1
|
Valentino G, Widak A, Scopacasa B, Tirinato L, Parrotta EI, Perozziello G, Pujia A, Cuda G, Luciani P, Candeloro P. Raman imaging investigation of hepatic LX-2 cell reversion under different lipidic treatments. J Mater Chem B 2025; 13:4085-4093. [PMID: 40029112 DOI: 10.1039/d4tb02082k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Liver fibrosis resulting from chronic liver injury is characterized by increased extracellular matrix deposition and inflammation, which leads to excessive scar tissue formation. Targeting activated hepatic stellate cells (HSCs), which are the primary drivers of fibrogenesis, stands out as one of the most compelling therapeutic approaches in this regard. In a healthy liver, HSCs remain quiescent and store vitamin A in cytoplasmic lipid droplets. As a consequence of HSC activation and transdifferentiation to a proliferative myofibroblast-like state upon fibrotic stimuli, the distinctive phenotypic feature of the lipid droplets gets lost. While the reversal of activated HSCs is feasible, understanding the quiescent-like state following injury resolution is crucial for effective fibrosis treatment. This study explores the induced quiescent-like state of naïve immortalized human hepatic stellate (LX-2) cells when treated with soybean phospholipid that contains 75% phosphatidylcholine (S80). The lipid profile of the newly formed lipid droplets was analyzed using Raman imaging, which is a label-free technique well-suited for lipidomics. Results indicate the presence of distinct lipid profiles despite maintaining a quiescent-like state, suggesting that diverse mechanisms govern the active-to-inactive state transition. Additionally, our findings support the fact that each hepatic cell state is composed of heterogeneous subpopulations. This emphasizes the complexity of liver fibrosis and highlights the need for a comprehensive understanding of cellular states to develop targeted therapies.
Collapse
Affiliation(s)
- Gina Valentino
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Assumpta Widak
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Bernadette Scopacasa
- BioNEM Lab. and Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Campus Germaneto, Catanzaro, Italy.
| | - Luca Tirinato
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy
| | - Gerardo Perozziello
- BioNEM Lab. and Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Campus Germaneto, Catanzaro, Italy.
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Campus Germaneto, Catanzaro, Italy
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Patrizio Candeloro
- BioNEM Lab. and Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Campus Germaneto, Catanzaro, Italy.
| |
Collapse
|
2
|
Narozna M, Latham MC, Gorbsky GJ. Origin of Chromosome 12 Trisomy Surge in Human Induced Pluripotent Stem Cells (iPSCs). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.02.626470. [PMID: 39677655 PMCID: PMC11642788 DOI: 10.1101/2024.12.02.626470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cultured pluripotent stem cells are unique in being the only fully diploid immortal human cell lines. However, during continued culture, they acquire significant chromosome abnormalities. Chromosome 12 trisomy is the most common whole-chromosome abnormality found during culture of human induced pluripotent stem cells (iPSCs). The conventional paradigm is that trisomy 12 occurs very rarely but provides a proliferative advantage, enabling these cells to outcompete the diploid. Here, we challenge this prevailing model by demonstrating that trisomy 12 arises simultaneously in a very high percentage of diploid cells. Using a single cell line that reproducibly undergoes transition from diploid to trisomy 12, we found that proliferation differences alone do not account for the rapid dominance of trisomic cells. Through careful mapping by fluorescent in-situ hybridization, we identified critical transition passages where trisomic cells first appeared and swiftly gained dominance. Remarkably, single trisomic cells repeatedly emerged de novo from diploid parents. Delving deeper, we discovered an extremely high incidence of chromosome 12 anaphase bridging exclusively during transition passages, along with overrepresentation of chromosome 12 chromatids in micronuclei. These micronuclei fail to replicate during S phase. Subsequently, when these micronucleated cells enter mitosis they contain an unreplicated chromosome 12 chromatids. We also found that nearly 20% of the shorter p arms of chromosome 12 but not the longer q arms exhibited loss of subtelomeric repeats during transition passages. Chromosome 12p arms were exclusively responsible for the bridging observed in anaphase cells. Our findings unveil a novel mechanism of whole-chromosome instability in human stem cells, where chromosome 12p arm-specific segregation errors occur simultaneously in a high percentage of cells. The slight yet significant growth advantage of trisomy 12 cells allows them to persist and eventually dominate the population. Our findings detailing this novel interpretation of the origin of chromosome instability in cultured of human stem cells may have broad implications for understanding the genesis of aneuploidy across diverse biological systems.
Collapse
Affiliation(s)
- Maria Narozna
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Megan C. Latham
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gary J. Gorbsky
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Costa MHG, Carrondo I, Isidro IA, Serra M. Harnessing Raman spectroscopy for cell therapy bioprocessing. Biotechnol Adv 2024; 77:108472. [PMID: 39490752 DOI: 10.1016/j.biotechadv.2024.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Cell therapy manufacturing requires precise monitoring of critical parameters to ensure product quality, consistency and to facilitate the implementation of cost-effective processes. While conventional analytical methods offer limited real-time insights, integration of process analytical technology tools such as Raman spectroscopy in bioprocessing has the potential to drive efficiency and reliability during the manufacture of cell-based therapies while meeting stringent regulatory requirements. The non-destructive nature of Raman spectroscopy, combined with its ability to be integrated on-line with scalable platforms, allows for continuous data acquisition, enabling real-time correlations between process parameters and critical quality attributes. Herein, we review the role of Raman spectroscopy in cell therapy bioprocessing and discuss how simultaneous measurement of distinct parameters and attributes, such as cell density, viability, metabolites and cell identity biomarkers can streamline on-line monitoring and facilitate adaptive process control. This, in turn, enhances productivity and mitigates process-related risks. We focus on recent advances integrating Raman spectroscopy across various manufacturing stages, from optimizing culture media feeds to monitoring bioprocess dynamics, covering downstream applications such as detection of co-isolated contaminating cells, cryopreservation, and quality control of the drug product. Finally, we discuss the potential of Raman spectroscopy to revolutionize current practices and accelerate the development of advanced therapy medicinal products.
