1
|
Pre-Clinical Evaluation of Efficacy and Safety of Human Limbus-Derived Stromal/Mesenchymal Stem Cells with and without Alginate Encapsulation for Future Clinical Applications. Cells 2023; 12:cells12060876. [PMID: 36980217 PMCID: PMC10047711 DOI: 10.3390/cells12060876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Corneal opacification or scarring is one of the leading causes of blindness worldwide. Human limbus-derived stromal/mesenchymal stem cells (hLMSCs) have the potential of clearing corneal scarring. In the current preclinical studies, we aimed to determine their ability to heal the scarred corneas, in a murine model of corneal scar, and examined their ocular and systemic toxicity after topical administration to rabbit eyes. The hLMSCs were derived from human donor corneas and were cultivated in a clean room facility in compliance with the current good manufacturing practices (cGMP). Before the administration, the hLMSCs were analyzed for their characteristic properties including immunostaining, and were further subjected to sterility and stability analysis. The corneas (right eye) of C57BL/6 mice (n = 56) were stripped of their central epithelium and superficial anterior stroma using a rotary burr (Alger Brush® II). Few mice were left untreated (n = 8), while few (n = 24) were treated immediately with hLMSCs after debridement (prophylaxis group). The rest (n = 24, scar group) were allowed to develop corneal scarring for 2 weeks and then treated with hLMSCs. In both groups, the treatment modalities included encapsulated (En+) and non-encapsulated (En−) hLMSCs and sham (vehicle) treatment. The follow-up (4 weeks) after the treatment or debridement included clinical photography, fluorescein staining, and optical coherence tomography at regular intervals. All the images and scans were analyzed using ImageJ software to assess the changes in corneal haze, scar area, and the reflectivity ratio of the epithelium to the stroma. The scar area and the scar intensity were found to be decreased in the groups that received hLMSCs. The reflectivity of the stroma was found to be normalized to the baseline levels before the debridement in the eyes that were treated with hLMSCs, relative to the untreated. In the safety study, the central corneas of the left eye of 18 New Zealand rabbits were scraped with a needle and then treated with En+ hLMSCs, En− hLMSCs, and the sham (n = 6 each). Rabbits were then followed up for 4 weeks, during which blood and tear samples were collected at regular intervals. These rabbits were then assessed for changes in the quantities of inflammatory markers (TNF-α, IL-6, and IgE) in the sera and tears, changes in the ocular surface observations such as intraocular pressure (IOP), and the hematological and clinical chemistry parameters. Four weeks later, the rabbits were euthanized and examined histopathologically. No significant changes in conjunctival congestion, corneal clarity, or IOP were noticed during the ophthalmic examination. The level of inflammatory molecules (TNF-α and IL-6 TNF-α) and the hematological parameters were similar in all groups without any significant changes. Histological examination of the internal organs and ocular tissues did not reveal any abnormalities. The results of these studies summarize that the En+ and En− hLMSCs are not harmful to the recipient and potentially restore the transparency of debrided or scarred corneas, indicating that hLMSCs can be assessed for clinical use in humans.
Collapse
|
2
|
Emerging roles of hnRNP A2B1 in cancer and inflammation. Int J Biol Macromol 2022; 221:1077-1092. [PMID: 36113587 DOI: 10.1016/j.ijbiomac.2022.09.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/27/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a group of RNA-binding proteins with important roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts, alternative splicing, transactivation of gene expression, and regulation of protein translation. As a core component of the hnRNP complex in mammalian cells, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNP A2B1) participates in and coordinates various molecular events. Given its regulatory role in inflammation and cancer progression, hnRNP A2B1 has become a novel player in immune response, inflammation, and cancer development. Concomitant with these new roles, a surprising number of mechanisms deemed to regulate hnRNP A2B1 functions have been identified, including post-translational modifications, changes in subcellular localization, direct interactions with multiple DNAs, RNAs, and proteins or the formation of complexes with them, which have gradually made hnRNP A2B1 a molecular target for multiple drugs. In light of the rising interest in the intersection between cancer and inflammation, this review will focus on recent knowledge of the biological roles of hnRNP A2B1 in cancer, immune response, and inflammation.
