1
|
Kallos-Balogh P, Vas NF, Toth Z, Szakall S, Szabo P, Garai I, Kepes Z, Forgacs A, Szatmáriné Egeresi L, Magnus D, Balkay L. Multicentric study on the reproducibility and robustness of PET-based radiomics features with a realistic activity painting phantom. PLoS One 2024; 19:e0309540. [PMID: 39446842 PMCID: PMC11500893 DOI: 10.1371/journal.pone.0309540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024] Open
Abstract
Previously, we developed an "activity painting" tool for PET image simulation; however, it could simulate heterogeneous patterns only in the air. We aimed to improve this phantom technique to simulate arbitrary lesions in a radioactive background to perform relevant multi-center radiomic analysis. We conducted measurements moving a 22Na point source in a 20-liter background volume filled with 5 kBq/mL activity with an adequately controlled robotic system to prevent the surge of the water. Three different lesion patterns were "activity-painted" in five PET/CT cameras, resulting in 8 different reconstructions. We calculated 46 radiomic indeces (RI) for each lesion and imaging setting, applying absolute and relative discretization. Reproducibility and reliability were determined by the inter-setting coefficient of variation (CV) and the intraclass correlation coefficient (ICC). Hypothesis tests were used to compare RI between lesions. By simulating precisely the same lesions, we confirmed that the reconstructed voxel size and the spatial resolution of different PET cameras were critical for higher order RI. Considering conventional RIs, the SUVpeak and SUVmean proved the most reliable (CV<10%). CVs above 25% are more common for higher order RIs, but we also found that low CVs do not necessarily imply robust parameters but often rather insensitive RIs. Based on the hypothesis test, most RIs could clearly distinguish between the various lesions using absolute resampling. ICC analysis also revealed that most RIs were more reproducible with absolute discretization. The activity painting method in a real radioactive environment proved suitable for precisely detecting the radiomic differences derived from the different camera settings and texture characteristics. We also found that inter-setting CV is not an appropriate metric for analyzing RI parameters' reliability and robustness. Although multicentric cohorts are increasingly common in radiomics analysis, realistic texture phantoms can provide indispensable information on the sensitivity of an RI and how an individual RI parameter measures the texture.
Collapse
Affiliation(s)
- Piroska Kallos-Balogh
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norman Felix Vas
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Toth
- Medicopus Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | | | | | - Ildiko Garai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Scanomed Ltd., Debrecen, Debrecen, Hungary
| | - Zita Kepes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Lilla Szatmáriné Egeresi
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dahlbom Magnus
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Laszlo Balkay
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
O'Shea R, Withey SJ, Owczarczyk K, Rookyard C, Gossage J, Godfrey E, Jobling C, Parsons SL, Skipworth RJE, Goh V. Multicentre validation of CT grey-level co-occurrence matrix features for overall survival in primary oesophageal adenocarcinoma. Eur Radiol 2024; 34:6919-6928. [PMID: 38526750 PMCID: PMC11399295 DOI: 10.1007/s00330-024-10666-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Personalising management of primary oesophageal adenocarcinoma requires better risk stratification. Lack of independent validation of proposed imaging biomarkers has hampered clinical translation. We aimed to prospectively validate previously identified prognostic grey-level co-occurrence matrix (GLCM) CT features for 3-year overall survival. METHODS Following ethical approval, clinical and contrast-enhanced CT data were acquired from participants from five institutions. Data from three institutions were used for training and two for testing. Survival classifiers were modelled on prespecified variables ('Clinical' model: age, clinical T-stage, clinical N-stage; 'ClinVol' model: clinical features + CT tumour volume; 'ClinRad' model: ClinVol features + GLCM_Correlation and GLCM_Contrast). To reflect current clinical practice, baseline stage was also modelled as a univariate predictor ('Stage'). Discrimination was assessed by area under the receiver operating curve (AUC) analysis; calibration by Brier scores; and clinical relevance by thresholding risk scores to achieve 90% sensitivity for 3-year mortality. RESULTS A total of 162 participants were included (144 male; median 67 years [IQR 59, 72]; training, 95 participants; testing, 67 participants). Median survival was 998 days [IQR 486, 1594]. The ClinRad model yielded the greatest test discrimination (AUC, 0.68 [95% CI 0.54, 0.81]) that outperformed Stage (ΔAUC, 0.12 [95% CI 0.01, 0.23]; p = .04). The Clinical and ClinVol models yielded comparable test discrimination (AUC, 0.66 [95% CI 0.51, 0.80] vs. 0.65 [95% CI 0.50, 0.79]; p > .05). Test sensitivity of 90% was achieved by ClinRad and Stage models only. CONCLUSIONS Compared to Stage, multivariable models of prespecified clinical and radiomic variables yielded improved prediction of 3-year overall survival. CLINICAL RELEVANCE STATEMENT Previously identified radiomic features are prognostic but may not substantially improve risk stratification on their own. KEY POINTS • Better risk stratification is needed in primary oesophageal cancer to personalise management. • Previously identified CT features-GLCM_Correlation and GLCM_Contrast-contain incremental prognostic information to age and clinical stage. • Compared to staging, multivariable clinicoradiomic models improve discrimination of 3-year overall survival.