Collapse
Affiliation(s)
- Marta H G Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Inês Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês A Isidro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
4
|
Werschler N, Quintard C, Nguyen S, Penninger J. Engineering next generation vascularized organoids. Atherosclerosis 2024; 398:118529. [PMID: 39304390 DOI: 10.1016/j.atherosclerosis.2024.118529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 09/22/2024]
Abstract
Organoids are self-organizing 3D cell culture models that are valuable for studying the mechanisms underlying both development and disease in multiple species, particularly, in humans. These 3D engineered tissues can mimic the structure and function of human organs in vitro. Methods to generate organoids have substantially improved to better resemble, in various ways, their in vivo counterpart. One of the major limitations in current organoid models is the lack of a functional vascular compartment. Here we discuss methodological approaches to generating perfusable blood vessel networks in organoid systems. Inclusion of perfused vascular compartments markedly enhances the physiological relevance of organoid systems and is a critical step in the establishment of next generation, higher-complexity in vitro systems for use in developmental, clinical, and drug-development settings.
Collapse
Affiliation(s)
- Nicolas Werschler
- University of British Columbia, Life Sciences Institute, Vancouver, Canada; University of British Columbia, School of Biomedical Engineering, Vancouver, Canada.
| | - Clement Quintard
- University of British Columbia, Life Sciences Institute, Vancouver, Canada; University of British Columbia, Medical Genetics, Vancouver, Canada
| | - Stephanie Nguyen
- University of British Columbia, School of Biomedical Engineering, Vancouver, Canada
| | - Josef Penninger
- University of British Columbia, Life Sciences Institute, Vancouver, Canada; University of British Columbia, School of Biomedical Engineering, Vancouver, Canada; University of British Columbia, Medical Genetics, Vancouver, Canada; Helmholtz Centre for Infection Research, Germany; Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Austria; IMBA Institute of Molecular Biotechnology, Vienna, Austria
| |
Collapse
|
5
|
Jaber M, Alshikh Ali AM, El Saleh RI, Prasad P. The Use of Stem Cells in Bone Regeneration of Cleft Lip and Palate Patients: A Systematic Review. J Clin Med 2024; 13:5315. [PMID: 39274529 PMCID: PMC11396532 DOI: 10.3390/jcm13175315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Background and Objectives: Cleft lip alone or a combination of cleft lip and palate (CLP) is a common developmental abnormality in the craniofacial region. This umbrella review aims to identify promising avenues for treatment using stem cell therapy. Materials and Methods: Systematic reviews from 2014 to 2024 were searched among databases like PubMed, Medline, and Google Scholar. PRISMA guidelines were employed to ensure the thoroughness of the search. A quality assessment (ROBIS) of the included reviews was conducted to ensure the reliability and validity of the synthesized evidence. Results: Five systematic reviews were selected for this umbrella review. Results show that stem cell therapy, specifically using mesenchymal stem cells (MSCs) and adipocyte stem cells (ADSCs), promotes bone regeneration in CLP deformities. Although multiple studies have established the effectiveness of diverse types of stem cells in treating CLP, important considerations including safety concerns, methodological variability, and the need for standardization have been identified. The fact that the number of relevant systematic reviews that matched our inclusion criteria was limited could affect this research's robustness and may limit the breadth and depth of evidence synthesis. Definitive conclusions could not be reached due to variation among treatments and outcomes. Conclusions: The examined studies highlight the potential of stem cell therapy as a complementary approach to existing treatments for CLP. However, there are challenges that need to be addressed, including concerns regarding safety, variations in methodologies, and the need for standardization. Exploring the potential of other stem cell types may further enhance treatment outcomes for CLP patients.
Collapse
Affiliation(s)
- Mohamed Jaber
- Department of Clinical Dental Sciences, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | | | - Roba Imad El Saleh
- Interns, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Prathibha Prasad
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Basic Medical and Dental Sciences, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Oral Pathology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| |
Collapse
|
6
|
Shorbaji A, Pushparaj PN, Bakhashab S, Al-Ghafari AB, Al-Rasheed RR, Siraj Mira L, Basabrain MA, Alsulami M, Abu Zeid IM, Naseer MI, Rasool M. Current genetic models for studying congenital heart diseases: Advantages and disadvantages. Bioinformation 2024; 20:415-429. [PMID: 39132229 PMCID: PMC11309114 DOI: 10.6026/973206300200415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
Congenital heart disease (CHD) encompasses a diverse range of structural and functional anomalies that affect the heart and the major blood vessels. Epidemiological studies have documented a global increase in CHD prevalence, which can be attributed to advancements in diagnostic technologies. Extensive research has identified a plethora of CHD-related genes, providing insights into the biochemical pathways and molecular mechanisms underlying this pathological state. In this review, we discuss the advantages and challenges of various In vitro and in vivo CHD models, including primates, canines, Xenopus frogs, rabbits, chicks, mice, Drosophila, zebrafish, and induced pluripotent stem cells (iPSCs). Primates are closely related to humans but are rare and expensive. Canine models are costly but structurally comparable to humans. Xenopus frogs are advantageous because of their generation of many embryos, ease of genetic modification, and cardiac similarity. Rabbits mimic human physiology but are challenging to genetically control. Chicks are inexpensive and simple to handle; however, cardiac events can vary among humans. Mice differ physiologically, while being evolutionarily close and well-resourced. Drosophila has genes similar to those of humans but different heart structures. Zebrafish have several advantages, including high gene conservation in humans and physiological cardiac similarities but limitations in cross-reactivity with mammalian antibodies, gene duplication, and limited embryonic stem cells for reverse genetic methods. iPSCs have the potential for gene editing, but face challenges in terms of 2D structure and genomic stability. CRISPR-Cas9 allows for genetic correction but requires high technical skills and resources. These models have provided valuable knowledge regarding cardiac development, disease simulation, and the verification of genetic factors. This review highlights the distinct features of various models with respect to their biological characteristics, vulnerability to developing specific heart diseases, approaches employed to induce particular conditions, and the comparability of these species to humans. Therefore, the selection of appropriate models is based on research objectives, ultimately leading to an enhanced comprehension of disease pathology and therapy.
