1
|
Gatica S, Fuentes B, Rivera-Asín E, Ramírez-Céspedes P, Sepúlveda-Alfaro J, Catalán EA, Bueno SM, Kalergis AM, Simon F, Riedel CA, Melo-Gonzalez F. Novel evidence on sepsis-inducing pathogens: from laboratory to bedside. Front Microbiol 2023; 14:1198200. [PMID: 37426029 PMCID: PMC10327444 DOI: 10.3389/fmicb.2023.1198200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Sepsis is a life-threatening condition and a significant cause of preventable morbidity and mortality globally. Among the leading causative agents of sepsis are bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pyogenes, along with fungal pathogens of the Candida species. Here, we focus on evidence from human studies but also include in vitro and in vivo cellular and molecular evidence, exploring how bacterial and fungal pathogens are associated with bloodstream infection and sepsis. This review presents a narrative update on pathogen epidemiology, virulence factors, host factors of susceptibility, mechanisms of immunomodulation, current therapies, antibiotic resistance, and opportunities for diagnosis, prognosis, and therapeutics, through the perspective of bloodstream infection and sepsis. A list of curated novel host and pathogen factors, diagnostic and prognostic markers, and potential therapeutical targets to tackle sepsis from the research laboratory is presented. Further, we discuss the complex nature of sepsis depending on the sepsis-inducing pathogen and host susceptibility, the more common strains associated with severe pathology and how these aspects may impact in the management of the clinical presentation of sepsis.
Collapse
Affiliation(s)
- Sebastian Gatica
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Brandon Fuentes
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Elizabeth Rivera-Asín
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Paula Ramírez-Céspedes
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Javiera Sepúlveda-Alfaro
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo A. Catalán
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A. Riedel
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
2
|
Current and Potential Therapeutic Options for Infections Caused by Difficult-to-Treat and Pandrug Resistant Gram-Negative Bacteria in Critically Ill Patients. Antibiotics (Basel) 2022; 11:antibiotics11081009. [PMID: 35892399 PMCID: PMC9394369 DOI: 10.3390/antibiotics11081009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
Carbapenem resistance in Gram-negative bacteria has come into sight as a serious global threat. Carbapenem-resistant Gram-negative pathogens and their main representatives Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are ranked in the highest priority category for new treatments. The worrisome phenomenon of the recent years is the presence of difficult-to-treat resistance (DTR) and pandrug-resistant (PDR) Gram-negative bacteria, characterized as non-susceptible to all conventional antimicrobial agents. DTR and PDR Gram-negative infections are linked with high mortality and associated with nosocomial infections, mainly in critically ill and ICU patients. Therapeutic options for infections caused by DTR and PDR Gram-negative organisms are extremely limited and are based on case reports and series. Herein, the current available knowledge regarding treatment of DTR and PDR infections is discussed. A focal point of the review focuses on salvage treatment, synergistic combinations (double and triple combinations), as well as increased exposure regimen adapted to the MIC of the pathogen. The most available data regarding novel antimicrobials, including novel β-lactam-β-lactamase inhibitor combinations, cefiderocol, and eravacycline as potential agents against DTR and PDR Gram-negative strains in critically ill patients are thoroughly presented.
