1
|
Zahedi E, Sadr SS, Sanaeierad A, Hosseini M, Roghani M. Acetyl-l-carnitine alleviates valproate-induced autism-like behaviors through attenuation of hippocampal mitochondrial dysregulation. Neuroscience 2024; 558:92-104. [PMID: 39168175 DOI: 10.1016/j.neuroscience.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
This study aimed to evaluate the potential benefits of acetyl-L-carnitine (ALCAR) in the context of valproate-induced autism. After prenatal exposure to valproate (VPA; 600 mg/kg, i.p.) on embryonic day 12.5, followed by ALCAR treatment (300 mg/kg on postnatal days 21-49, p.o.), assessment of oxidative stress, mitochondrial membrane potential (MMP), mitochondrial biogenesis, parvalbumin interneurons, and hippocampal volume was conducted. These assessments were carried out subsequent to the evaluation of autism-like behaviors. Hippocampal analysis of oxidative factors (reactive oxygen species and malondialdehyde) and antioxidants (superoxide dismutase, catalase, and glutathione) revealed a burden of oxidative stress in VPA rats. Additionally, mitochondrial biogenesis and MMP were elevated, while the number of parvalbumin interneurons decreased. These changes were accompanied by autism-like behaviors observed in the three-chamber maze, marble burring test, and Y-maze, as well as a learning deficit in the Barnes maze. In contrast, administrating ALCAR attenuated behavioral deficits, reduced oxidative stress, improved parvalbumin-positive neuronal population, and properly modified MMP and mitochondrial biogenesis. Collectively, our results indicate that oral administration of ALCAR ameliorates autism-like behaviors, partly through its targeting oxidative stress and mitochondrial biogenesis. This suggests that ALCAR may have potential benefits ASD managing.
Collapse
Affiliation(s)
- Elham Zahedi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ashkan Sanaeierad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marjan Hosseini
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
2
|
Wang SH, Lee DS, Kim TH, Kim JE, Kang TC. Reciprocal regulation of oxidative stress and mitochondrial fission augments parvalbumin downregulation through CDK5-DRP1- and GPx1-NF-κB signaling pathways. Cell Death Dis 2024; 15:707. [PMID: 39349423 PMCID: PMC11443148 DOI: 10.1038/s41419-024-07050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/02/2024]
Abstract
Loss of parvalbumin (PV) expressing neurons (PV neurons) is relevant to the underlying mechanisms of the pathogenesis of neurological and psychiatric diseases associated with the dysregulation of neuronal excitatory networks and brain metabolism. Although PV modulates mitochondrial morphology, volume and dynamics, it is largely unknown whether mitochondrial dynamics affect PV expression and what the molecular events are responsible for PV neuronal degeneration. In the present study, L-buthionine sulfoximine (BSO, an inhibitor of glutathione synthesis) did not degenerate PV neurons under physiological condition. However, BSO-induced oxidative stress decreased PV expression and facilitated cyclin-dependent kinase 5 (CDK5) tyrosine (Y) 15 phosphorylation, dynamin-related protein 1 (DRP1)-mediated mitochondrial fission and glutathione peroxidase-1 (GPx1) downregulation in PV neurons. Co-treatment of roscovitine (a CDK5 inhibitor) or mitochondrial division inhibitor-1 (Mdivi-1, an inhibitor of mitochondrial fission) attenuated BSO-induced PV downregulation. WY14643 (an inducer of mitochondrial fission) reduced PV expression without affecting CDK5 Y15 phosphorylation. Following status epilepticus (SE), CDK5 Y15 phosphorylation and mitochondrial fission were augmented in PV neurons. These were accompanied by reduced GPx1-mediated inhibition of NF-κB p65 serine (S) 536 phosphorylation. N-acetylcysteine (NAC), roscovitine and Mdivi-1 ameliorated SE-induced PV neuronal degeneration by mitigating CDK5 Y15 hyperphosphorylation, aberrant mitochondrial fragmentation and reduced GPx1-mediated NF-κB inhibition. Furthermore, SN50 (a NF-κB inhibitor) alleviated SE-induced PV neuronal degeneration, independent of dysregulation of mitochondrial fission, CDK5 hyperactivation and GPx1 downregulation. These findings provide an evidence that oxidative stress may activate CDK5-DRP1- and GPx1-NF-κB-mediated signaling pathways, which would be possible therapeutic targets for preservation of PV neurons in various diseases.