Collapse
Affiliation(s)
- Ayat Shorbaji
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat B Al-Ghafari
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana R Al-Rasheed
- Experimental Biochemistry Unit, King Fahad research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Loubna Siraj Mira
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Abdullah Basabrain
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed Alsulami
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Fujita H, Haruki T, Sudo K, Koga Y, Nakamura Y, Abe K, Yoshida Y, Koizumi K, M Watanabe T. Yuragi biomarker concept for evaluating human induced pluripotent stem cells using heterogeneity-based Raman finger-printing. Biophys Physicobiol 2024; 21:e211016. [PMID: 39175855 PMCID: PMC11338688 DOI: 10.2142/biophysico.bppb-v21.s016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/21/2024] [Indexed: 08/24/2024] Open
Abstract
Considering the fundamental mechanism causing singularity phenomena, we performed the following abduction: Assuming that a multicellular system is driven by spontaneous fluctuation of each cell and dynamic interaction of the cells, state transition of the system would be experimentally predictable from cellular heterogeneity. This study evaluates the abductive hypothesis by analyzing cellular heterogeneity to distinguish pre-state of state transition of differentiating cells with Raman spectroscopy and human induced pluripotent stem cells (hiPSCs) technique. Herein, we investigated the time development of cellular heterogeneity in Raman spectra during cardiomyogenesis of six hiPSC lines and tested two types of analyses for heterogeneity. As expected, some spectral peaks, possibly attributed to glycogen, correctively exhibited higher heterogeneity, prior to intensity changes of the spectrum in the both analyses in the all cell-lines tested. The combination of spectral data and heterogeneity-based analysis will be an approach to the arrival of biology that uses not only signal intensity but also heterogeneity as a biological index.
Collapse
Affiliation(s)
- Hideaki Fujita
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takayuki Haruki
- Faculty of Sustainable Design, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Kazuhiro Sudo
- Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Research Center, Tsukuba, Ibaragi 305-0074, Japan
| | - Yumiko Koga
- Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Research Center, Tsukuba, Ibaragi 305-0074, Japan
| | - Yukio Nakamura
- Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Research Center, Tsukuba, Ibaragi 305-0074, Japan
| | - Kuniya Abe
- Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Research Center, Tsukuba, Ibaragi 305-0074, Japan
| | - Yasuhiko Yoshida
- Department of Intellectual Information Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Keiichi Koizumi
- Laboratory of Drug Discovery and Development for Pre-disease, Division of Presymptomatic Disease, Department of Re-search and Development and Department of Academia-Industry-Government Collaboration, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Tomonobu M Watanabe
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
8
|
Khatun M, Lundin K, Naillat F, Loog L, Saarela U, Tuuri T, Salumets A, Piltonen TT, Tapanainen JS. Induced Pluripotent Stem Cells as a Possible Approach for Exploring the Pathophysiology of Polycystic Ovary Syndrome (PCOS). Stem Cell Rev Rep 2024; 20:67-87. [PMID: 37768523 PMCID: PMC10799779 DOI: 10.1007/s12015-023-10627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine condition among women with pleiotropic sequelae possessing reproductive, metabolic, and psychological characteristics. Although the exact origin of PCOS is elusive, it is known to be a complex multigenic disorder with a genetic, epigenetic, and environmental background. However, the pathogenesis of PCOS, and the role of genetic variants in increasing the risk of the condition, are still unknown due to the lack of an appropriate study model. Since the debut of induced pluripotent stem cell (iPSC) technology, the ability of reprogrammed somatic cells to self-renew and their potential for multidirectional differentiation have made them excellent tools to study different disease mechanisms. Recently, researchers have succeeded in establishing human in vitro PCOS disease models utilizing iPSC lines from heterogeneous PCOS patient groups (iPSCPCOS). The current review sets out to summarize, for the first time, our current knowledge of the implications and challenges of iPSC technology in comprehending PCOS pathogenesis and tissue-specific disease mechanisms. Additionally, we suggest that the analysis of polygenic risk prediction based on genome-wide association studies (GWAS) could, theoretically, be utilized when creating iPSC lines as an additional research tool to identify women who are genetically susceptible to PCOS. Taken together, iPSCPCOS may provide a new paradigm for the exploration of PCOS tissue-specific disease mechanisms.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland.
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Florence Naillat
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Liisa Loog
- Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Ulla Saarela
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, 50406, Estonia
- Competence Centre of Health Technologies, Tartu, 50411, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, 14186, Sweden
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
- Department of Obstetrics and Gynecology, HFR - Cantonal Hospital of Fribourg and University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Gaggi G, Di Credico A, Barbagallo F, Ghinassi B, Di Baldassarre A. Bisphenols and perfluoroalkyls alter human stem cells integrity: A possible link with infertility. ENVIRONMENTAL RESEARCH 2023; 235:116487. [PMID: 37419196 DOI: 10.1016/j.envres.2023.116487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
Bisphenols and Perfluoroalkyls are chemical compounds widely used in industry known to be endocrine disruptors (EDs). Once ingested through contaminated aliments, they mimic the activity of endogenous hormones leading to a broad spectrum of diseases. Due to the extensive use of plastic in human life, particular attention should be paid to antenatal exposure to Bisphenols and Perfluoroalkyls since they cross the placental barrier and accumulates in developing embryo. Here we investigated the effects of Bisphenol-A (BPA), Bisphenol-S (BPS), perfluorooctane-sulfonate (PFOS) and perfluorooctanoic-acid (PFOA), alone or combined, on human-induced pluripotent stem cells (hiPSCs) that share several biological features with the stem cells of blastocysts. Our data show that these EDs affect hiPSC inducing a great mitotoxicity and dramatic changes in genes involved in the maintenance of pluripotency, germline specification, and epigenetic regulation. We also evidenced that these chemicals, when combined, may have additive, synergistic but also negative effects. All these data suggest that antenatal exposure to these EDs may affect the integrity of stem cells in the developing embryos, interfering with critical stages of early human development that might be determinant for fertility. The observation that the effects of exposure to a combination of these chemicals are not easily foreseeable further highlights the need for wider awareness of the complexity of the EDs effects on human health and of the social and economic burden attributable to these compounds.
