1
|
Kuroiwa K, Mita-Yoshida K, Hamada M, Hozumi A, Nishino AS, Sasakura Y. Tunicate-specific protein Epi-1 is essential for conferring hydrophilicity to the larval tunic in the ascidian Ciona. Dev Biol 2025; 520:41-52. [PMID: 39761738 DOI: 10.1016/j.ydbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Animals must avoid adhesion to objects in the environment to maintain their mobility and independence. The marine invertebrate chordate ascidians are characterized by an acellular matrix tunic enveloping their entire body for protection and swimming. The tunic of ascidian larvae consists of a surface cuticle layer and inner matrix layer. Hydrophilic substances coat the cuticle; this modification is thought to be for preventing adhesion. However, the molecule responsible for regulating this modification has not been clarified. We here found that the tunicate-specific protein Epi-1 is responsible for preventing adhesiveness of the tunic in the ascidian Ciona intestinalis Type A. Ciona mutants with homozygous knockouts of Epi-1 exhibited adhesion to plastic plates and to other individuals. The cuticle of the Epi-1 mutants was fragile, and it lost the glycosaminoglycans supplied by test cells, the accessory cells that normally attach to the tunic surface. Although it has an apparent signal peptide for membrane trafficking, we showed that the Epi-1 protein is localized to the cytosol of the epidermal cells. Our study suggests that the emergence of the tunicate-specific protein Epi-1 made the tunic less adhesive, providing a selective advantage for the last common tunicate ancestor.
Collapse
Affiliation(s)
- Kazu Kuroiwa
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Kaoru Mita-Yoshida
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute, Okayama University, Okayama, Okayama, 701-4303, Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Atsuo S Nishino
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan.
| |
Collapse
|
2
|
Popsuj S, Cohen L, Ward S, Lewis A, Yoshida S, Herrera R A, Cota CD, Stolfi A. CRISPR/Cas9 Protocols for Disrupting Gene Function in the Non-vertebrate Chordate Ciona. Integr Comp Biol 2024; 64:1182-1193. [PMID: 38982335 PMCID: PMC11579527 DOI: 10.1093/icb/icae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
The evolutionary origins of chordates and their diversification into the three major subphyla of tunicates, vertebrates, and cephalochordates pose myriad questions about the genetic and developmental mechanisms underlying this radiation. Studies in non-vertebrate chordates have refined our model of what the ancestral chordate may have looked like, and have revealed the pre-vertebrate origins of key cellular and developmental traits. Work in the major tunicate laboratory model Ciona has benefitted greatly from the emergence of CRISPR/Cas9 techniques for targeted gene disruption. Here we review some of the important findings made possible by CRISPR in Ciona, and present our latest protocols and recommended practices for plasmid-based, tissue-specific CRISPR/Cas9-mediated mutagenesis.
Collapse
Affiliation(s)
- Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lindsey Cohen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sydney Ward
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Agnes Scott College, Decatur, GA 30030, USA
| | - Arabella Lewis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Agnes Scott College, Decatur, GA 30030, USA
| | | | | | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Pennati A, Jakobi M, Zeng F, Ciampa L, Rothbächer U. Optimizing CRISPR/Cas9 approaches in the polymorphic tunicate Ciona intestinalis. Dev Biol 2024; 510:31-39. [PMID: 38490564 DOI: 10.1016/j.ydbio.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
CRISPR/Cas9 became a powerful tool for genetic engineering and in vivo knockout also in the invertebrate chordate Ciona intestinalis. Ciona (ascidians, tunicates) is an important model organism because it shares developmental features with the vertebrates, considered the sister group of tunicates, and offers outstanding experimental advantages: a compact genome and an invariant developmental cell lineage that, combined with electroporation mediated transgenesis allows for precise and cell type specific targeting in vivo. A high polymorphism and the mosaic expression of electroporated constructs, however, often hamper the efficient CRISPR knockout, and an optimization in Ciona is desirable. Furthermore, seasonality and artificial maintenance settings can profit from in vitro approaches that would save on animals. Here we present improvements for the CRISPR/Cas9 protocol in silico, in vitro and in vivo. Firstly, in designing sgRNAs, prior sequencing of target genomic regions from experimental animals and alignment with reference genomes of C. robusta and C. intestinalis render a correction possible of subspecies polymorphisms. Ideally, the screening for efficient and non-polymorphic sgRNAs will generate a database compatible for worldwide Ciona populations. Secondly, we challenged in vitro assays for sgRNA validation towards reduced in vivo experimentation and report their suitability but also overefficiency concerning mismatch tolerance. Thirdly, when comparing Cas9 with Cas9:Geminin, thought to synchronize editing and homology-direct repair, we could indeed increase the in vivo efficiency and notably the access to an early expressed gene. Finally, for in vivo CRISPR, genotyping by next generation sequencing (NGS) ex vivo streamlined the definition of efficient single guides. Double CRISPR then generates large deletions and reliable phenotypic excision effects. Overall, while these improvements render CRISPR more efficient in Ciona, they are useful when newly establishing the technique and very transferable to CRISPR in other organisms.
