chronic exposure using P. longiseta and indicated the sensitivity of the offspring to KCl (EC50-7d = 0.51 g/L). Sulfamethoxazole and TBBPA caused a significant decrease in the offspring of P. longiseta (EC50-7d = 59.9 µg/L and < 62.5 µg/L, respectively). Sugarcane vinasse showed high toxicity for the species, and 4.26% of vinasse was calculated as EC50-7d. Therefore, the described protocol was successfully applied as an ecotoxicological bioassay to evaluate the effects of environmental contaminants on the reproduction rate of the freshwater worm P. longiseta.
Collapse
Affiliation(s)
- Tallyson Tavares Cunha de Souza
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil.
| | - Gleyson Borges Castro
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Aline Christine Bernegossi
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Mayara Caroline Felipe
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Fernanda Rodrigues Pinheiro
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | | | | | | | - Juliano José Corbi
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
8
|
Bely AE. Journey beyond the embryo: The beauty of Pristina and naidine annelids for studying regeneration and agametic reproduction. Curr Top Dev Biol 2022; 147:469-495. [PMID: 35337459 DOI: 10.1016/bs.ctdb.2021.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Regeneration, asexual agametic reproduction, and other forms of postembryonic development are ecologically important and widely variable across animals, yet our understanding of this important aspect of animal diversity remains limited. A significant limitation has been the dearth of adequate study systems for exploring the mechanisms and evolution of these processes. Here I describe key parts of our journey in developing naid annelids as a study system for investigating the evolution and development of regeneration and fission. Naids are small freshwater annelids that provide numerous advantages for studying postembryonic development: they are small and reproduce readily by fission, they include species with diverse regenerative abilities, and many species are easy to culture. Among the naids, Pristina leidyi is a particularly useful study species, being largely transparent and quite robust to a variety of experimental manipulations. Building on a sparse but long history of past research on these animals, we have developed this system by establishing methods and generating resources for working with them. Naids are yielding novel insights into the evolution of regeneration and fission, providing one of many examples of the value of developing new study species to enable the exploration of fundamental and understudied questions in biology. Establishing new study systems comes with challenges but is exciting and rewarding, and I provide perspectives from my own experiences with the hope of encouraging the further expansion of study systems in biology.
Collapse
Affiliation(s)
- Alexandra E Bely
- Department of Biology, University of Maryland, College Park, MD, United States.
| |
Collapse
|
9
|
Chen R, Mukhtar I, Wei S, Wu S, Chen J. Morphological and molecular features of early regeneration in the marine annelid Ophryotrocha xiamen. Sci Rep 2022; 12:1799. [PMID: 35110576 PMCID: PMC8810878 DOI: 10.1038/s41598-022-04870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
Regeneration capability varies in the phylum Annelida making them an excellent group to investigate the differences between closely related organisms. Several studies have described the process of regeneration, while the underlying molecular mechanism remains unclear, especially during the early stage (wound healing and blastema formation). In this study, the newly identified Ophryotrocha xiamen was used to explore the early regeneration. The detailed morphological and molecular analyses positioned O. xiamen within 'labronica' clade. We analyzed the morphological changes during regeneration process (0-3 days post amputation) and molecular changes during the early regeneration stage (1 day post amputation). Wound healing was achieved within one day and a blastema formed one day later. A total of 243 DEGs were mainly involved in metabolism and signal transduction. Currently known regeneration-related genes were identified in O. xiamen which could help with exploring the functions of genes involved in regeneration processes. According to their conserved motif, we identified 8 different Hox gene fragments and Hox5 and Lox2 were found to be absent in early regeneration and during regular growth. Our data can promote further use of O. xiamen which can be used as an experimental model for resolving crucial problems of developmental biology in marine invertebrates.