Collapse
Affiliation(s)
- Giulia Gaggi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| | - Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| | | | - Barbara Ghinassi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy.
| | - Angela Di Baldassarre
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
10
|
Gaggi G, Di Credico A, Barbagallo F, Ballerini P, Ghinassi B, Di Baldassarre A. Antenatal Exposure to Plastic Pollutants: Study of the Bisphenols and Perfluoroalkyls Effects on Human Stem Cell Models. EXPOSURE AND HEALTH 2023. [DOI: 10.1007/s12403-023-00586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 09/02/2023]
Abstract
AbstractEndocrine disruptors (EDs), such as Bisphenols (BPs) and Perfluoroalkyls (PFs), are a class of plastic pollutants widely used in industrial applications. Human exposure to these molecules usually occurs through ingestion of contaminated food and water. Once entered the human body they can interfere with endogenous hormone signaling, leading to a wide spectrum of diseases. It has been reported that BPs and PFs can cross the placental barrier accumulating in the fetal serum, but the detrimental consequences for human development remain to be clarified. Here we analyze the effects of different doses of bisphenol A and S (BPA, BPS) perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on proliferation and mitochondrial health on different types of stem cells: through an integrated approach that combines data from pluripotent stem cells (hiPSCs) with that from the “environment” in which the embryo develops (fetal annexes-derived perinatal stem cells) we verified the potential developmental toxicity of the in utero EDs exposure. Data obtained showed that overall, BPs, and PFs tended to increase the proliferation rate of perinatal stem cells; a similar response was observed in hiPSCs exposed to very low doses of BPs and PFs, while at higher concentrations these chemicals were toxic; in addition, both the BPs and the PFs exerted a mitotoxic effects hiPSCs at all the concentration studied. All these data suggest that antenatal exposure to BPs and PFs, also at very low concentrations, may modify the biological characteristics of stem cells present in both the developing fetus and the fetal annexes, thus perturbing normal human development.
Collapse
|
11
|
Lucchino V, Scaramuzzino L, Scalise S, Lo Conte M, Zannino C, Benedetto GL, Aguglia U, Ferlazzo E, Cuda G, Parrotta EI. Insights into the Genetic Profile of Two Siblings Affected by Unverricht-Lundborg Disease Using Patient-Derived hiPSCs. Cells 2022; 11:3491. [PMID: 36359887 PMCID: PMC9655992 DOI: 10.3390/cells11213491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2023] Open
Abstract
Unverricht-Lundborg disease (ULD), also known as progressive myoclonic epilepsy 1 (EPM1), is a rare autosomal recessive neurodegenerative disorder characterized by a complex symptomatology that includes action- and stimulus-sensitive myoclonus and tonic-clonic seizures. The main cause of the onset and development of ULD is a repeat expansion of a dodecamer sequence localized in the promoter region of the gene encoding cystatin B (CSTB), an inhibitor of lysosomal proteases. Although this is the predominant mutation found in most patients, the physio-pathological mechanisms underlying the disease complexity remain largely unknown. In this work, we used patient-specific iPSCs and their neuronal derivatives to gain insight into the molecular and genetic machinery responsible for the disease in two Italian siblings affected by different phenotypes of ULD. Specifically, fragment length analysis on amplified CSTB promoters found homozygous status for dodecamer expansion in both patients and showed that the number of dodecamer repeats is the same in both. Furthermore, the luciferase reporter assay showed that the CSTB promoter activity was similarly reduced in both lines compared to the control. This information allowed us to draw important conclusions: (1) the phenotypic differences of the patients do not seem to be strictly dependent on the genetic mutation around the CSTB gene, and (2) that some other molecular mechanisms, not yet clearly identified, might be taken into account. In line with the inhibitory role of cystatin B on cathepsins, molecular investigations performed on iPSCs-derived neurons showed an increased expression of lysosomal cathepsins (B, D, and L) and a reduced expression of CSTB protein. Intriguingly, the increase in cathepsin expression does not appear to be correlated with the residual amount of CSTB, suggesting that other mechanisms, in addition to the regulation of cathepsins, could be involved in the pathological complexity of the disease.
Collapse
Affiliation(s)
- Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Luana Scaramuzzino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giorgia Lucia Benedetto
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | | |
Collapse
|
12
|
Kim W, Park E, Yoo HS, Park J, Jung YM, Park JH. Recent Advances in Monitoring Stem Cell Status and Differentiation Using Nano-Biosensing Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2934. [PMID: 36079970 PMCID: PMC9457759 DOI: 10.3390/nano12172934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/14/2023]
Abstract
In regenerative medicine, cell therapies using various stem cells have received attention as an alternative to overcome the limitations of existing therapeutic methods. Clinical applications of stem cells require the identification of characteristics at the single-cell level and continuous monitoring during expansion and differentiation. In this review, we recapitulate the application of various stem cells used in regenerative medicine and the latest technological advances in monitoring the differentiation process of stem cells. Single-cell RNA sequencing capable of profiling the expression of many genes at the single-cell level provides a new opportunity to analyze stem cell heterogeneity and to specify molecular markers related to the branching of differentiation lineages. However, this method is destructive and distorted. In addition, the differentiation process of a particular cell cannot be continuously tracked. Therefore, several spectroscopic methods have been developed to overcome these limitations. In particular, the application of Raman spectroscopy to measure the intrinsic vibration spectrum of molecules has been proposed as a powerful method that enables continuous monitoring of biochemical changes in the process of the differentiation of stem cells. This review provides a comprehensive overview of current analytical methods employed for stem cell engineering and future perspectives of nano-biosensing technologies as a platform for the in situ monitoring of stem cell status and differentiation.
Collapse
Affiliation(s)
- Wijin Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Eungyeong Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| |
Collapse
|
13
|
Kukolj T, Lazarević J, Borojević A, Ralević U, Vujić D, Jauković A, Lazarević N, Bugarski D. A Single-Cell Raman Spectroscopy Analysis of Bone Marrow Mesenchymal Stem/Stromal Cells to Identify Inter-Individual Diversity. Int J Mol Sci 2022; 23:4915. [PMID: 35563306 PMCID: PMC9103070 DOI: 10.3390/ijms23094915] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
The heterogeneity of stem cells represents the main challenge in regenerative medicine development. This issue is particularly pronounced when it comes to the use of primary mesenchymal stem/stromal cells (MSCs) due to a lack of identification markers. Considering the need for additional approaches in MSCs characterization, we applied Raman spectroscopy to investigate inter-individual differences between bone marrow MSCs (BM-MSCs). Based on standard biological tests, BM-MSCs of analyzed donors fulfill all conditions for their characterization, while no donor-related specifics were observed in terms of BM-MSCs morphology, phenotype, multilineage differentiation potential, colony-forming capacity, expression of pluripotency-associated markers or proliferative capacity. However, examination of BM-MSCs at a single-cell level by Raman spectroscopy revealed that despite similar biochemical background, fine differences in the Raman spectra of BM-MSCs of each donor can be detected. After extensive principal component analysis (PCA) of Raman spectra, our study revealed the possibility of this method to diversify BM-MSCs populations, whereby the grouping of cell populations was most prominent when cell populations were analyzed in pairs. These results indicate that Raman spectroscopy, as a label-free assay, could have a huge potential in understanding stem cell heterogeneity and sorting cell populations with a similar biochemical background that can be significant for the development of personalized therapy approaches.
