1
|
Shiraishi M, Sowa Y, Sunaga A, Yamamoto K, Okazaki M. Bioengineering strategies for regeneration of skin integrity: A literature review. Regen Ther 2025; 28:153-160. [PMID: 39790492 PMCID: PMC11713503 DOI: 10.1016/j.reth.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Objective The skin is a complex organ that includes various stem cell populations. Current approaches for non-healing skin defects are sometimes inadequate and many attempts have been made to regenerate skin integrity. The aim of this review is to bridge the gap between basic research and clinical application of skin integrity regeneration. Methods A literature search was carried out in PubMed using combinations of the keywords "skin integrity", "tissue-engineered skin", "bioengineered skin", and "skin regeneration". Articles published from 1968 to 2023 reporting evidence from in vivo and in vitro skin regeneration experiments were included. Results These articles showed that stem cells can be differentiated into normal skin cells, including keratinocytes, and are a significant source of skin organoids, which are useful for investigating skin biology; and that emerging direct reprogramming methods have great potential to regenerate skin from the wounded skin surface. Conclusion Recent advances in skin regeneration will facilitate further advancement of both basic and clinical research in skin biology.
Collapse
Affiliation(s)
- Makoto Shiraishi
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Japan
| | - Ataru Sunaga
- Department of Plastic Surgery, Jichi Medical University, Japan
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mutsumi Okazaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Steele LA, Hernaez Estrada B, Spiller KL. Effects of a Bioengineered Allogeneic Cellularized Construct (BACC) on Primary Human Macrophage Phenotype. Adv Healthc Mater 2025; 14:e2303044. [PMID: 38507713 DOI: 10.1002/adhm.202303044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/01/2024] [Indexed: 03/22/2024]
Abstract
The mechanisms behind the pro-healing effects of multicellular, bioengineered allogeneic cellularized constructs (BACC) are not known. Macrophages are key regulators of every phase of the wound healing process and the primary cells that mediate the response to biomaterials. It is hypothesized that cells within the BACC modulate macrophage behavior, which may contribute to the mechanism by which BACC promotes healing. To probe the influence of cells within the BACC compared to effects of the underlying collagen substrate, primary human macrophages are cultured in direct or indirect contact with BACC or with the same collagen substrate used in the BACC manufacturing. Macrophage phenotype is characterized over time via multiplex gene expression, protein secretion, multidimensional flow cytometry, and functional assays with fibroblasts and endothelial cells. The BACC causes macrophages to exhibit a predominately reparative phenotype over time compared to relevant collagen substrate controls, with multiple subpopulations expressing both pro-inflammatory and reparative markers. Conditioned media from macrophage-BACC co-cultures causes distinct effects on fibroblast and endothelial cell proliferation, migration, and network formation. Given the critical role of the reparative macrophage phenotype in wound healing, these results suggest that modulation of macrophage phenotype may be a critical part of the mechanisms behind BACC's pro-healing effects.
Collapse
Affiliation(s)
- Lindsay A Steele
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Beatriz Hernaez Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Ayyan M, Alladaboina S, Al‐Dolaymi A, Boudier‐Revéret M, Papakostas E, Marín Fermín T. Blood flow restriction-enhanced platelet-rich plasma: A pilot randomised controlled trial protocol. J Exp Orthop 2025; 12:e70034. [PMID: 39822661 PMCID: PMC11735946 DOI: 10.1002/jeo2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 08/09/2024] [Indexed: 01/19/2025] Open
Abstract
Purpose To assess platelet-rich plasma (PRP) changes in platelet and leucocyte count, insulin-like growth factor 1 (IGF-1), and interleukin 6 (IL-6) concentration after bilateral low-load knee extensions under blood flow restriction (BFR). Methods The present randomised controlled trial protocol will include two groups: the intervention group, which will undergo bilateral knee extensions under BFR, and the control group, which will perform bilateral knee extensions without BFR. Participants will be randomly allocated in a 1:1 ratio. Twenty-two healthy individuals will be enrolled if the predefined inclusion criteria are met: (1) males, (2) ages 18-40, (3) Tegner activity level ≥5 and (4) with no musculoskeletal conditions that would interfere with exercise. Exclusion criteria include (1) individuals with systemic inflammatory diseases, (2) cardiovascular risk factors, (3) any blood dyscrasia, (4) Tegner Activity scale scores <5, (5) under nonsteroidal anti-inflammatory drugs and aspirin treatment within one week before testing or (6) that had previously performed exercises on the testing day. The participant will perform low-load bilateral knee extensions under BFR following a standard protocol of 30-15-15-15 repetitions of consecutive sets with 30-s rest intervals at 80% of limb occlusive pressure and 30% of 1-RM load. PRP platelet and leucocyte count, IGF-1 and IL-6 concentration measurements (via flow cytometry, chemiluminescence testing and immunochromatography, respectively) will be conducted before exercise and 10, 20 and 30 min after the intervention. Results The expected outcome is that the standard protocol of low-load bilateral knee extensions under BFR will increase the platelet and leucocyte count, IGF-1 and IL-6 in the PRP preparation. Conclusion The current protocol allows the study of an enhanced PRP formulation for its potential implementation in multiple sports injuries.