Collapse
Affiliation(s)
- Ruanni Chen
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China
| | - Irum Mukhtar
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China
| | - Shurong Wei
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China
| | - Siyi Wu
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China
| | - Jianming Chen
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
10
|
Rinkevich B, Ballarin L, Martinez P, Somorjai I, Ben‐Hamo O, Borisenko I, Berezikov E, Ereskovsky A, Gazave E, Khnykin D, Manni L, Petukhova O, Rosner A, Röttinger E, Spagnuolo A, Sugni M, Tiozzo S, Hobmayer B. A pan-metazoan concept for adult stem cells: the wobbling Penrose landscape. Biol Rev Camb Philos Soc 2022; 97:299-325. [PMID: 34617397 PMCID: PMC9292022 DOI: 10.1111/brv.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Loriano Ballarin
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaAv. Diagonal 643Barcelona08028Spain
- Institut Català de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
| | - Ildiko Somorjai
- School of BiologyUniversity of St AndrewsSt Andrews, FifeKY16 9ST, ScotlandUK
| | - Oshrat Ben‐Hamo
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Ilya Borisenko
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon UniversityJardin du Pharo, 58 Boulevard Charles LivonMarseille13007France
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesUlitsa Vavilova, 26Moscow119334Russia
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques MonodParisF‐75006France
| | - Denis Khnykin
- Department of PathologyOslo University HospitalBygg 19, Gaustad Sykehus, Sognsvannsveien 21Oslo0188Norway
| | - Lucia Manni
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Olga Petukhova
- Collection of Vertebrate Cell CulturesInstitute of Cytology, Russian Academy of SciencesTikhoretsky Ave. 4St. Petersburg194064Russia
| | - Amalia Rosner
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN)Nice06107France
- Université Côte d'Azur, Federative Research Institute – Marine Resources (IFR MARRES)28 Avenue de ValroseNice06103France
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | - Michela Sugni
- Department of Environmental Science and Policy (ESP)Università degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV)06234 Villefranche‐sur‐MerVillefranche sur MerCedexFrance
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences, University of InnsbruckTechnikerstrInnsbruck256020Austria
| |
Collapse
|
11
|
Martinez Acosta VG, Arellano-Carbajal F, Gillen K, Tweeten KA, Zattara EE. It Cuts Both Ways: An Annelid Model System for the Study of Regeneration in the Laboratory and in the Classroom. Front Cell Dev Biol 2021; 9:780422. [PMID: 34912808 PMCID: PMC8667080 DOI: 10.3389/fcell.2021.780422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanisms supporting regeneration and successful recovery of function have fascinated scientists and the general public for quite some time, with the earliest description of regeneration occurring in the 8th century BC through the Greek mythological story of Prometheus. While most animals demonstrate the capacity for wound-healing, the ability to initiate a developmental process that leads to a partial or complete replacement of a lost structure varies widely among animal taxa. Variation also occurs within single species based on the nature and location of the wound and the developmental stage or age of the individual. Comparative studies of cellular and molecular changes that occur both during, and following, wound healing may point to conserved genomic pathways among animals of different regenerative capacity. Such insights could revolutionize studies within the field of regenerative medicine. In this review, we focus on several closely related species of Lumbriculus (Clitellata: Lumbriculidae), as we present a case for revisiting the use of an annelid model system for the study of regeneration. We hope that this review will provide a primer to Lumbriculus biology not only for regeneration researchers but also for STEM teachers and their students.
Collapse
Affiliation(s)
| | | | - Kathy Gillen
- Department of Biology, Kenyon College, Gambier, OH, United States
| | - Kay A Tweeten
- Department of Biology, St. Catherine University, St. Paul, MN, United States
| | - Eduardo E Zattara
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente, CONICET-Universidad Nacional del Comahue, Buenos Aires, Argentina
- Department of Invertebrate Zoology, The Smithsonian Institution, National Museum of Natural History, Washington, DC, United States
- Department of Biology, Indiana Molecular Biology Institute, Indiana University, Bloomington, IN, United States
| |
Collapse
|
12
|
Seaver EC, de Jong DM. Regeneration in the Segmented Annelid Capitella teleta. Genes (Basel) 2021; 12:genes12111769. [PMID: 34828375 PMCID: PMC8623021 DOI: 10.3390/genes12111769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
The segmented worms, or annelids, are a clade within the Lophotrochozoa, one of the three bilaterian superclades. Annelids have long been models for regeneration studies due to their impressive regenerative abilities. Furthermore, the group exhibits variation in adult regeneration abilities with some species able to replace anterior segments, posterior segments, both or neither. Successful regeneration includes regrowth of complex organ systems, including the centralized nervous system, gut, musculature, nephridia and gonads. Here, regenerative capabilities of the annelid Capitella teleta are reviewed. C. teleta exhibits robust posterior regeneration and benefits from having an available sequenced genome and functional genomic tools available to study the molecular and cellular control of the regeneration response. The highly stereotypic developmental program of C. teleta provides opportunities to study adult regeneration and generate robust comparisons between development and regeneration.