Collapse
Affiliation(s)
- Tamara Kukolj
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (D.B.)
| | - Jasmina Lazarević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (J.L.); (U.R.); (N.L.)
| | - Ana Borojević
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (A.B.); (D.V.)
| | - Uroš Ralević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (J.L.); (U.R.); (N.L.)
| | - Dragana Vujić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (A.B.); (D.V.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (D.B.)
| | - Nenad Lazarević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (J.L.); (U.R.); (N.L.)
| | - Diana Bugarski
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (D.B.)
| |
Collapse
|
14
|
In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes. Commun Biol 2021; 4:1146. [PMID: 34593953 PMCID: PMC8484596 DOI: 10.1038/s42003-021-02677-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
miRNAs modulate cardiomyocyte specification by targeting mRNAs of cell cycle regulators and acting in cardiac muscle lineage gene regulatory loops. It is unknown if or to-what-extent these miRNA/mRNA networks are operative during cardiomyocyte differentiation of adult cardiac stem/progenitor cells (CSCs). Clonally-derived mouse CSCs differentiated into contracting cardiomyocytes in vitro (iCMs). Comparison of "CSCs vs. iCMs" mRNome and microRNome showed a balanced up-regulation of CM-related mRNAs together with a down-regulation of cell cycle and DNA replication mRNAs. The down-regulation of cell cycle genes and the up-regulation of the mature myofilament genes in iCMs reached intermediate levels between those of fetal and neonatal cardiomyocytes. Cardiomyo-miRs were up-regulated in iCMs. The specific networks of miRNA/mRNAs operative in iCMs closely resembled those of adult CMs (aCMs). miR-1 and miR-499 enhanced myogenic commitment toward terminal differentiation of iCMs. In conclusions, CSC specification/differentiation into contracting iCMs follows known cardiomyo-MiR-dependent developmental cardiomyocyte differentiation trajectories and iCMs transcriptome/miRNome resembles that of CMs.
Collapse
|
15
|
Induced Pluripotent Stem Cells (iPSCs) Provide a Potentially Unlimited T Cell Source for CAR-T Cell Development and Off-the-Shelf Products. Pharm Res 2021; 38:931-945. [PMID: 34114161 DOI: 10.1007/s11095-021-03067-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has been increasingly conducted for cancer patients in clinical settings. Progress in this therapeutic approach is hampered by the lack of a solid manufacturing process, T lymphocytes, and tumor-specific antigens. T cell source used in CAR-T cell therapy is derived predominantly from the patient's own T lymphocytes, which makes this approach impracticable to patients with progressive diseases and T leukemia. The generation of autologous CAR-T cells is time-consuming due to the lack of readily available T lymphocytes and is not applicable for third-party patients. Pluripotent stem cells, such as human induced pluripotent stem cells (hiPSCs), can provide an unlimited T cell source for CAR-T cell development with the potential of generating off-the-shelf T cell products. T-iPSCs (iPSC-derived T cells) are phenotypically defined, expandable, and as functional as physiological T cells. The combination of iPSC and CAR technologies provides an exciting opportunity to oncology and greatly facilitates cell-based therapy for cancer patients. However, T-iPSCs, in combination with CARs, are at the early stage of development and need further pre-clinical and clinical studies. This review will critically discuss the progress made in iPSC-derived T cells and provides a roadmap for the development of CAR iPSC-derived T cells and off-the-shelf T-iPSCs.
Collapse
|
16
|
Lanjewar SN, Sloan SA. Growing Glia: Cultivating Human Stem Cell Models of Gliogenesis in Health and Disease. Front Cell Dev Biol 2021; 9:649538. [PMID: 33842475 PMCID: PMC8027322 DOI: 10.3389/fcell.2021.649538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Glia are present in all organisms with a central nervous system but considerably differ in their diversity, functions, and numbers. Coordinated efforts across many model systems have contributed to our understanding of glial-glial and neuron-glial interactions during nervous system development and disease, but human glia exhibit prominent species-specific attributes. Limited access to primary samples at critical developmental timepoints constrains our ability to assess glial contributions in human tissues. This challenge has been addressed throughout the past decade via advancements in human stem cell differentiation protocols that now offer the ability to model human astrocytes, oligodendrocytes, and microglia. Here, we review the use of novel 2D cell culture protocols, 3D organoid models, and bioengineered systems derived from human stem cells to study human glial development and the role of glia in neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
17
|
Deciphering the Role of Wnt and Rho Signaling Pathway in iPSC-Derived ARVC Cardiomyocytes by In Silico Mathematical Modeling. Int J Mol Sci 2021; 22:ijms22042004. [PMID: 33670616 PMCID: PMC7923182 DOI: 10.3390/ijms22042004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic Right Ventricular cardiomyopathy (ARVC) is an inherited cardiac muscle disease linked to genetic deficiency in components of the desmosomes. The disease is characterized by progressive fibro-fatty replacement of the right ventricle, which acts as a substrate for arrhythmias and sudden cardiac death. The molecular mechanisms underpinning ARVC are largely unknown. Here we propose a mathematical model for investigating the molecular dynamics underlying heart remodeling and the loss of cardiac myocytes identity during ARVC. Our methodology is based on three computational models: firstly, in the context of the Wnt pathway, we examined two different competition mechanisms between β-catenin and Plakoglobin (PG) and their role in the expression of adipogenic program. Secondly, we investigated the role of RhoA-ROCK pathway in ARVC pathogenesis, and thirdly we analyzed the interplay between Wnt and RhoA-ROCK pathways in the context of the ARVC phenotype. We conclude with the following remark: both Wnt/β-catenin and RhoA-ROCK pathways must be inactive for a significant increase of PPARγ expression, suggesting that a crosstalk mechanism might be responsible for mediating ARVC pathogenesis.