Collapse
Affiliation(s)
- Muhammad Ayyan
- Weill Cornell Medicine—Qatar, Qatar Foundation—Education CityDohaQatar
| | | | - Ayyoub Al‐Dolaymi
- Department of SurgeryAspetar Orthopaedic and Sports Medicine HospitalDohaQatar
| | - Mathieu Boudier‐Revéret
- Department of Physical Medicine and RehabilitationUniversity of Montreal Health CenterMontrealQuebecCanada
| | - Emmanouil Papakostas
- Department of Physical Medicine and RehabilitationUniversity of Montreal Health CenterMontrealQuebecCanada
| | | |
Collapse
|
4
|
Xing T, Wang X, Xu Y, Sun F, Chen M, Yan Q, Ma Z, Jiang H, Chen X, Li X, Sultan R, Yan T, Wang Z, Jia J. Click method preserves but EDC method compromises the therapeutic activities of the peptide-activated hydrogels for critical ischemic vessel regeneration. Biomed Pharmacother 2024; 177:116959. [PMID: 38906023 DOI: 10.1016/j.biopha.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/25/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Peptide-functionalized hydrogel is one of commonly used biomaterials to introduce hydrogel-induced vessel regeneration. Despite many reports about the discoveries of high-active peptides (or ligands) for regeneration, the study on the conjugating methods for the hydrogel functionalization with peptides is limited. Here, we compared the vasculogenic efficacy of the peptide-functionalized hydrogels prepared by two commonly used conjugating methods, 1-ethyl-3-(3-dimethylamino propyl) carbodiimide (EDC) and Click methods, through cell models, organ-on-chips models, animal models, and RNA sequencing analysis. Two vascular-related cell types, the human umbilical vein endothelial cells (HUVECs) and the adipose-derived stem cells (ADSCs), have been cultured on the hydrogel surfaces prepared by EDC/Click methods. It showed that the hydrogels prepared by Click method supported the higher vasculogenic activities while the ones made by EDC method compromised the peptide activities on hydrogels. The vasculogenesis assays further revealed that hydrogels prepared by Click method promoted a better vascular network formation. In a critical ischemic hindlimb model, only the peptide-functionalized hydrogels prepared by Click method successfully salvaged the ischemic limb, significantly improved blood perfusion, and enhanced the functional recoveries (through gait analysis and animal behavior studies). RNA sequencing studies revealed that the hydrogels prepared by Click method significantly promoted the PI3K-AKT pathway activation compared to the hydrogels prepared by EDC method. All the results suggested that EDC method compromised the functions of the peptides, while Click method preserved the vascular regenerating capacities of the peptides on the hydrogels, illustrating the importance of the conjugating method during the preparation of the peptide-functionalized hydrogels.
Collapse
Affiliation(s)
- Tongying Xing
- School of Life Sciences, Shanghai University, Shanghai, China; Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Xuelin Wang
- School of Life Sciences, Shanghai University, Shanghai, China; Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Yongqiang Xu
- Department of colorectal surgery, The First People's Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Fei Sun
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Min Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qiang Yan
- Department of Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, China; Department of Surgery, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Zhihong Ma
- Department of Precision Medical Clinical Research Center, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xingxing Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Rabia Sultan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China.