Collapse
|
3
|
Vatansever C, Ozer B, Atac N, Guler OU, Kilicoglu BK, Berkkan M, Baskurt D, Sever E, Dogan O, Can F. Efficacy of Amikacin and Meropenem on Colistin-Induced Klebsiella pneumoniae Persisters. Microb Drug Resist 2022; 28:765-772. [PMID: 35759379 DOI: 10.1089/mdr.2021.0207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Colistin-based antibiotic therapies have been recommended for the treatment of multidrug-resistant Klebsiella pneumoniae infections. During colistin treatment, persister cells that tolerate antibiotics may arise. Here we designed an in vitro study to assess the killing activity of colistin, meropenem, and amikacin on colistin-induced K. pneumoniae persisters in comparison with starvation-induced persisters. Colistin-induced persisters were generated under exposure to 10 × minimum inhibitory concentration dose of colistin, whereas starvation-induced persisters were produced by limitation of nutrients. In colistin-induced persisters, amikacin totally inhibited cell growth in 6 hours, whereas 98% of the cell population was inhibited by meropenem, and total eradication with meropenem was observed after 24 hours. Both antibiotics also inhibited metabolic activity >88%. The lack of killing effect under colistin exposure suggested to us that these cells could protect themselves from further colistin stress. There was no significant permeabilization change in the cellular membrane with all antibiotics. There was no killing effect on starvation-induced persister cells with the exposure to all antibiotics. In 6 hours, the metabolic activity of the persisters with meropenem and colistin increased 99% and 40%, respectively, whereas there was no increase with amikacin. The sustained inhibition with amikacin was an important finding for antipersister effect of amikacin. Amikacin had rapid and sustained antipersister activity on colistin-induced persister cells. During the colistin treatment of K. pneumoniae infection, the addition of amikacin to the regimen seems to be an effective approach to prevent a recurrence.
Collapse
Affiliation(s)
- Cansel Vatansever
- Department of Medical Microbiology, Koç University School of Medicine, Istanbul, Turkey.,Koç University-İşBank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Berna Ozer
- Department of Medical Microbiology, Koç University School of Medicine, Istanbul, Turkey.,Koç University-İşBank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Nazlı Atac
- Department of Medical Microbiology, Koç University School of Medicine, Istanbul, Turkey.,Koç University-İşBank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | | | | | | | - Defne Baskurt
- Koç University, School of Medicine, Istanbul, Turkey
| | - Egemen Sever
- Koç University, School of Medicine, Istanbul, Turkey
| | - Ozlem Dogan
- Department of Medical Microbiology, Koç University School of Medicine, Istanbul, Turkey.,Koç University-İşBank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Fusun Can
- Department of Medical Microbiology, Koç University School of Medicine, Istanbul, Turkey.,Koç University-İşBank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| |
Collapse
|
4
|
Modelling of the transmission dynamics of carbapenem-resistant Klebsiella pneumoniae in hospitals and design of control strategies. Sci Rep 2022; 12:3805. [PMID: 35264643 PMCID: PMC8907197 DOI: 10.1038/s41598-022-07728-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/21/2022] [Indexed: 01/13/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a major threat to global public health. Epidemiological and infection controls associated with CRKP are challenging because of several potential elements involved in a complicated cycle of transmission. Here, we proposed a comprehensive mathematical model to investigate the transmission dynamics of CRKP, determine factors affecting the prevalence, and evaluate the impact of interventions on transmission. The model includes the essential compartments, which are uncolonized, asymptomatic colonized, symptomatic colonized, and relapsed patients. Additionally, symptomatic colonized and relapsed patients were further classified into subpopulations according to their number of treatment failures or relapses. We found that the admission of colonized patients and use of antibiotics significantly impacted the endemic transmission in health care units. Thus, we introduced the treatment efficacy, defined by combining the treatment duration and probability of successful treatment, to characterize and describe the effects of antibiotic treatment on transmission. We showed that a high antibiotic treatment efficacy results in a significantly reduced likelihood of patient readmission in the health care unit. Additionally, our findings demonstrate that CRKP transmission with different epidemiological characteristics must be controlled using distinct interventions.