Collapse
|
18
|
Dubois F, Gaignerie A, Flippe L, Heslan JM, Tesson L, Chesneau M, Haspot F, Conchon S, David L, Brouard S. Toward a better definition of hematopoietic progenitors suitable for B cell differentiation. PLoS One 2020; 15:e0243769. [PMID: 33320872 PMCID: PMC7737978 DOI: 10.1371/journal.pone.0243769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/29/2020] [Indexed: 01/10/2023] Open
Abstract
The success of inducing human pluripotent stem cells (hIPSC) offers new opportunities for cell-based therapy. Since B cells exert roles as effector and as regulator of immune responses in different clinical settings, we were interested in generating B cells from hIPSC. We differentiated human embryonic stem cells (hESC) and hIPSC into B cells onto OP9 and MS-5 stromal cells successively. We overcame issues in generating CD34+CD43+ hematopoietic progenitors with appropriate cytokine conditions and emphasized the difficulties to generate proper hematopoietic progenitors. We highlight CD31intCD45int phenotype as a possible marker of hematopoietic progenitors suitable for B cell differentiation. Defining precisely proper lymphoid progenitors will improve the study of their lineage commitment and the signals needed during the in vitro process.
Collapse
Affiliation(s)
- Florian Dubois
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Anne Gaignerie
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Léa Flippe
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Jean-Marie Heslan
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Laurent Tesson
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Mélanie Chesneau
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Fabienne Haspot
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Sophie Conchon
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Laurent David
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Sophie Brouard
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
- * E-mail:
| |
Collapse
|
19
|
Vibrational Spectroscopy for In Vitro Monitoring Stem Cell Differentiation. Molecules 2020; 25:molecules25235554. [PMID: 33256146 PMCID: PMC7729886 DOI: 10.3390/molecules25235554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Stem cell technology has attracted considerable attention over recent decades due to its enormous potential in regenerative medicine and disease therapeutics. Studying the underlying mechanisms of stem cell differentiation and tissue generation is critical, and robust methodologies and different technologies are required. Towards establishing improved understanding and optimised triggering and control of differentiation processes, analytical techniques such as flow cytometry, immunohistochemistry, reverse transcription polymerase chain reaction, RNA in situ hybridisation analysis, and fluorescence-activated cell sorting have contributed much. However, progress in the field remains limited because such techniques provide only limited information, as they are only able to address specific, selected aspects of the process, and/or cannot visualise the process at the subcellular level. Additionally, many current analytical techniques involve the disruption of the investigation process (tissue sectioning, immunostaining) and cannot monitor the cellular differentiation process in situ, in real-time. Vibrational spectroscopy, as a label-free, non-invasive and non-destructive analytical technique, appears to be a promising candidate to potentially overcome many of these limitations as it can provide detailed biochemical fingerprint information for analysis of cells, tissues, and body fluids. The technique has been widely used in disease diagnosis and increasingly in stem cell technology. In this work, the efforts regarding the use of vibrational spectroscopy to identify mechanisms of stem cell differentiation at a single cell and tissue level are summarised. Both infrared absorption and Raman spectroscopic investigations are explored, and the relative merits, and future perspectives of the techniques are discussed.
Collapse
|
20
|
A single-cell Raman-based platform to identify developmental stages of human pluripotent stem cell-derived neurons. Proc Natl Acad Sci U S A 2020; 117:18412-18423. [PMID: 32694205 PMCID: PMC7414136 DOI: 10.1073/pnas.2001906117] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We developed a label-free and noninvasive single-cell Raman microspectroscopy (SCRM)-based platform to identify neural cell lineages derived from clinically relevant human induced pluripotent stem cells (hiPSCs). Through large-scale Raman spectral analysis, we can distinguish hiPSCs and hiPSC-derived neural cells using their intrinsic biochemical profile. We identified glycogen as a Raman biomarker for neuronal differentiation and validated the results using conventional glycogen detection assays. The parameters obtained from SCRM were processed by a novel machine learning method based on t-distributed stochastic neighbor embedding (t-SNE)-enhanced ensemble stacking, enabling highly accurate and robust cell classification. The platform and the proposed biomarker should also be applicable to other cell types and can shed light on developmental biology and glycogen metabolism disorders. Stem cells with the capability to self-renew and differentiate into multiple cell derivatives provide platforms for drug screening and promising treatment options for a wide variety of neural diseases. Nevertheless, clinical applications of stem cells have been hindered partly owing to a lack of standardized techniques to characterize cell molecular profiles noninvasively and comprehensively. Here, we demonstrate that a label-free and noninvasive single-cell Raman microspectroscopy (SCRM) platform was able to identify neural cell lineages derived from clinically relevant human induced pluripotent stem cells (hiPSCs). By analyzing the intrinsic biochemical profiles of single cells at a large scale (8,774 Raman spectra in total), iPSCs and iPSC-derived neural cells can be distinguished by their intrinsic phenotypic Raman spectra. We identified a Raman biomarker from glycogen to distinguish iPSCs from their neural derivatives, and the result was verified by the conventional glycogen detection assays. Further analysis with a machine learning classification model, utilizing t-distributed stochastic neighbor embedding (t-SNE)-enhanced ensemble stacking, clearly categorized hiPSCs in different developmental stages with 97.5% accuracy. The present study demonstrates the capability of the SCRM-based platform to monitor cell development using high content screening with a noninvasive and label-free approach. This platform as well as our identified biomarker could be extensible to other cell types and can potentially have a high impact on neural stem cell therapy.