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China; Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China.
| |
Collapse
|
5
|
Frommer ML, Langridge BJ, Beedie A, Jasionowska S, Awad L, Denton CP, Abraham DJ, Abu-Hanna J, Butler PEM. Exploring Anti-Fibrotic Effects of Adipose-Derived Stem Cells: Transcriptome Analysis upon Fibrotic, Inflammatory, and Hypoxic Conditioning. Cells 2024; 13:693. [PMID: 38667308 PMCID: PMC11049044 DOI: 10.3390/cells13080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Autologous fat transfers show promise in treating fibrotic skin diseases, reversing scarring and stiffness, and improving quality of life. Adipose-derived stem cells (ADSCs) within these grafts are believed to be crucial for this effect, particularly their secreted factors, though the specific mechanisms remain unclear. This study investigates transcriptomic changes in ADSCs after in vitro fibrotic, inflammatory, and hypoxic conditioning. High-throughput gene expression assays were conducted on ADSCs exposed to IL1-β, TGF-β1, and hypoxia and in media with fetal bovine serum (FBS). Flow cytometry characterized the ADSCs. RNA-Seq analysis revealed distinct gene expression patterns between the conditions. FBS upregulated pathways were related to the cell cycle, replication, wound healing, and ossification. IL1-β induced immunomodulatory pathways, including granulocyte chemotaxis and cytokine production. TGF-β1 treatment upregulated wound healing and muscle tissue development pathways. Hypoxia led to the downregulation of mitochondria and cellular activity.
Collapse
Affiliation(s)
- Marvin L. Frommer
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Benjamin J. Langridge
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Alexandra Beedie
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Sara Jasionowska
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Laura Awad
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - David J. Abraham
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - Jeries Abu-Hanna
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Division of Medical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Peter E. M. Butler
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
6
|
Mori R, Miyoshi N, Fujino S, Mizushima T, Yukimoto R, Ogino T, Takahashi H, Uemura M, Doki Y, Eguchi H. Investigation of Expanded Human Adipose-derived Stem Cell Dosage and Timing for Improved Defecation Function. In Vivo 2024; 38:546-558. [PMID: 38418103 PMCID: PMC10905476 DOI: 10.21873/invivo.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND/AIM Although certain treatment options exist for intestinal incontinence, none are curative. Adipose-derived stem cells (ADSCs) have emerged as promising therapeutic agents, but most preclinical studies of their effectiveness for anal function have used autologous or allogeneic ADSCs. In this study, the effectiveness, timing of administration, and required dosage of human ADSCs were investigated for clinical application. MATERIALS AND METHODS A 10-mm balloon catheter was used to induce anal sphincter injury in immunodeficient mice in the following experimental groups (n=4 per group): ADSC (injected ADSCs after injury), PBS (injected phosphate-buffered saline after injury), and control (uninjured). The effects of different timing (immediately after injection and 30 days following injury) and number of human ADSCs administered was compared among groups based on defecation status and pathological evaluation. RESULTS In terms of defecation status, groups receiving ≥1×104 human ADSCs after injection showed improvement. Pathological images showed that compared to the PBS group, the thinnest part of the sphincter was thicker for animals that received ≥1×104 human ADSCs, and fibrosis of the sphincter was notable in those treated with 1×103 human ADSCs or PBS. Furthermore, defecation status was improved by administration of human ADSCs, not only immediately after injury, but also at 30 days following injury. CONCLUSION Human ADSC administration in a mouse model of anal sphincter injury was effective. Injection of ≥1×104 human ADSCs was the amount necessary to improve defecation status, an effect detected in both the acute and chronic phases.