Collapse
Affiliation(s)
- Su Hyeon Wang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
3
|
Shao W, Zheng H, Zhu J, Li W, Li Y, Hu W, Zhang J, Jing L, Wang K, Jiang X. Deletions of Cacna2d3 in parvalbumin-expressing neurons leads to autistic-like phenotypes in mice. Neurochem Int 2023; 169:105569. [PMID: 37419212 DOI: 10.1016/j.neuint.2023.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Autism spectrum disorder (ASD) is a series of highly inherited neurodevelopmental disorders. Loss-of-function (LOF) mutations in the CACNA2D3 gene are associated with ASD. However, the underlying mechanism is unknown. Dysfunction of cortical interneurons (INs) is strongly implicated in ASD. Parvalbumin-expressing (PV) INs and somatostatin-expressing (SOM) INs are the two most subtypes. Here, we characterized a mouse knockout of the Cacna2d3 gene in PV-expressing neurons (PVCre;Cacna2d3f/f mice) or in SOM-expressing neurons (SOMCre;Cacna2d3f/f mice), respectively. PVCre;Cacna2d3f/f mice showed deficits in the core ASD behavioral domains (including impaired sociability and increased repetitive behavior), as well as anxiety-like behavior and improved spatial memory. Furthermore, loss of Cacna2d3 from a subset of PV neurons results in a reduction of GAD67 and PV expression in the medial prefrontal cortex (mPFC). These may underlie the increased neuronal excitability in the mPFC, which contribute to the abnormal social behavior in PVCre;Cacna2d3f/f mice. Whereas, SOMCre;Cacna2d3f/f mice showed no obvious deficits in social, cognitive, or emotional phenotypes. Our findings provide the first evidence suggesting the causal role of Cacna2d3 insufficiency in PV neurons in autism.
Collapse
Affiliation(s)
- Wei Shao
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Hang Zheng
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Jingwen Zhu
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Wenhao Li
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Yifan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjie Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juanjuan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang Jing
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
| | - Kai Wang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Xiao Jiang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
| |
Collapse
|
4
|
Zahedi E, Sadr SS, Sanaeierad A, Roghani M. Chronic acetyl-L-carnitine treatment alleviates behavioral deficits and neuroinflammation through enhancing microbiota derived-SCFA in valproate model of autism. Biomed Pharmacother 2023; 163:114848. [PMID: 37163781 DOI: 10.1016/j.biopha.2023.114848] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Autism spectrum disorder is characterized by a variety of cellular and molecular abnormalities which leads to autism-associated behaviors. Besides behavioral defects, these individuals also suffer from various associated disorders such as gastrointestinal deficit, altered gut microbiota composition and their metabolite. This study examined the effect of ALC on microbiota SCFA production and its effects on brain inflammation in VPA autism model. After prenatal exposure to valproate (600 mg/kg, i.p.) on embryonic day 12.5, followed by ALC treatment (100 mg/kg during postnatal days 23-51, p.o.), ASD-like behaviors, SCFAs amount in feces, intestine integrity (Occludin and ZO-1 tight junction proteins), systemic and brain inflammation (TNF-α and IL-1β) were assessed. Then, Golgi-Cox staining and Western blot for Iba1 protein were utilized to identify the changes in microglia profile in cerebral cortex. In the VPA model, we found that induction of autism was associated with demoted levels of SCFAs in feces and disintegration of intestine tissue which led to elevated level of TNF-α in the plasma. Further, we characterized an increased number of microglia in our histology evaluation and Iba1 protein in cerebral cortex. We also observed elevated level of TNF-α and IL-1β in the cerebral cortex of VPA rat. All these abnormalities were significantly alleviated by ALC treatment. Overall, our findings suggest that alleviation of behavioral abnormalities by ALC therapy in the VPA model of autism is associated with an improvement in the gut microbiota SCFAs, intestinal barrier and recovery of microglia and inflammation in the brain.