Collapse
|
21
|
Parrotta EI, Lucchino V, Scaramuzzino L, Scalise S, Cuda G. Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges. Int J Mol Sci 2020; 21:E4354. [PMID: 32575374 PMCID: PMC7352327 DOI: 10.3390/ijms21124354] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a class of disorders affecting the heart or blood vessels. Despite progress in clinical research and therapy, CVDs still represent the leading cause of mortality and morbidity worldwide. The hallmarks of cardiac diseases include heart dysfunction and cardiomyocyte death, inflammation, fibrosis, scar tissue, hyperplasia, hypertrophy, and abnormal ventricular remodeling. The loss of cardiomyocytes is an irreversible process that leads to fibrosis and scar formation, which, in turn, induce heart failure with progressive and dramatic consequences. Both genetic and environmental factors pathologically contribute to the development of CVDs, but the precise causes that trigger cardiac diseases and their progression are still largely unknown. The lack of reliable human model systems for such diseases has hampered the unraveling of the underlying molecular mechanisms and cellular processes involved in heart diseases at their initial stage and during their progression. Over the past decade, significant scientific advances in the field of stem cell biology have literally revolutionized the study of human disease in vitro. Remarkably, the possibility to generate disease-relevant cell types from induced pluripotent stem cells (iPSCs) has developed into an unprecedented and powerful opportunity to achieve the long-standing ambition to investigate human diseases at a cellular level, uncovering their molecular mechanisms, and finally to translate bench discoveries into potential new therapeutic strategies. This review provides an update on previous and current research in the field of iPSC-driven cardiovascular disease modeling, with the aim of underlining the potential of stem-cell biology-based approaches in the elucidation of the pathophysiology of these life-threatening diseases.
Collapse
|
22
|
Rangan S, Schulze HG, Vardaki MZ, Blades MW, Piret JM, Turner RFB. Applications of Raman spectroscopy in the development of cell therapies: state of the art and future perspectives. Analyst 2020; 145:2070-2105. [DOI: 10.1039/c9an01811e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This comprehensive review article discusses current and future perspectives of Raman spectroscopy-based analyses of cell therapy processes and products.
Collapse
Affiliation(s)
- Shreyas Rangan
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- School of Biomedical Engineering
| | - H. Georg Schulze
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
| | - Martha Z. Vardaki
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
| | - Michael W. Blades
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - James M. Piret
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- School of Biomedical Engineering
| | - Robin F. B. Turner
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| |
Collapse
|
23
|
Parrotta EI, Scalise S, Scaramuzzino L, Cuda G. Stem Cells: The Game Changers of Human Cardiac Disease Modelling and Regenerative Medicine. Int J Mol Sci 2019; 20:E5760. [PMID: 31744081 PMCID: PMC6888119 DOI: 10.3390/ijms20225760] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
A comprehensive understanding of the molecular basis and mechanisms underlying cardiac diseases is mandatory for the development of new and effective therapeutic strategies. The lack of appropriate in vitro cell models that faithfully mirror the human disease phenotypes has hampered the understanding of molecular insights responsible of heart injury and disease development. Over the past decade, important scientific advances have revolutionized the field of stem cell biology through the remarkable discovery of reprogramming somatic cells into induced pluripotent stem cells (iPSCs). These advances allowed to achieve the long-standing ambition of modelling human disease in a dish and, more interestingly, paved the way for unprecedented opportunities to translate bench discoveries into new therapies and to come closer to a real and effective stem cell-based medicine. The possibility to generate patient-specific iPSCs, together with the new advances in stem cell differentiation procedures and the availability of novel gene editing approaches and tissue engineering, has proven to be a powerful combination for the generation of phenotypically complex, pluripotent stem cell-based cellular disease models with potential use for early diagnosis, drug screening, and personalized therapy. This review will focus on recent progress and future outcome of iPSCs technology toward a customized medicine and new therapeutic options.
Collapse
Affiliation(s)
- Elvira Immacolata Parrotta
- Department of Experimental and Clinical Medicine, Research Center for Advanced Biochemistry and Molecular Biology, University “Magna Graecia” of Catanzaro, 88100 Loc., Germaneto, Catanzaro, Italy; (S.S.); (L.S.); (G.C.)
| | | | | | | |
Collapse
|
24
|
Russo V, Candeloro P, Malara N, Perozziello G, Iannone M, Scicchitano M, Mollace R, Musolino V, Gliozzi M, Carresi C, Morittu VM, Gratteri S, Palma E, Muscoli C, Di Fabrizio E, Mollace V. Key Role of Cytochrome C for Apoptosis Detection Using Raman Microimaging in an Animal Model of Brain Ischemia with Insulin Treatment. APPLIED SPECTROSCOPY 2019; 73:1208-1217. [PMID: 31219322 DOI: 10.1177/0003702819858671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Brain ischemia represents a leading cause of death and disability in industrialized countries. To date, therapeutic intervention is largely unsatisfactory and novel strategies are required for getting better protection of neurons injured by cerebral blood flow restriction. Recent evidence suggests that brain insulin leads to protection of neuronal population undergoing apoptotic cell death via modulation of oxidative stress and mitochondrial cytochrome c (CytC), an effect to be better clarified. In this work, we investigate on the effect of insulin given intracerebroventricular (ICV) before inducing a transient global ischemia by bilateral occlusion of the common carotid arteries (BCCO) in Mongolian gerbils (MG). The transient (3 min) global ischemia in MG is observed to produce neurodegenerative effect mainly into CA3 hippocampal region, 72 h after cerebral blood restriction. Intracerebroventricular microinfusion of insulin significantly prevents the apoptosis of CA3 hippocampal neurons. Histological observation, after hematoxylin and eosin staining, puts in evidence the neuroprotective role of insulin, but Raman microimaging provides a clearer insight in the CytC mechanism underlying the apoptotic process. Above all, CytC has been revealed to be an outstanding, innate Raman marker for monitoring the cells status, thanks to its resonant scattering at 530 nm of incident wavelength and to its crucial role in the early stages of cells apoptosis. These data support the hypothesis of an insulin-dependent neuroprotection and antiapoptotic mechanism occurring in the brain of MG undergoing transient brain ischemia. The observed effects occurred without any peripheral change on serum glucose levels, suggesting an alternative mechanism of insulin-induced neuroprotection.