Collapse
|
3
|
Saleki K, Shirzad M, Javanian M, Mohammadkhani S, Alijani MH, Miri N, Oladnabi M, Azadmehr A. Serum soluble Fas ligand is a severity and mortality prognostic marker for COVID-19 patients. Front Immunol 2022; 13:947401. [PMID: 36119078 PMCID: PMC9471328 DOI: 10.3389/fimmu.2022.947401] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
Finding cytokine storm initiator factors associated with uncontrolled inflammatory immune response is necessary in COVID-19 patients. The aim was the identification of Fas/Fas Ligand (FasL) role in lung involvement and mortality of COVID-19 patients. In this case-control study, mild (outpatient), moderate (hospitalized), and severe (ICU) COVID-19 patients and healthy subjects were investigated. RNA isolated from PBMCs for cDNA synthesis and expression of mFas/mFasL mRNA was evaluated by RT-PCR. Serum sFas/sFasL protein by ELISA and severity of lung involvement by CT-scan were evaluated. Also, we docked Fas and FasL via Bioinformatics software (in silico) to predict the best-fit Fas/FasL complex and performed molecular dynamics simulation (MDS) in hyponatremia and fever (COVID-19 patients), and healthy conditions. mFasL expression was increased in moderate and severe COVID-19 patients compared to the control group. Moreover, mFas expression showed an inverse correlation with myalgia symptom in COVID-19 patients. Elevation of sFasL protein in serum was associated with reduced lung injury and mortality. Bioinformatics analysis confirmed that blood profile alterations of COVID-19 patients, such as fever and hyponatremia could affect Fas/FasL complex interactions. Our translational findings showed that decreased sFasL is associated with lung involvement; severity and mortality in COVID-19 patients. We think that sFasL is a mediator of neutrophilia and lymphopenia in COVID-19. However, additional investigation is suggested. This is the first report describing that the serum sFasL protein is a severity and mortality prognostic marker for the clinical management of COVID-19 patients.
Collapse
Affiliation(s)
- Kiarash Saleki
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- National Elite Foundation, Mazandaran Province Branch, Mazandaran, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- National Elite Foundation, Mazandaran Province Branch, Mazandaran, Iran
| | - Mostafa Javanian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Niloufarsadat Miri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Morteza Oladnabi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abbas Azadmehr
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- National Elite Foundation, Mazandaran Province Branch, Mazandaran, Iran
- Immunology Department, Babol University of Medical Sciences, Babol, Iran
- *Correspondence: Abbas Azadmehr,
| |
Collapse
|
4
|
Krupa A, Kowalska I. The Kynurenine Pathway-New Linkage between Innate and Adaptive Immunity in Autoimmune Endocrinopathies. Int J Mol Sci 2021; 22:9879. [PMID: 34576041 PMCID: PMC8469440 DOI: 10.3390/ijms22189879] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells' differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies-type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
5
|
Polisetti N, Gießl A, Zenkel M, Heger L, Dudziak D, Naschberger E, Stich L, Steinkasserer A, Kruse FE, Schlötzer-Schrehardt U. Melanocytes as emerging key players in niche regulation of limbal epithelial stem cells. Ocul Surf 2021; 22:172-189. [PMID: 34425298 DOI: 10.1016/j.jtos.2021.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 02/09/2023]
Abstract
PURPOSE Limbal melanocytes (LMel) represent essential components of the corneal epithelial stem cell niche and are known to protect limbal epithelial stem/progenitor cells (LEPCs) from UV damage by transfer of melanosomes. Here, we explored additional functional roles for LMel in niche homeostasis, immune regulation and angiostasis. METHODS Human corneoscleral tissues were morphologically analyzed in normal, inflammatory and wound healing conditions. The effects of LMel on LEPCs were analyzed in direct and indirect co-culture models using electron microscopy, immunocytochemistry, qRT-PCR, Western blotting and functional assays; limbal mesenchymal stromal cells and murine embryonic 3T3 fibroblasts served as controls. The immunophenotype of LMel was assessed by flow cytometry before and after interferon-γ stimulation, and their immunomodulatory properties were analyzed by mixed lymphocytes reaction, monocyte adhesion assays and cytometric bead arrays. Their angiostatic effects on human umbilical cord endothelial cells (HUVECs) were evaluated by proliferation, migration, and tube formation assays. RESULTS LMel and LEPCs formed structural units in the human limbal stem cell niche in situ, which could be functionally replicated, including melanosome transfer, by co-cultivation in vitro. LMel supported LEPCs during clonal expansion and during epithelial wound healing by stimulating proliferation and migration, and suppressed their differentiation through direct contact and paracrine effects. Under inflammatory conditions, LMel were increased in numbers and upregulated expression of ICAM-1 and MHC II molecules (HLA-DR), but lacked expression of HLA-G, -DP, -DQ and costimulatory molecules CD80 and CD86. They were also found to be potent suppressors of alloreactive T- cell proliferation and cytokine secretion, which largely depended on direct cell-cell interaction. Moreover, the LMel secretome exerted angiostatic activity by inhibiting vascular endothelial cell proliferation and capillary network formation. CONCLUSION These findings suggest that LMel are not only professional melanin-producing cells, but exert various non-canonical functions in limbal niche homeostasis by regulating LEPC maintenance, immune responses, and angiostasis. Their potent regulatory, immunomodulatory and anti-angiogenic properties may have important implications for future regenerative cell therapies.