Collapse
Affiliation(s)
- Ryota Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan;
- Department of Innovative Oncology Research and Regenerative Medicine, Osaka International Cancer Institute, Osaka, Japan
| | - Shiki Fujino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- Central Clinical School, Monash University, Melbourne, Australia
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Police Hospital, Osaka, Japan
| | - Ryohei Yukimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Pilny E, Czapla J, Drzyzga A, Smolarczyk R, Matuszczak S, Jarosz-Biej M, Krakowczyk Ł, Cichoń T. The comparison of adipose-derived stromal cells (ADSCs) delivery method in a murine model of hindlimb ischemia. Stem Cell Res Ther 2024; 15:27. [PMID: 38303049 PMCID: PMC10836003 DOI: 10.1186/s13287-024-03634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Adipose-derived stromal cells (ADSCs) demonstrate ability to promote tissue healing and down-regulate excessive inflammation. ADSCs have been used to treat critical limb ischemia in preclinical and clinical trials, but still, there is little known about their optimal delivery strategy. To date, no direct analysis of different methods of ADSCs delivery has been performed in the hindlimb ischemia model. Therefore, in this study we focused on the therapeutic efficacy of different ADSCs delivery methods in a murine model of hindlimb ischemia. METHODS For the hADSCs isolation, we used the subcutaneous adipose tissue collected during the surgery. The murine hindlimb ischemia was used as a model. The unilateral femoral artery ligation was performed on 10-12-week-old male C57BL/6. ADSCs were delivered directly into ischemic muscle, into the contralateral muscle or intravenously. 7 and 14 days after the surgery, the gastrocnemius and quadriceps muscles were collected for the immunohistochemical analysis. The results were analyzed with relevant tests using the Statistica software. RESULTS Our research revealed that muscle regeneration, angiogenesis, arteriogenesis and macrophage infiltration in murine model of hindlimb ischemia differ depending on ADSCs delivery method. We have demonstrated that intramuscular method (directly into ischemic limb) of ADSCs delivery is more efficient in functional recovery after critical limb ischemia than intravenous or contralateral route. CONCLUSIONS We have noticed that injection of ADSCs directly into ischemic limb is the optimal delivery strategy because it increases: (1) muscle fiber regeneration, (2) the number of capillaries and (3) the influx of macrophages F4/80+/CD206+.
Collapse
Affiliation(s)
- Ewelina Pilny
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Alina Drzyzga
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Łukasz Krakowczyk
- Department of Oncologic and Reconstructive Surgery, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
8
|
Pattani N, Sanghera J, Langridge BJ, Frommer ML, Abu-Hanna J, Butler P. Exploring the mechanisms behind autologous lipotransfer for radiation-induced fibrosis: A systematic review. PLoS One 2024; 19:e0292013. [PMID: 38271326 PMCID: PMC10810439 DOI: 10.1371/journal.pone.0292013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/11/2023] [Indexed: 01/27/2024] Open
Abstract
AIM Radiation-induced fibrosis is a recognised consequence of radiotherapy, especially after multiple and prolonged dosing regimens. There is no definitive treatment for late-stage radiation-induced fibrosis, although the use of autologous fat transfer has shown promise. However, the exact mechanisms by which this improves radiation-induced fibrosis remain poorly understood. We aim to explore existing literature on the effects of autologous fat transfer on both in-vitro and in-vivo radiation-induced fibrosis models, and to collate potential mechanisms of action. METHOD PubMed, Cochrane reviews and Scopus electronic databases from inception to May 2023 were searched. Our search strategy combined both free-text terms with Boolean operators, derived from synonyms of adipose tissue and radiation-induced fibrosis. RESULTS The search strategy produced 2909 articles. Of these, 90 underwent full-text review for eligibility, yielding 31 for final analysis. Nine conducted in-vitro experiments utilising a co-culture model, whilst 25 conducted in-vivo experiments. Interventions under autologous fat transfer included adipose-derived stem cells, stromal vascular function, whole fat and microfat. Notable findings include downregulation of fibroblast proliferation, collagen deposition, epithelial cell apoptosis, and proinflammatory processes. Autologous fat transfer suppressed hypoxia and pro-inflammatory interferon-γ signalling pathways, and tissue treated with adipose-derived stem cells stained strongly for anti-inflammatory M2 macrophages. Although largely proangiogenic initially, studies show varying effects on vascularisation. There is early evidence that adipose-derived stem cell subgroups may have different functional properties. CONCLUSION Autologous fat transfer functions through pro-angiogenic, anti-fibrotic, immunomodulatory, and extracellular matrix remodelling properties. By characterising these mechanisms, relevant drug targets can be identified and used to further improve clinical outcomes in radiation-induced fibrosis. Further research should focus on adipose-derived stem cell sub-populations and augmentation techniques such as cell-assisted lipotransfer.