Collapse
Affiliation(s)
- Vanessa Russo
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- Association: Exchanger-Share Your Science, Complesso "Nini Barbieri," Catanzaro, Italy
| | - Patrizio Candeloro
- BioNEM Laboratory, Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Natalia Malara
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- BioNEM Laboratory, Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Gerardo Perozziello
- BioNEM Laboratory, Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Michelangelo Iannone
- CNR, Neuroscience Institute, Pharmacology Section, Complesso "Nini Barbieri," Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
| | - Rocco Mollace
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- Nutramed S.C.A.R.L., Complesso "Nini Barbieri", Roccelletta di Borgia, Catanzaro, Italy 88100
| | - Micaela Gliozzi
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- Nutramed S.C.A.R.L., Complesso "Nini Barbieri", Roccelletta di Borgia, Catanzaro, Italy 88100
| | - Cristina Carresi
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- Nutramed S.C.A.R.L., Complesso "Nini Barbieri", Roccelletta di Borgia, Catanzaro, Italy 88100
| | - Valeria M Morittu
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
| | - Santo Gratteri
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
| | - Ernesto Palma
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- Nutramed S.C.A.R.L., Complesso "Nini Barbieri", Roccelletta di Borgia, Catanzaro, Italy 88100
| | - Carolina Muscoli
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- Nutramed S.C.A.R.L., Complesso "Nini Barbieri", Roccelletta di Borgia, Catanzaro, Italy 88100
- Centro del farmaco (IRCCS), Rome, Italy
| | - Enzo Di Fabrizio
- BioNEM Laboratory, Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, Italy
- KAUST (King Abdullah University of Science and Technology), PSE and BESE Divisions, Thuwal, Kingdom of Saudi Arabia
| | - Vincenzo Mollace
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- Nutramed S.C.A.R.L., Complesso "Nini Barbieri", Roccelletta di Borgia, Catanzaro, Italy 88100
- Centro del farmaco (IRCCS), Rome, Italy
| |
Collapse
|
25
|
De Angelis MT, Santamaria G, Parrotta EI, Scalise S, Lo Conte M, Gasparini S, Ferlazzo E, Aguglia U, Ciampi C, Sgura A, Cuda G. Establishment and characterization of induced pluripotent stem cells (iPSCs) from central nervous system lupus erythematosus. J Cell Mol Med 2019; 23:7382-7394. [PMID: 31536674 PMCID: PMC6815917 DOI: 10.1111/jcmm.14598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
Involvement of the central nervous system (CNS) is an uncommon feature in systemic lupus erythematosus (SLE), making diagnosis rather difficult and challenging due to the poor specificity of neuropathic symptoms and neurological symptoms. In this work, we used human‐induced pluripotent stem cells (hiPSCs) derived from CNS‐SLE patient, with the aim to dissect the molecular insights underlying the disease by gene expression analysis and modulation of implicated pathways. CNS‐SLE‐derived hiPSCs allowed us to provide evidence of Erk and Akt pathways involvement and to identify a novel cohort of potential biomarkers, namely CHCHD2, IDO1, S100A10, EPHA4 and LEFTY1, never reported so far. We further extended the study analysing a panel of oxidative stress‐related miRNAs and demonstrated, under normal or stress conditions, a strong dysregulation of several miRNAs in CNS‐SLE‐derived compared to control hiPSCs. In conclusion, we provide evidence that iPSCs reprogrammed from CNS‐SLE patient are a powerful useful tool to investigate the molecular mechanisms underlying the disease and to eventually develop innovative therapeutic approaches.
Collapse
Affiliation(s)
- Maria Teresa De Angelis
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Stefania Scalise
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Sara Gasparini
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.,Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.,Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Clara Ciampi
- Department of Science, University of Rome " Roma Tre", Rome, Italy
| | - Antonella Sgura
- Department of Science, University of Rome " Roma Tre", Rome, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|
26
|
Parrotta EI, Scalise S, Taverna D, De Angelis MT, Sarro G, Gaspari M, Santamaria G, Cuda G. Comprehensive proteogenomic analysis of human embryonic and induced pluripotent stem cells. J Cell Mol Med 2019; 23:5440-5453. [PMID: 31237115 PMCID: PMC6653499 DOI: 10.1111/jcmm.14426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 05/11/2019] [Indexed: 12/18/2022] Open
Abstract
Although the concepts of somatic cell reprogramming and human‐induced pluripotent stem cells (hiPSCs) generation have undergone several analyses to validate the usefulness of these cells in research and clinic, it remains still controversial whether the hiPSCs are equivalent to human embryonic stem cells (hESCs), pointing to the need of further characterization for a more comprehensive understanding of pluripotency. Most of the experimental evidence comes from the transcriptome analysis, while a little is available on protein data, and even less is known about the post‐translational modifications. Here, we report a combined strategy of mass spectrometry and gene expression profiling for proteogenomic analysis of reprogrammed and embryonic stem cells. The data obtained through this integrated, multi‐“omics” approach indicate that a small, but still significant, number of distinct pathways is enriched in reprogrammed versus embryonic stem cells, supporting the view that pluripotency is an extremely complex, multifaceted phenomenon, with peculiarities that are characteristic of each cell type.
Collapse
Affiliation(s)
- Elvira Immacolata Parrotta
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Stefania Scalise
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Domenico Taverna
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Maria Teresa De Angelis
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Gianmarco Sarro
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Marco Gaspari
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Gianluca Santamaria
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Giovanni Cuda
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
27
|
Haake K, Ackermann M, Lachmann N. Concise Review: Towards the Clinical Translation of Induced Pluripotent Stem Cell-Derived Blood Cells-Ready for Take-Off. Stem Cells Transl Med 2018; 8:332-339. [PMID: 30585439 PMCID: PMC6431684 DOI: 10.1002/sctm.18-0134] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Since their discovery in 2006, induced pluripotent stem cells (iPSCs) have opened up a world of possibilities for regenerative medicine and novel cell‐based therapeutics. Now, over a decade later, robust reprogramming and expansion and differentiation protocols have been developed, and iPSC‐derived cells have been used in a wide variety of small and large animal models to treat many different diseases. Furthermore, the first iPSC derivatives are on their way into clinical trials. In this line, (i) GMP‐compliant generation, cultivation, and differentiation, (ii) preclinical efficacy and safety, as well as (iii) ethical and regulatory compliance of stem cell research represent important aspects that need to be evaluated for proper clinical translation of iPSCs and their derivatives. In this review article, we provide an overview of the current advances and challenges of the clinical translation of iPSC‐derived blood cells and highlight the most pressing problems that have to be overcome in the next years. stem cells translational medicine2019;8:332–339
Collapse
Affiliation(s)
- Kathrin Haake
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|