Collapse
|
13
|
Kostyuchenko RP, Kozin VV. Comparative Aspects of Annelid Regeneration: Towards Understanding the Mechanisms of Regeneration. Genes (Basel) 2021; 12:1148. [PMID: 34440322 PMCID: PMC8392629 DOI: 10.3390/genes12081148] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 01/12/2023] Open
Abstract
The question of why animals vary in their ability to regenerate remains one of the most intriguing questions in biology. Annelids are a large and diverse phylum, many members of which are capable of extensive regeneration such as regrowth of a complete head or tail and whole-body regeneration, even from few segments. On the other hand, some representatives of both of the two major annelid clades show very limited tissue regeneration and are completely incapable of segmental regeneration. Here we review experimental and descriptive data on annelid regeneration, obtained at different levels of organization, from data on organs and tissues to intracellular and transcriptomic data. Understanding the variety of the cellular and molecular basis of regeneration in annelids can help one to address important questions about the role of stem/dedifferentiated cells and "molecular morphallaxis" in annelid regeneration as well as the evolution of regeneration in general.
Collapse
Affiliation(s)
- Roman P. Kostyuchenko
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia;
| | | |
Collapse
|
14
|
Raz AA, Yamashita YM. Molding immortality from a plastic germline. Curr Opin Cell Biol 2021; 73:1-8. [PMID: 34091218 PMCID: PMC9255434 DOI: 10.1016/j.ceb.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Germ cells are uniquely capable of maintaining cellular immortality, allowing them to give rise to new individuals in generation after generation. Recent studies have identified that the germline state is plastic, with frequent interconversion between germline differentiation states and across the germline/soma border. Therefore, features that grant germline immortality must be inducible, with other cells undergoing some form of rejuvenation to a germline state. In this review, we summarize the breadth of our current interpretations of germline plasticity and the ways in which these fate conversion events can aid our understanding of the underlying hallmarks of germline immortality.
Collapse
Affiliation(s)
- Amelie A Raz
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Xu CM, Sun SC. Expression of Piwi Genes during the Regeneration of Lineus sanguineus (Nemertea, Pilidiophora, Heteronemertea). Genes (Basel) 2020; 11:E1484. [PMID: 33321919 PMCID: PMC7764242 DOI: 10.3390/genes11121484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The transposon silencer piwi genes play important roles in germline determination and maintenance, gametogenesis, and stem-cell self-renewal, and the expression of certain piwi genes is indispensable for regeneration. Knowledge about piwi genes is needed for phylum Nemertea, which contains members (e.g., Lineus sanguineus) with formidable regeneration capacity. By searching the L. sanguineus genome, we identified six Argonaute genes including three ago (Ls-Ago2, Ls-Ago2a, and Ls-Ago2b) and three piwi (Ls-piwi1, Ls-piwi2, and Ls-piwi3) genes. In situ hybridization revealed that, in intact females, Ls-piwi2 and Ls-piwi3 were not expressed, while Ls-piwi1 was expressed in ovaries. During regeneration, Ls-piwi1 and Ls-pcna (proliferating cell nuclear antigen) had strong and similar expressions. The expression of Ls-piwi1 became indetectable while Ls-pcna continued to be expressed when the differentiation of new organs was finished. During anterior regeneration, expression signals of Ls-piwi2 and Ls-piwi3 were weak and only detected in the blastema stage. During posterior regeneration, no expression was observed for Ls-piwi2. To date, no direct evidence has been found for the existence of congenital stem cells in adult L. sanguineus. The "pluripotent cells" in regenerating tissues are likely to be dedifferentiated from other type(s) of cells.