Collapse
Affiliation(s)
- Naresh Polisetti
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany; Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Gießl
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Zenkel
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Medical Immunology Campus Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Steinkasserer
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany; Medical Immunology Campus Erlangen, Erlangen, Germany; Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich E Kruse
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
6
|
Subcutaneous transplantation of engineered islet/adipose-derived mesenchymal stem cell sheets in diabetic pigs with total pancreatectomy. Regen Ther 2021; 16:42-52. [PMID: 33521172 PMCID: PMC7810917 DOI: 10.1016/j.reth.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/11/2020] [Accepted: 12/25/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Intraportal islet transplantation is a promising therapeutic approach for patients with type 1 diabetes mellitus (T1DM). However, despite being minimally invasive, the method has some limitations, such as short-term graft loss, portal venous thrombosis, and difficulty in collecting adequate amounts of islets. Subcutaneous islet transplantation on adipose-derived mesenchymal stem cell (ADSC) sheets has been suggested to overcome these limitations, and in this study, we have examined its feasibility in T1DM pigs. Methods Inguinal subcutaneous fat was harvested from young pigs and then isolated and cultured adequate ADSCs to prepare sheets. Islets were isolated from the pancreases of mature pigs and seeded on the ADSC sheets. T1DM pigs were generated by total pancreatectomy, and ADSC sheets with transplanted islets were administered subcutaneously to the waist (n = 2). The effects of the islets on the ADSC sheets and on blood glucose levels were evaluated. Insulin secretion was measured by insulin stimulation index. Results Islet viability was higher on ADSCs compared to islets alone (91.8 ± 4.3 vs. 81.7 ± 4.1%). The insulin stimulation index revealed higher glucose sensitivity of islets on ADSC sheets compared to islets alone (2.8 ± 2.0 vs. 0.8 ± 0.3). After transplantation, the blood glucose levels of two pigs were within the normal range, and sensitive insulin secretion was confirmed by intravenous glucose tolerance tests. After graftectomy, decreased insulin secretion and hyperglycemia were observed. Conclusions Subcutaneous islet transplantation using ADSC sheets can regulate the blood glucose levels of T1DM pigs. The adipose-derived mesenchymal stem cell sheet is useful to protect the islets. Subcutaneous islet transplantation on sheet normalized blood glucose in diabetic pig. Subcutaneous islet transplantation on sheet can be a useful tool.