Collapse
Affiliation(s)
- Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed-Shahabeddin Sadr
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ashkan Sanaeierad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
5
|
Klocke B, Krone K, Tornes J, Moore C, Ott H, Pitychoutis PM. Insights into the role of intracellular calcium signaling in the neurobiology of neurodevelopmental disorders. Front Neurosci 2023; 17:1093099. [PMID: 36875674 PMCID: PMC9975342 DOI: 10.3389/fnins.2023.1093099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Calcium (Ca2+) comprises a critical ionic second messenger in the central nervous system that is under the control of a wide array of regulatory mechanisms, including organellar Ca2+ stores, membrane channels and pumps, and intracellular Ca2+-binding proteins. Not surprisingly, disturbances in Ca2+ homeostasis have been linked to neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. However, aberrations in Ca2+ homeostasis have also been implicated in neuropsychiatric disorders with a strong neurodevelopmental component including autism spectrum disorder (ASD) attention-deficit hyperactivity disorder (ADHD) and schizophrenia (SCZ). While plasma membrane Ca2+ channels and synaptic Ca2+-binding proteins have been extensively studied, increasing evidence suggests a prominent role for intracellular Ca2+ stores, such as the endoplasmic reticulum (ER), in aberrant neurodevelopment. In the context of the current mini-review, we discuss recent findings implicating critical intracellular Ca2+-handling regulators such as the sarco-ER Ca2+ ATPase 2 (SERCA2), ryanodine receptors (RyRs), inositol triphosphate receptors (IP3Rs), and parvalbumin (PVALB), in the emergence of ASD, SCZ, and ADHD.
Collapse
Affiliation(s)
- Benjamin Klocke
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Kylie Krone
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Jason Tornes
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Carter Moore
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Hayden Ott
- Department of Biology, University of Dayton, Dayton, OH, United States
| | | |
Collapse
|
6
|
Kim SY, Strucinska K, Osei B, Han K, Kwon SK, Lewis TL. Neuronal mitochondrial morphology is significantly affected by both fixative and oxygen level during perfusion. Front Mol Neurosci 2022; 15:1042616. [PMID: 36407767 PMCID: PMC9667081 DOI: 10.3389/fnmol.2022.1042616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 03/31/2023] Open
Abstract
Neurons in the brain have a uniquely polarized structure consisting of multiple dendrites and a single axon generated from a cell body. Interestingly, intracellular mitochondria also show strikingly polarized morphologies along the dendrites and axons: in cortical pyramidal neurons (PNs), dendritic mitochondria have a long and tubular shape, while axonal mitochondria are small and circular. Mitochondria play important roles in each compartment of the neuron by generating adenosine triphosphate (ATP) and buffering calcium, thereby affecting synaptic transmission and neuronal development. In addition, mitochondrial shape, and thereby function, is dynamically altered by environmental stressors such as oxidative stress or in various neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Although the importance of altered mitochondrial shape has been claimed by multiple studies, methods for studying this stress-sensitive organelle have not been standardized. Here we address pertinent steps that influence mitochondrial morphology during experimental processes. We demonstrate that fixative solutions containing only paraformaldehyde (PFA), or that introduce hypoxic conditions during the procedure, induce dramatic fragmentation of mitochondria both in vitro and in vivo. This disruption was not observed following the use of glutaraldehyde (GA) addition or oxygen supplementation, respectively. Finally, using pre-formed fibril α-synuclein treated neurons, we show fixative choice can alter experimental outcomes. Specifically, α-synuclein-induced mitochondrial remodeling could not be observed with PFA only fixation as fixation itself caused mitochondrial fragmentation. Our study provides optimized methods for examining mitochondrial morphology in neurons and demonstrates that fixation conditions are critical when investigating the underlying cellular mechanisms involving mitochondria in physiological and neurodegenerative disease models.