Collapse
Affiliation(s)
| | - Shi-Chun Sun
- College of Fisheries, Institute of Evolution and Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
| |
Collapse
|
16
|
Castro GB, Pinheiro FR, Felipe MC, Bernegossi AC, Girolli D, Gorni GR, Corbi JJ. Update on the use of Pristina longiseta Ehrenberg, 1828 (Oligochaeta: Naididae) as a toxicity test organism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38360-38369. [PMID: 32748353 DOI: 10.1007/s11356-020-10295-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Ecotoxicological bioassays have been widely applied to evaluate the toxicity of substances in standardized test organisms. Nevertheless, the main challenge for researchers is the use of native species to express the effects of pollutants on aquatic biota. Thirty years ago, Smith and collaborators evaluate the possible use of Pristina longiseta (as Pristina leidyi) in acute toxicity test, developing some experiments using cadmium and vanadium as toxicants. The present work aimed to update the use of P. longiseta, in acute bioassays, presenting the occurrence and general characteristics of the species; adaptation of cultivation to tropical conditions; sensitivity tests using potassium chloride (KCl) and copper sulfate (CuSO4) as reference substances standardized by OECD, USEPA, and ABNT; and acute exposure to zinc chloride (ZnCl2). The results showed a successful use of this species as tropical test organism, which presented easy laboratory rearing and responded to the classical ecotoxicological index. The present study can increase the utilization of P. longiseta in bioassays for tropical regions and improve the evaluation of environmental impacts using a native species in ecotoxicological studies.
Collapse
Affiliation(s)
- Gleyson B Castro
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil.
| | - Fernanda R Pinheiro
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Mayara C Felipe
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Aline C Bernegossi
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Douglas Girolli
- Environmental Studies Center, University of Araraquara, Araraquara, SP, Brazil
| | - Guilherme R Gorni
- Environmental Studies Center, University of Araraquara, Araraquara, SP, Brazil
| | - Juliano J Corbi
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
17
|
Kostyuchenko RP, Kozin VV. Morphallaxis versus Epimorphosis? Cellular and Molecular Aspects of Regeneration and Asexual Reproduction in Annelids. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020030048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Ribeiro RP, Ponz-Segrelles G, Bleidorn C, Aguado MT. Comparative transcriptomics in Syllidae (Annelida) indicates that posterior regeneration and regular growth are comparable, while anterior regeneration is a distinct process. BMC Genomics 2019; 20:855. [PMID: 31726983 PMCID: PMC6854643 DOI: 10.1186/s12864-019-6223-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/24/2019] [Indexed: 02/23/2023] Open
Abstract
Background Annelids exhibit remarkable postembryonic developmental abilities. Most annelids grow during their whole life by adding segments through the action of a segment addition zone (SAZ) located in front of the pygidium. In addition, they show an outstanding ability to regenerate their bodies. Experimental evidence and field observations show that many annelids are able to regenerate their posterior bodies, while anterior regeneration is often limited or absent. Syllidae, for instance, usually show high abilities of posterior regeneration, although anterior regeneration varies across species. Some syllids are able to partially restore the anterior end, while others regenerate all lost anterior body after bisection. Here, we used comparative transcriptomics to detect changes in the gene expression profiles during anterior regeneration, posterior regeneration and regular growth of two syllid species: Sphaerosyllis hystrix and Syllis gracilis; which exhibit limited and complete anterior regeneration, respectively. Results We detected a high number of genes with differential expression: 4771 genes in S. hystrix (limited anterior regeneration) and 1997 genes in S. gracilis (complete anterior regeneration). For both species, the comparative transcriptomic analysis showed that gene expression during posterior regeneration and regular growth was very similar, whereas anterior regeneration was characterized by up-regulation of several genes. Among the up-regulated genes, we identified putative homologs of regeneration-related genes associated to cellular proliferation, nervous system development, establishment of body axis, and stem-cellness; such as rup and JNK (in S. hystrix); and glutamine synthetase, elav, slit, Hox genes, β-catenin and PL10 (in S. gracilis). Conclusions Posterior regeneration and regular growth show no significant differences in gene expression in the herein investigated syllids. However, anterior regeneration is associated with a clear change in terms of gene expression in both species. Our comparative transcriptomic analysis was able to detect differential expression of some regeneration-related genes, suggesting that syllids share some features of the regenerative mechanisms already known for other annelids and invertebrates.