Collapse
|
5
|
Soriano A, Carmeli Y, Omrani AS, Moore LSP, Tawadrous M, Irani P. Ceftazidime-Avibactam for the Treatment of Serious Gram-Negative Infections with Limited Treatment Options: A Systematic Literature Review. Infect Dis Ther 2021; 10:1989-2034. [PMID: 34379310 PMCID: PMC8355581 DOI: 10.1007/s40121-021-00507-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION A systematic literature review was undertaken to evaluate real-world use of ceftazidime-avibactam for infections due to aerobic Gram-negative organisms in adults with limited treatment options. METHODS Literature searches retrieved peer-reviewed publications and abstracts from major international infectious disease congresses from January 2015 to February 2021. Results were screened using pre-defined criteria to limit the dataset to relevant publications (notable exclusions were paediatric data and outcomes data for bacteria intrinsically resistant to ceftazidime-avibactam). Data for included publications were subjected to qualitative synthesis. RESULTS Seventy-three relevant publications (62 peer-reviewed articles; 10 abstracts) comprising 1926 patients treated with ceftazidime-avibactam (either alone or combined with other antimicrobials) and 1114 comparator/control patients were identified. All patients were hospitalised for serious illness and most had multiple comorbidities. The most common infections were pneumonia, bacteraemia, and skin/soft tissue, urinary tract, or abdominal infections; smaller numbers of patients with meningitis, febrile neutropenia, osteomyelitis, and cystic fibrosis were also included. Carbapenem-resistant or carbapenemase-producing Enterobacterales (CRE; n = 1718) and carbapenem-resistant, multidrug-resistant (MDR), and extensively drug-resistant Pseudomonas aeruginosa (n = 150) were the most common pathogens. Most publications reported positive outcomes for ceftazidime-avibactam treatment (clinical success rates ranged from 45 to 100% and reported 30-day mortality from 0 to 63%), which were statistically superior versus comparators in some studies. ceftazidime-avibactam resistance emergence occurred infrequently and mostly in Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains. CONCLUSION This review provides qualitative evidence of successful use of ceftazidime-avibactam for the treatment of hospitalised patients with CRE and MDR P. aeruginosa infections with limited treatment options.
Collapse
Affiliation(s)
- Alex Soriano
- Division of Infectious Diseases, Hospital Clínic de Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain.
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
| | - Yehuda Carmeli
- Division of Epidemiology, The National Center for Antibiotic Resistance and Infection Control, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ali S Omrani
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Luke S P Moore
- Chelsea & Westminster NHS Foundation Trust, London, UK
- Imperial College Healthcare NHS Trust, London, UK
- Imperial College London, London, UK
| | | | - Paurus Irani
- Global Medical Affairs, Anti-infectives, Pfizer, Tadworth, Surrey, UK
| |
Collapse
|
6
|
Karakonstantis S, Kritsotakis EI, Gikas A. Pandrug-resistant Gram-negative bacteria: a systematic review of current epidemiology, prognosis and treatment options. J Antimicrob Chemother 2021; 75:271-282. [PMID: 31586417 DOI: 10.1093/jac/dkz401] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The literature on the epidemiology, mortality and treatment of pandrug-resistant (PDR) Gram-negative bacteria (GNB) is scarce, scattered and controversial. OBJECTIVES To consolidate the relevant literature and identify treatment options for PDR GNB infections. METHODS A systematic search in MEDLINE, Scopus and clinical trial registries was conducted. Studies reporting PDR clinical isolates were eligible for review if susceptibility testing for all major antimicrobials had been performed. Characteristics and findings of retrieved studies were qualitatively synthesized. RESULTS Of 81 studies reviewed, 47 (58%) were published in the last 5 years. The reports reflected a worldwide dissemination of PDR GNB in 25 countries in 5 continents. Of 526 PDR isolates reported, Pseudomonas aeruginosa (n=175), Acinetobacter baumannii (n=172) and Klebsiella pneumoniae (n=125) were most common. PDR GNB were typically isolated in ICUs, but several studies demonstrated wider outbreak potential, including dissemination to long-term care facilities and international spread. All-cause mortality was high (range 20%-71%), but appeared to be substantially reduced in studies reporting treatment regimens active in vitro. No controlled trial has been performed to date, but several case reports and series noted successful use of various regimens, predominantly synergistic combinations, and in selected patients increased exposure regimens and newer antibiotics. CONCLUSIONS PDR GNB are increasingly being reported worldwide and are associated with high mortality. Several treatment regimens have been successfully used, of which synergistic combinations appear to be most promising and often the only available option. More pharmacokinetic/pharmacodynamic and outcome studies are needed to guide the use of synergistic combinations.
Collapse
Affiliation(s)
| | - Evangelos I Kritsotakis
- Laboratory of Biostatistics, School of Medicine, University of Crete, Heraklion, Crete, Greece.,Department of Epidemiology and Medical Statistics, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Achilleas Gikas
- Department of Internal Medicine, University Hospital of Heraklion, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|