Collapse
Key Words
- ADSC, adipose-derived mesenchymal stem cell
- Adipose-derived mesenchymal stem cells
- CGM, continuous glucose monitor
- DMEM, Dulbecco's modified Eagle's medium
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- H & E, hematoxylin and eosin
- HGF, hepatocyte growth factor
- HSP32, heat shock protein 32
- IBMIR, instant blood-mediated inflammatory reaction
- IEQ, islet equivalent
- IVGTT, intravenous glucose tolerance test
- Islet transplantation
- MEM, minimum essential medium
- MSC, mesenchymal stem cell
- PBS, phosphate-buffered saline
- Pig
- SD, standard deviation
- Subcutaneous
- T1DM, Type 1 diabetes mellitus
- TGF, transforming growth factor
- Type 1 diabetes mellitus
- UW, University of Wisconsin
- XIAP, X-linked inhibitor of apoptosis protein
Collapse
|
7
|
Anti-Inflammatory Action of Heterogeneous Nuclear Ribonucleoprotein A2/B1 in Patients with Autoimmune Endocrine Disorders. J Clin Med 2019; 9:jcm9010009. [PMID: 31861546 PMCID: PMC7019344 DOI: 10.3390/jcm9010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022] Open
Abstract
Our previous studies documented that human fibroblast-limbal stem cells (f-LSCs) possess immunosuppressive capabilities, playing a role in regulating T-cell activity. This study highlights the molecular activities by which human f-LSCs can attenuate the inflammatory responses of self-reactive peripheral blood mononuclear cells (PBMCs) collected from patients with autoimmune endocrine diseases (AEDs). Anti-CD3 activated PBMCs from twenty healthy donors and fifty-two patients with AEDs were cocultured on f-LSC monolayer. 2D-DIGE proteomic experiments, mass spectrometry sequencing and functional in vitro assays were assessed in cocultured PBMCs. We identified the downmodulation of several human heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) isoforms in healthy and AED activated PBMCs upon f-LSC interaction. The reduction of hnRNPA2/B1 protein expression largely affected the cycling ki67+, CD25+, PD-1+ reactive cells and the double marked CD8+/hnRNPA2B1+ T cell subset. Anti-PD1 blocking experiments evoked hnRNPA2/B1 overexpression, attributing putative activation function to the protein. hnRNPA2/B2 transient silencing inverted immunopolarization of the self-reactive PBMCs from AEDs toward a M2/Th2-type background. Pharmacological inhibition and co-immunoprecipitation experiments demonstrated the involvement of NF-ĸB in hnRNPA2/B activity and turnover. Our data indicate cardinal involvement of hnRNP A2/B1 protein in peripheral mechanisms of tolerance restoration and attenuation of inflammation, identifying a novel immunoplayer potentially targetable in all AEDs.
Collapse
|
8
|
Tomasello L, Coppola A, Pitrone M, Failla V, Cillino S, Pizzolanti G, Giordano C. PFN1 and integrin-β1/mTOR axis involvement in cornea differentiation of fibroblast limbal stem cells. J Cell Mol Med 2019; 23:7210-7221. [PMID: 31513338 PMCID: PMC6815913 DOI: 10.1111/jcmm.14438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/26/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
Ex vivo limbal stem cell transplantation is the main therapeutic approach to address a complete and functional re-epithelialization in corneal blindness, the second most common eye disorder. Although important key points were defined, the molecular mechanisms involved in the epithelial phenotype determination are unclear. Our previous studies have demonstrated the pluripotency and immune-modulatory of fibroblast limbal stem cells (f-LSCs), isolated from the corneal limbus. We defined a proteomic profile especially enriched in wound healing and cytoskeleton-remodelling proteins, including Profilin-1 (PFN1). In this study we postulate that pfn-1 knock down promotes epithelial lineage by inhibiting the integrin-β1(CD29)/mTOR pathway and subsequent NANOG down-expression. We showed that it is possible modulate pfn1 expression levels by treating f-LSCs with Resveratrol (RSV), a natural compound: pfn1 decline is accompanied with up-regulation of the specific differentiation epithelial genes pax6 (paired-box 6), sox17 (sex determining region Y-box 17) and ΔNp63-α (p63 splice variant), consistent with drop-down of the principle stem gene levels. These results contribute to understand the molecular biology of corneal epithelium development and suggest that pfn1 is a potential molecular target for the treatment of corneal blindness based on epithelial cell dysfunction.