Collapse
Affiliation(s)
- Robert O'Shea
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Samuel J Withey
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Radiology, Royal Marsden Hospital NHS Trust, Sutton, Surrey, UK
| | - Kasia Owczarczyk
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Clinical Oncology, Guy's & St Thomas' Hospitals NHS Foundation Trust, London, UK
| | - Christopher Rookyard
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - James Gossage
- Department of Surgery, Guy's & St Thomas' Hospitals NHS Foundation Trust, London, UK
| | - Edmund Godfrey
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Craig Jobling
- Department of Radiology, Nottingham University Hospitals NHS Foundation Trust, Nottingham, UK
| | - Simon L Parsons
- Department of Surgery, Nottingham University Hospitals NHS Foundation Trust, Nottingham, UK
| | | | - Vicky Goh
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- Department of Radiology, Guy's & St Thomas' Hospitals NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EG, UK.
| |
Collapse
|
3
|
Meng N, Jiang H, Sun J, Shen L, Wang X, Zhou Y, Wu Y, Fu F, Yuan J, Yang Y, Wang Z, Wang M. Amide Proton Transfer-Weighted Imaging and Multiple Models Intravoxel Incoherent Motion-Based 18F-FDG PET/MRI for Predicting Progression-Free Survival in Non-Small Cell Lung Cancer. J Magn Reson Imaging 2024; 60:125-135. [PMID: 37850873 DOI: 10.1002/jmri.29037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Amide proton transfer-weighted imaging (APTWI) and multiple models intravoxel incoherent motion (IVIM) based 18F-FDG PET/MR could reflect the microscopic information of the tumor from multiple perspectives. However, its value in the prognostic assessment of non-small cell lung cancer (NSCLC) still needs to be further explored. PURPOSE To determine whether pretreatment APTWI, mono-, bi-, and stretched-exponential model IVIM, and 18F-FDG PET-derived parameters of the primary lesion may be associated with progression-free survival (PFS) in NSCLC. STUDY TYPE Prospective. POPULATION Seventy-seven patients (mean age, 62 years, range, 20-81 years) with 37 men and 40 women were included. FIELD STRENGTH/SEQUENCE 3.0 T 18F-FDG PET/MRI, single shot echo planar imaging sequences for IVIM and fast spin-echo sequences with magnetization transfer pulses for APTWI. ASSESSMENT Patient clinical characteristics (age, sex, smoke, subtype, TNM stage, and surgery), PFS (chest CT every 3 months, median follow-up was 18 months, range, 4-27 months), and APTWI (MTRasym(3.5 ppm)), IVIM (ADCstand, D, D*, f, DDC, and α), and 18F-FDG PET (SUVmax, MTV, and TLG) parameters were recorded. STATISTICAL TESTS Proportional hazards model, concordance index, calibration curve, decision curve analysis (DCA), and Log-rank test. A P value <0.05 was considered statistically significant. RESULTS Histological subtype, TNM stage, MTV, D*, and MTRasym(3.5 ppm) were all independent predictors of PFS. A prediction model based on these predictors was developed with a C-index of 0.895 (95% CI: 0.839-0.951), which was significantly superior to each of the above predictors alone (C-index = 0.629, 0.707, 0.692, 0.678, and 0.558, respectively). The calibration curve and DCA indicated good consistency and clinical utility of the prediction model, respectively. Log-rank test results showed a significant difference in PFS between the high- and low-risk groups. DATA CONCLUSION APTWI and multiple models IVIM based 18F-FDG PET/MRI can be used for PFS assessment in NSCLC. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Nan Meng
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
- Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou, China
| | - Han Jiang
- Department of Medical Imaging, Xinxiang Medical University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Jing Sun
- Department of Pediatrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University & Zhengzhou Central Hospital, Zhengzhou, China
| | - Lei Shen
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| | - Xinhui Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| | - Yihang Zhou
- Department of Medical Imaging, Xinxiang Medical University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Yaping Wu
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| | - Fangfang Fu
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, United Imaging Healthcare Group, Beijing, China
| | - Zhe Wang
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
- Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou, China
| |
Collapse
|
4
|
Huang W, Tao Z, Younis MH, Cai W, Kang L. Nuclear medicine radiomics in digestive system tumors: Concept, applications, challenges, and future perspectives. VIEW 2023; 4:20230032. [PMID: 38179181 PMCID: PMC10766416 DOI: 10.1002/viw.20230032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/20/2023] [Indexed: 01/06/2024] Open
Abstract
Radiomics aims to develop novel biomarkers and provide relevant deeper subvisual information about pathology, immunophenotype, and tumor microenvironment. It uses automated or semiautomated quantitative analysis of high-dimensional images to improve characterization, diagnosis, and prognosis. Recent years have seen a rapid increase in radiomics applications in nuclear medicine, leading to some promising research results in digestive system oncology, which have been driven by big data analysis and the development of artificial intelligence. Although radiomics advances one step further toward the non-invasive precision medical analysis, it is still a step away from clinical application and faces many challenges. This review article summarizes the available literature on digestive system tumors regarding radiomics in nuclear medicine. First, we describe the workflow and steps involved in radiomics analysis. Subsequently, we discuss the progress in clinical application regarding the utilization of radiomics for distinguishing between various diseases and evaluating their prognosis, and demonstrate how radiomics advances this field. Finally, we offer our viewpoint on how the field can progress by addressing the challenges facing clinical implementation.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Zihao Tao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Muhsin H. Younis
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
5
|
Menon N, Guidozzi N, Chidambaram S, Markar SR. Performance of radiomics-based artificial intelligence systems in the diagnosis and prediction of treatment response and survival in esophageal cancer: a systematic review and meta-analysis of diagnostic accuracy. Dis Esophagus 2023; 36:doad034. [PMID: 37236811 PMCID: PMC10789236 DOI: 10.1093/dote/doad034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Radiomics can interpret radiological images with more detail and in less time compared to the human eye. Some challenges in managing esophageal cancer can be addressed by incorporating radiomics into image interpretation, treatment planning, and predicting response and survival. This systematic review and meta-analysis provides a summary of the evidence of radiomics in esophageal cancer. The systematic review was carried out using Pubmed, MEDLINE, and Ovid EMBASE databases-articles describing radiomics in esophageal cancer were included. A meta-analysis was also performed; 50 studies were included. For the assessment of treatment response using 18F-FDG PET/computed tomography (CT) scans, seven studies (443 patients) were included in the meta-analysis. The pooled sensitivity and specificity were 86.5% (81.1-90.6) and 87.1% (78.0-92.8). For the assessment of treatment response using CT scans, five studies (625 patients) were included in the meta-analysis, with a pooled sensitivity and specificity of 86.7% (81.4-90.7) and 76.1% (69.9-81.4). The remaining 37 studies formed the qualitative review, discussing radiomics in diagnosis, radiotherapy planning, and survival prediction. This review explores the wide-ranging possibilities of radiomics in esophageal cancer management. The sensitivities of 18F-FDG PET/CT scans and CT scans are comparable, but 18F-FDG PET/CT scans have improved specificity for AI-based prediction of treatment response. Models integrating clinical and radiomic features facilitate diagnosis and survival prediction. More research is required into comparing models and conducting large-scale studies to build a robust evidence base.
Collapse
Affiliation(s)
- Nainika Menon
- Department of General Surgery, Oxford University Hospitals, Oxford, UK
| | - Nadia Guidozzi
- Department of General Surgery, University of Witwatersrand, Johannesburg, South Africa
| | - Swathikan Chidambaram
- Academic Surgical Unit, Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, London, UK
| | - Sheraz Rehan Markar
- Department of General Surgery, Oxford University Hospitals, Oxford, UK
- Nuffield Department of Surgery, University of Oxford, Oxford, UK
| |
Collapse
|