Lian T, Deng C, Feng Q. Patch-Based Texture Feature Extraction Towards Improved Clinical Task Performance.
Bioengineering (Basel) 2025;
12:404. [PMID:
40281764 PMCID:
PMC12024865 DOI:
10.3390/bioengineering12040404]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Texture features can capture microstructural patterns and tissue heterogeneity, playing a pivotal role in medical image analysis. Compared to deep learning-based features, texture features offer superior interpretability in clinical applications. However, as conventional texture features focus strictly on voxel-level statistical information, they fail to account for critical spatial heterogeneity between small tissue volumes, which may hold significant importance. To overcome this limitation, we propose novel 3D patch-based texture features and develop a radiomics analysis framework to validate the efficacy of our proposed features. Specifically, multi-scale 3D patches were created to construct patch patterns via k-means clustering. The multi-resolution images were discretized based on labels of the patterns, and then texture features were extracted to quantify the spatial heterogeneity between patches. Twenty-five cross-combination models of five feature selection methods and five classifiers were constructed. Our methodology was evaluated using two independent MRI datasets. Specifically, 145 breast cancer patients were included for axillary lymph node metastasis prediction, and 63 cervical cancer patients were enrolled for histological subtype prediction. Experimental results demonstrated that the proposed 3D patch-based texture features achieved an AUC of 0.76 in the breast cancer lymph node metastasis prediction task and an AUC of 0.94 in cervical cancer histological subtype prediction, outperforming conventional texture features (0.74 and 0.83, respectively). Our proposed features have successfully captured multi-scale patch-level texture representations, which could enhance the application of imaging biomarkers in the precise prediction of cancers and personalized therapeutic interventions.
Collapse