Collapse
Affiliation(s)
- Su Yeon Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea
| | - Klaudia Strucinska
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Bertha Osei
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kihoon Han
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea
| | - Seok-Kyu Kwon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Tommy L. Lewis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Departments of Biochemistry & Molecular Biology, Neuroscience and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
7
|
Panagaki T, Lozano-Montes L, Janickova L, Zuhra K, Szabo MP, Majtan T, Rainer G, Maréchal D, Herault Y, Szabo C. Overproduction of hydrogen sulfide, generated by cystathionine β-synthase, disrupts brain wave patterns and contributes to neurobehavioral dysfunction in a rat model of down syndrome. Redox Biol 2022; 51:102233. [PMID: 35042677 PMCID: PMC9039679 DOI: 10.1016/j.redox.2022.102233] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/26/2021] [Accepted: 01/10/2022] [Indexed: 12/23/2022] Open
Abstract
Using a novel rat model of Down syndrome (DS), the functional role of the cystathionine-β-synthase (CBS)/hydrogen sulfide (H2S) pathway was investigated on the pathogenesis of brain wave pattern alterations and neurobehavioral dysfunction. Increased expression of CBS and subsequent overproduction of H2S was observed in the brain of DS rats, with CBS primarily localizing to astrocytes and the vasculature. DS rats exhibited neurobehavioral defects, accompanied by a loss of gamma brain wave activity and a suppression of the expression of multiple pre- and postsynaptic proteins. Aminooxyacetate, a prototypical pharmacological inhibitor of CBS, increased the ability of the DS brain tissue to generate ATP in vitro and reversed the electrophysiological and neurobehavioral alterations in vivo. Thus, the CBS/H2S pathway contributes to the pathogenesis of neurological dysfunction in DS, most likely through dysregulation of cellular bioenergetics and gene expression.
Collapse
Affiliation(s)
- Theodora Panagaki
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laura Lozano-Montes
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Visual Cognition Laboratory, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Lucia Janickova
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Karim Zuhra
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Marcell P Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Tomas Majtan
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gregor Rainer
- Visual Cognition Laboratory, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Damien Maréchal
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
8
|
Postsynaptic autism spectrum disorder genes and synaptic dysfunction. Neurobiol Dis 2021; 162:105564. [PMID: 34838666 DOI: 10.1016/j.nbd.2021.105564] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
This review provides an overview of the synaptic dysfunction of neuronal circuits and the ensuing behavioral alterations caused by mutations in autism spectrum disorder (ASD)-linked genes directly or indirectly affecting the postsynaptic neuronal compartment. There are plenty of ASD risk genes, that may be broadly grouped into those involved in gene expression regulation (epigenetic regulation and transcription) and genes regulating synaptic activity (neural communication and neurotransmission). Notably, the effects mediated by ASD-associated genes can vary extensively depending on the developmental time and/or subcellular site of expression. Therefore, in order to gain a better understanding of the mechanisms of disruptions in postsynaptic function, an effort to better model ASD in experimental animals is required to improve standardization and increase reproducibility within and among studies. Such an effort holds promise to provide deeper insight into the development of these disorders and to improve the translational value of preclinical studies.
Collapse
|
9
|
Li J, Bi H. Integrating network pharmacology and in vitro model to investigate hippocampal neurotoxicity induced by atrazine. Toxicol Mech Methods 2021; 32:259-267. [PMID: 34663174 DOI: 10.1080/15376516.2021.1995917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Atrazine (ATR), a commonly applied herbicide in agriculture, has been found to cause hippocampal injury in rodents. However, the underlying toxicological targets and mechanisms are unclear. In this study, network pharmacology analysis and in vitro model were integrated to investigate the effect and mechanism of ATR-induced hippocampal neurotoxicity. In total, 71 targets of hippocampal neurotoxicity induced by ATR were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG) enrichment analysis suggested that these targets were related to multiple GO terms and signaling pathways. To further investigate the underlying mechanisms, the top 10 hub targets were screened and included tumor protein p53 (Tp53), caspase 3 (Casp3), prostaglandin-endoperoxide synthase 2 (Ptgs2), cAMP-responsive element-binding protein 1 (Creb1), estrogen receptor 1 (Esr1), Jun proto-oncogene (Jun), brain-derived neurotrophic factor (Bdnf), catalase (Cat), sirtuin 1 (Sirt1) and Fos proto-oncogene (Fos). Moreover, the cell counting kit-8 (CCK8) and lactate dehydrogenase (LDH) assay showed that ATR had time and dose-dependent cytotoxicity on H19-7 cells. TUNEL staining revealed that ATR increased the apoptotic ratio. In addition, Real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that the mRNA expression levels of all hub targets showed significant changes, except Esr1 and Jun. Our study demonstrated that ATR mainly acted on multiple targets and signaling pathways to exert its hippocampal neurotoxicity. These results provided initial evidence for the further exploration of the toxicological mechanism of ATR.