Collapse
Affiliation(s)
- Laura Tomasello
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Section of Endocrinology, Diabetology and Metabolism, Department of Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (ProMISE), University of Palermo, Palermo, Italy
| | - Antonina Coppola
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Section of Endocrinology, Diabetology and Metabolism, Department of Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (ProMISE), University of Palermo, Palermo, Italy
| | - Maria Pitrone
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Section of Endocrinology, Diabetology and Metabolism, Department of Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (ProMISE), University of Palermo, Palermo, Italy
| | - Valentina Failla
- Department of Ophthalmology, University of Palermo, Palermo, Italy
| | | | - Giuseppe Pizzolanti
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Section of Endocrinology, Diabetology and Metabolism, Department of Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (ProMISE), University of Palermo, Palermo, Italy
| | - Carla Giordano
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Section of Endocrinology, Diabetology and Metabolism, Department of Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (ProMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Fiorica C, Tomasello L, Palumbo FS, Coppola A, Pitarresi G, Pizzolanti G, Giordano C, Giammona G. Production of a Double-Layer Scaffold for the "On-Demand" Release of Fibroblast-like Limbal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22206-22217. [PMID: 31144805 DOI: 10.1021/acsami.9b06757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The production and characterization of a double-layer scaffold, to be used as a system for the "on-demand" release of corneal limbal stem cells, are reported here. The devices used in the clinics and proposed so far in the scientific literature, for the release of corneal stem cells in the treatment of limbal stem cell deficiency, cannot control the in vivo space-time release of cells as the biomaterial of which they are composed is devoid of the stimuli-responsive feature. Our approach was to produce a scaffold composed of two different polymeric layers that give the device the appropriate mechanical properties to be placed on the ocular surface and the possibility of releasing the stem cells following a noninvasive and cell-friendly treatment. This device consists of an electrospun microfibrillar scaffold of poly-l-lactic acid coated by a polymeric film based on an amphiphilic derivative of hyaluronic acid sensitive to the ionic strength of the external medium and to the presence of a complexing agent. The latter represents the "sacrificial" cell containing layer of the scaffold that can be dissolved "on demand" by the treatment with a solution of cyclodextrins. The rapid removal of the external polymeric film from the device is exploited to control the space-time release of the cells. In vitro and ex vivo experiments showed that fibroblast-like limbal stem cells cultured on the scaffold without the use of the feeder layer maintained their characteristics of stem cells and can be released "on demand" on the culture well coated with Matrigel or on the decellularized bovine cornea, respectively.
Collapse
Affiliation(s)
- Calogero Fiorica
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF) , University of Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Laura Tomasello
- Department of "Promozione Della Salute Materno Infantile, di Medicina Interna e Specialistica di Eccellenza" "G. D'Alessandro" (ProMise) , University of Palermo , Piazza Delle Cliniche 2 , 90127 Palermo , Italy
| | - Fabio S Palumbo
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF) , University of Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Antonina Coppola
- Department of "Promozione Della Salute Materno Infantile, di Medicina Interna e Specialistica di Eccellenza" "G. D'Alessandro" (ProMise) , University of Palermo , Piazza Delle Cliniche 2 , 90127 Palermo , Italy
| | - Giovanna Pitarresi
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF) , University of Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Giuseppe Pizzolanti
- Department of "Promozione Della Salute Materno Infantile, di Medicina Interna e Specialistica di Eccellenza" "G. D'Alessandro" (ProMise) , University of Palermo , Piazza Delle Cliniche 2 , 90127 Palermo , Italy
| | - Carla Giordano
- Department of "Promozione Della Salute Materno Infantile, di Medicina Interna e Specialistica di Eccellenza" "G. D'Alessandro" (ProMise) , University of Palermo , Piazza Delle Cliniche 2 , 90127 Palermo , Italy
| | - Gaetano Giammona
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF) , University of Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| |
Collapse
|
10
|
Pitrone M, Pizzolanti G, Coppola A, Tomasello L, Martorana S, Pantuso G, Giordano C. Knockdown of NANOG Reduces Cell Proliferation and Induces G0/G1 Cell Cycle Arrest in Human Adipose Stem Cells. Int J Mol Sci 2019; 20:ijms20102580. [PMID: 31130693 PMCID: PMC6566573 DOI: 10.3390/ijms20102580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 11/19/2022] Open