Collapse
Affiliation(s)
- Alessandro Pennati
- Institute of Zoology, University of Innsbruck, 6020, Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Miloš Jakobi
- Institute of Zoology, University of Innsbruck, 6020, Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Fan Zeng
- Institute of Zoology, University of Innsbruck, 6020, Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Luca Ciampa
- Institute of Zoology, University of Innsbruck, 6020, Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Ute Rothbächer
- Institute of Zoology, University of Innsbruck, 6020, Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Lanoizelet M, Elkhoury Youhanna C, Roure A, Darras S. Molecular control of cellulosic fin morphogenesis in ascidians. BMC Biol 2024; 22:74. [PMID: 38561802 PMCID: PMC10986139 DOI: 10.1186/s12915-024-01872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The tunicates form a group of filter-feeding marine animals closely related to vertebrates. They share with them a number of features such as a notochord and a dorsal neural tube in the tadpole larvae of ascidians, one of the three groups that make tunicates. However, a number of typical chordate characters have been lost in different branches of tunicates, a diverse and fast-evolving phylum. Consequently, the tunic, a sort of exoskeleton made of extracellular material including cellulose secreted by the epidermis, is the unifying character defining the tunicate phylum. In the larva of ascidians, the tunic differentiates in the tail into a median fin (with dorsal and ventral extended blades) and a caudal fin. RESULTS Here we have performed experiments in the ascidian Phallusia mammillata to address the molecular control of tunic 3D morphogenesis. We have demonstrated that the tail epidermis medio-lateral patterning essential for peripheral nervous system specification also controls tunic elongation into fins. More specifically, when tail epidermis midline identity was abolished by BMP signaling inhibition, or CRISPR/Cas9 inactivation of the transcription factor coding genes Msx or Klf1/2/4/17, median fin did not form. We postulated that this genetic program should regulate effectors of tunic secretion. We thus analyzed the expression and regulation in different ascidian species of two genes acquired by horizontal gene transfer (HGT) from bacteria, CesA coding for a cellulose synthase and Gh6 coding for a cellulase. We have uncovered an unexpected dynamic history of these genes in tunicates and high levels of variability in gene expression and regulation among ascidians. Although, in Phallusia, Gh6 has a regionalized expression in the epidermis compatible with an involvement in fin elongation, our functional studies indicate a minor function during caudal fin formation only. CONCLUSIONS Our study constitutes an important step in the study of the integration of HGT-acquired genes into developmental networks and a cellulose-based morphogenesis of extracellular material in animals.
Collapse
Affiliation(s)
- Maxence Lanoizelet
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins (BIOM), Banyuls/Mer, 66650, France.
- Present address: Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Louvain, Belgium.
| | - Christel Elkhoury Youhanna
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins (BIOM), Banyuls/Mer, 66650, France
- Present address: Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, Montpellier, 34090, France
| | - Agnès Roure
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins (BIOM), Banyuls/Mer, 66650, France
| | - Sébastien Darras
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins (BIOM), Banyuls/Mer, 66650, France.
| |
Collapse
|