Collapse
Affiliation(s)
- Jianan Li
- Key Lab of Environment and Health, College of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haoran Bi
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:689473. [PMID: 34616292 PMCID: PMC8488267 DOI: 10.3389/fphar.2021.689473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The neurobiological bases of mood instability are poorly understood. Neuronal network alterations and neurometabolic abnormalities have been implicated in the pathophysiology of mood and anxiety conditions associated with mood instability and hence are candidate mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic interneurons modulate the activity of principal excitatory neurons through their inhibitory action determining precise neuronal excitation balance. These interneurons are directly involved in generating neuronal networks activities responsible for sustaining higher cerebral functions and are especially vulnerable to metabolic stress associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin interneurons are therefore candidate key players involved in mechanisms underlying the pathogenesis of brain disorders associated with both neuronal networks' dysfunction and brain metabolism dysregulation. To provide empirical support to this hypothesis, we hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily characterized by mood instability for which the pathophysiological role of mitochondrial dysfunction has recently emerged as critically important. We then present a comprehensive review of evidence from the literature illustrating the bidirectional relationship between deficiency in mitochondrial-dependent energy production and parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how alterations in neuronal excitability, resulting from parvalbumin interneurons loss or dysfunction, might manifest clinically as mood instability, a poorly understood clinical phenotype typical of the most severe forms of affective disorders. The evidence we report provides insights on the broader therapeutic potential of pharmacologically targeting parvalbumin interneurons in psychiatric and neurological conditions characterized by both neurometabolic and neuroexcitability abnormalities.
Collapse
Affiliation(s)
- Antonello Pinna
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
11
|
Correction to: Absence of parvalbumin increases mitochondria volume and branching of dendrites in inhibitory Pvalb neurons in vivo: a point of convergence of autism spectrum disorder (ASD) risk gene phenotypes. Mol Autism 2021; 12:7. [PMID: 33546676 PMCID: PMC7863247 DOI: 10.1186/s13229-020-00404-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Filice F, Janickova L, Henzi T, Bilella A, Schwaller B. The Parvalbumin Hypothesis of Autism Spectrum Disorder. Front Cell Neurosci 2020; 14:577525. [PMID: 33390904 PMCID: PMC7775315 DOI: 10.3389/fncel.2020.577525] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of autism spectrum disorder (ASD)-a type of neurodevelopmental disorder-is increasing and is around 2% in North America, Asia, and Europe. Besides the known genetic link, environmental, epigenetic, and metabolic factors have been implicated in ASD etiology. Although highly heterogeneous at the behavioral level, ASD comprises a set of core symptoms including impaired communication and social interaction skills as well as stereotyped and repetitive behaviors. This has led to the suggestion that a large part of the ASD phenotype is caused by changes in a few and common set of signaling pathways, the identification of which is a fundamental aim of autism research. Using advanced bioinformatics tools and the abundantly available genetic data, it is possible to classify the large number of ASD-associated genes according to cellular function and pathways. Cellular processes known to be impaired in ASD include gene regulation, synaptic transmission affecting the excitation/inhibition balance, neuronal Ca2+ signaling, development of short-/long-range connectivity (circuits and networks), and mitochondrial function. Such alterations often occur during early postnatal neurodevelopment. Among the neurons most affected in ASD as well as in schizophrenia are those expressing the Ca2+-binding protein parvalbumin (PV). These mainly inhibitory interneurons present in many different brain regions in humans and rodents are characterized by rapid, non-adaptive firing and have a high energy requirement. PV expression is often reduced at both messenger RNA (mRNA) and protein levels in human ASD brain samples and mouse ASD (and schizophrenia) models. Although the human PVALB gene is not a high-ranking susceptibility/risk gene for either disorder and is currently only listed in the SFARI Gene Archive, we propose and present supporting evidence for the Parvalbumin Hypothesis, which posits that decreased PV level is causally related to the etiology of ASD (and possibly schizophrenia).