Abstract
The core components of regenerative medicine are stem cells with high self-renewal and tissue regeneration potentials. Adult stem cells can be obtained from many organs and tissues. NANOG, SOX2 and OCT4 represent the core regulatory network that suppresses differentiation-associated genes, maintaining the pluripotency of mesenchymal stem cells. The roles of NANOG in maintaining self-renewal and undifferentiated status of adult stem cells are still not perfectly established. In this study we define the effects of downregulation of NANOG in maintaining self-renewal and undifferentiated state in mesenchymal stem cells (MSCs) derived from subcutaneous adipose tissue (hASCs). hASCs were expanded and transfected in vitro with short hairpin Lentivirus targeting NANOG. Gene suppressions were achieved at both transcript and proteome levels. The effect of NANOG knockdown on proliferation after 10 passages and on the cell cycle was evaluated by proliferation assay, colony forming unit (CFU), qRT-PCR and cell cycle analysis by flow-cytometry. Moreover, NANOG involvement in differentiation ability was evaluated. We report that downregulation of NANOG revealed a decrease in the proliferation and differentiation rate, inducing cell cycle arrest by increasing p27/CDKN1B (Cyclin-dependent kinase inhibitor 1B) and p21/CDKN1A (Cyclin-dependent kinase inhibitor 1A) through p53 and regulate DLK1/PREF1. Furthermore, NANOG induced downregulation of DNMT1, a major DNA methyltransferase responsible for maintaining methylation status during DNA replication probably involved in cell cycle regulation. Our study confirms that NANOG regulates the complex transcription network of plasticity of the cells, inducing cell cycle arrest and reducing differentiation potential.
Collapse
Affiliation(s)
- Maria Pitrone
- Aldo Galluzzo Laboratory of Regenerative Medicine, Department of Health Promotion Sciences, Maternal and infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy.
| | - Giuseppe Pizzolanti
- Aldo Galluzzo Laboratory of Regenerative Medicine, Department of Health Promotion Sciences, Maternal and infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy.
- ATeN (Advanced Technologies Network Center), University of Palermo, 90127 Palermo, Italy.
| | - Antonina Coppola
- Aldo Galluzzo Laboratory of Regenerative Medicine, Department of Health Promotion Sciences, Maternal and infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy.
| | - Laura Tomasello
- Aldo Galluzzo Laboratory of Regenerative Medicine, Department of Health Promotion Sciences, Maternal and infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy.
| | - Stefania Martorana
- Department of Surgical, Oncological and Oral Sciences, Division of General and Oncological Surgery, University of Palermo, 90127 Palermo, Italy.
| | - Gianni Pantuso
- Department of Surgical, Oncological and Oral Sciences, Division of General and Oncological Surgery, University of Palermo, 90127 Palermo, Italy.
| | - Carla Giordano
- Aldo Galluzzo Laboratory of Regenerative Medicine, Department of Health Promotion Sciences, Maternal and infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy.
- ATeN (Advanced Technologies Network Center), University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
11
|
Arzouni AA, Vargas-Seymour A, Nardi N, J F King A, Jones PM. Using Mesenchymal Stromal Cells in Islet Transplantation. Stem Cells Transl Med 2018; 7:559-563. [PMID: 29749717 PMCID: PMC6090510 DOI: 10.1002/sctm.18-0033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/25/2018] [Indexed: 02/06/2023] Open
Abstract
Islet transplantation has the potential to cure type 1 diabetes, but current clinical transplantation protocols are inefficient because of the extensive loss of functional islets during the immediate post‐transplantation period. Studies in rodent models have demonstrated that co‐transplanting mesencyhmal stromal cells (MSCs) with islets improves graft functional survival and transplantation outcomes, and some of the beneficial effects of MSCs are attributable to bioactive molecules secreted by MSCs. Clinical islet transplantation is almost exclusively via the hepatic portal vein, which does not facilitate co‐engraftment of islets and MSCs, so attention is currently focused on using cell‐free cocktails of MSC‐derived products to treat islets prior to transplantation. This approach has the potential to overcome many of the technical and regulatory hurdles associated with using MSCs as an adjuvant therapy for human islet transplantation. Stem Cells Translational Medicine2018;7:559–563
Collapse
Affiliation(s)
- Ahmed A Arzouni
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Andreia Vargas-Seymour
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Nance Nardi
- Laboratory of Stem Cells and Tissue Engineering, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil
| | - Aileen J F King
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Peter M Jones
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|