Collapse
Affiliation(s)
- Rannyele Passos Ribeiro
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
| | - Guillermo Ponz-Segrelles
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Christoph Bleidorn
- Animal Evolution & Biodiversity, Georg-August-Universität Göttingen, 37073, Göttingen, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Maria Teresa Aguado
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. .,Animal Evolution & Biodiversity, Georg-August-Universität Göttingen, 37073, Göttingen, Germany. .,Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, 28049, España.
| |
Collapse
|
19
|
Ponz‐Segrelles G, Bleidorn C, Aguado MT. Expression of
vasa
,
piwi
, and
nanos
during gametogenesis in
Typosyllis antoni
(Annelida, Syllidae). Evol Dev 2018; 20:132-145. [DOI: 10.1111/ede.12263] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guillermo Ponz‐Segrelles
- Departamento de BiologíaFacultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Christoph Bleidorn
- Animal Evolution and BiodiversityGeorg‐August‐University GöttingenGöttingenGermany
| | - M. Teresa Aguado
- Departamento de BiologíaFacultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| |
Collapse
|
20
|
Regeneration of the germline in the annelid Capitella teleta. Dev Biol 2018; 440:74-87. [DOI: 10.1016/j.ydbio.2018.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
|
21
|
Ribeiro RP, Bleidorn C, Aguado MT. Regeneration mechanisms in Syllidae (Annelida). REGENERATION (OXFORD, ENGLAND) 2018; 5:26-42. [PMID: 29721325 PMCID: PMC5911452 DOI: 10.1002/reg2.98] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Syllidae is one of the most species-rich groups within Annelida, with a wide variety of reproductive modes and different regenerative processes. Syllids have striking ability to regenerate their body anteriorly and posteriorly, which in many species is redeployed during sexual (schizogamy) and asexual (fission) reproduction. This review summarizes the available data on regeneration in syllids, covering descriptions of regenerative mechanisms in different species as well as regeneration in relation to reproductive modes. Our survey shows that posterior regeneration is widely distributed in syllids, whereas anterior regeneration is limited in most of the species, excepting those reproducing by fission. The latter reproductive mode is well known for a few species belonging to Autolytinae, Eusyllinae, and Syllinae. Patterns of fission areas have been studied in these animals. Deviations of the regular regeneration pattern or aberrant forms such as bifurcated animals or individuals with multiple heads have been reported for several species. Some of these aberrations show a deviation of the bilateral symmetry and antero-posterior axis, which, interestingly, can also be observed in the regular branching body pattern of some species of syllids.
Collapse
Affiliation(s)
- Rannyele P. Ribeiro
- Departamento de BiologíaFacultad de CienciasUniversidad Autónoma de MadridCantoblanco28049MadridSpain
| | - Christoph Bleidorn
- Animal Evolution and BiodiversityGeorg‐August‐Universität Göttingen37073 GöttingenGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig04103 LeipzigGermany
| | - M. Teresa Aguado
- Departamento de BiologíaFacultad de CienciasUniversidad Autónoma de MadridCantoblanco28049MadridSpain
| |
Collapse
|
22
|
Özpolat BD, Handberg-Thorsager M, Vervoort M, Balavoine G. Cell lineage and cell cycling analyses of the 4d micromere using live imaging in the marine annelid Platynereis dumerilii. eLife 2017; 6:30463. [PMID: 29231816 PMCID: PMC5764573 DOI: 10.7554/elife.30463] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
Cell lineage, cell cycle, and cell fate are tightly associated in developmental processes, but in vivo studies at single-cell resolution showing the intricacies of these associations are rare due to technical limitations. In this study on the marine annelid Platynereis dumerilii, we investigated the lineage of the 4d micromere, using high-resolution long-term live imaging complemented with a live-cell cycle reporter. 4d is the origin of mesodermal lineages and the germline in many spiralians. We traced lineages at single-cell resolution within 4d and demonstrate that embryonic segmental mesoderm forms via teloblastic divisions, as in clitellate annelids. We also identified the precise cellular origins of the larval mesodermal posterior growth zone. We found that differentially-fated progeny of 4d (germline, segmental mesoderm, growth zone) display significantly different cell cycling. This work has evolutionary implications, sets up the foundation for functional studies in annelid stem cells, and presents newly established techniques for live imaging marine embryos.
Collapse
|