Collapse
Affiliation(s)
| | | | | | | | - Beat Schwaller
- Section of Medicine, Anatomy, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
13
|
Abnormalities of synaptic mitochondria in autism spectrum disorder and related neurodevelopmental disorders. J Mol Med (Berl) 2020; 99:161-178. [PMID: 33340060 PMCID: PMC7819932 DOI: 10.1007/s00109-020-02018-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition primarily characterized by an impairment of social interaction combined with the occurrence of repetitive behaviors. ASD starts in childhood and prevails across the lifespan. The variability of its clinical presentation renders early diagnosis difficult. Mutations in synaptic genes and alterations of mitochondrial functions are considered important underlying pathogenic factors, but it is obvious that we are far from a comprehensive understanding of ASD pathophysiology. At the synapse, mitochondria perform diverse functions, which are clearly not limited to their classical role as energy providers. Here, we review the current knowledge about mitochondria at the synapse and summarize the mitochondrial disturbances found in mouse models of ASD and other ASD-related neurodevelopmental disorders, like DiGeorge syndrome, Rett syndrome, Tuberous sclerosis complex, and Down syndrome.
Collapse
|
14
|
Janickova L, Schwaller B. Parvalbumin-Deficiency Accelerates the Age-Dependent ROS Production in Pvalb Neurons in vivo: Link to Neurodevelopmental Disorders. Front Cell Neurosci 2020; 14:571216. [PMID: 33132847 PMCID: PMC7549402 DOI: 10.3389/fncel.2020.571216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
In neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD) and schizophrenia, impairment/malfunctioning of a subpopulation of interneurons expressing the calcium-binding protein parvalbumin (PV) -here termed Pvalb neurons- has gradually emerged as a possible cause. These neurons may represent a hub or point-of-convergence in the etiology of NDD. Increased oxidative stress associated with mitochondria impairment in Pvalb neurons is discussed as an essential step in schizophrenia etiology. Since PV downregulation is a common finding in ASD and schizophrenia individuals and PV-deficient (PV-/-) mice show a strong ASD-like behavior phenotype, we investigated the putative link between PV expression, alterations in mitochondria and oxidative stress. In a longitudinal study with 1, 3, and 6-months old PV-/- and wild type mice, oxidative stress was investigated in 9 Pvalb neuron subpopulations in the hippocampus, striatum, somatosensory cortex, medial prefrontal cortex, thalamic reticular nucleus (TRN) and cerebellum. In Pvalb neuron somata in the striatum and TRN, we additionally determined mitochondria volume and distribution at these three time points. In all Pvalb neuron subpopulations, we observed an age-dependent increase in oxidative stress and the increase strongly correlated with PV expression levels, but not with mitochondria density in these Pvalb neurons. Moreover, oxidative stress was elevated in Pvalb neurons of PV-/- mice and the magnitude of the effect was again correlated with PV expression levels in the corresponding wild type Pvalb neuron subpopulations. The PV-dependent effect was insignificant at 1 month and relative differences between WT and PV-/- Pvalb neurons were largest at 3 months. Besides the increase in mitochondria volume in PV's absence in TRN and striatal PV-/- Pvalb neurons fully present already at 1 month, we observed a redistribution of mitochondria from the perinuclear region toward the plasma membrane at all time points. We suggest that in absence of PV, slow Ca2+ buffering normally exerted by PV is compensated by a (mal)adaptive, mostly sub-plasmalemmal increase in mitochondria resulting in increased oxidative stress observed in 3- and 6-months old mice. Since PV-/- mice display core ASD-like symptoms already at 1 month, oxidative stress in Pvalb neurons is not a likely cause for their ASD-related behavior observed at this age.
Collapse
Affiliation(s)
| | - Beat Schwaller
- Department of Neurosciences amd Movement Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|