Collapse
Affiliation(s)
| | | | - Benjamin J. Langridge
- Department of Plastic Surgery, Royal Free Hospital, London, United Kingdom
- Division of Surgery & Interventional Sciences, University College London, London, United Kingdom
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
| | - Marvin L. Frommer
- Division of Surgery & Interventional Sciences, University College London, London, United Kingdom
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
| | - Jeries Abu-Hanna
- Division of Surgery & Interventional Sciences, University College London, London, United Kingdom
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
- Division of Medical Sciences, University of Oxford, Oxford, United Kingdom
| | - Peter Butler
- Department of Plastic Surgery, Royal Free Hospital, London, United Kingdom
- Division of Surgery & Interventional Sciences, University College London, London, United Kingdom
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
9
|
Guillaume VGJ, Lippold EF, Beier JP, Ruhl T. Comprehensive Analysis of Local Anesthetics Affecting Adipose Stem Cells In Vitro. Plast Reconstr Surg 2023; 152:850e-861e. [PMID: 36988627 DOI: 10.1097/prs.0000000000010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND Adipose stem cells (ASCs) hold a great regenerative capacity because of their differentiation capability and their secretory activity. Thus, ASC survival is of great significance during perioperative harvesting. Various local anesthetics are commonly applied during fat grafting procedures. These substances are known to impair cellular viability, which would affect graft survival and final outcomes, but the exact extent of their impact on ASC biology is unknown. METHODS The authors analyzed the short- and long-term effects of lidocaine, mepivacaine, ropivacaine, and bupivacaine at increasing concentrations (0.1 to 10 mM) on primary human ASC proliferation and metabolic activity. Trilinear differentiation was assessed by oil red O stain (adipogenesis), safranin O (chondrogenesis), and cresolphthalein (osteogenesis) labeling. In supernatants, cytokine [interleukin (IL)-6/IL-8, vascular endothelial growth factor, hepatocyte growth factor] secretion was analyzed by enzyme-linked immunosorbent assay. RESULTS Bupivacaine at greater than 100 µM demonstrated the strongest anti proliferative effects, whereas lidocaine and ropivacaine did not affect cell numbers. Mepivacaine evoked reciprocal results regarding cell count at greater than 1 mM. Each compound impaired trilinear differentiation. Secretion of hepatocyte growth factor and IL-8 was reduced significantly by local anesthetic exposure; levels were restored after substances were washed out. CONCLUSIONS In vitro data show that lidocaine, mepivacaine, and ropivacaine could be applied at concentrations of 1 to 10 mM without affecting ASC survival. In contrast, bupivacaine at concentrations greater than 100 µM should be administered with great caution. The differentiation of ASCs and the ASC's secretome might already be decreased by each local anesthetic at 1 mM. CLINICAL RELEVANCE STATEMENT The authors' experimental data can be of great significance to the clinical practice, as local anesthetics are routinely administered during liposuction as a tumescent anesthesia adjunct. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
Affiliation(s)
- Vincent G J Guillaume
- From the Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen
| | - Ella F Lippold
- From the Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen
| | - Justus P Beier
- From the Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen
| | - Tim Ruhl
- From the Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen
| |
Collapse
|
10
|
Wang R, Wang F, Lu S, Gao B, Kan Y, Yuan T, Xu Y, Yuan C, Guo D, Fu W, Yu X, Si Y. Adipose-derived stem cell/FGF19-loaded microfluidic hydrogel microspheres for synergistic restoration of critical ischemic limb. Bioact Mater 2023; 27:394-408. [PMID: 37122899 PMCID: PMC10131126 DOI: 10.1016/j.bioactmat.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/19/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
The efficacy of stem cell therapy is substantially compromised due to low cell survival rate and poor local retention post-delivery. These issues drastically limit the application of stem cells for ischemic limb therapy, which requires effective blood perfusion and skeletal muscle regeneration. Herein, based on microfluidic technology, an integrated stem cell and cytokine co-delivery system designed for functional ischemic limb salvage was constructed by first incorporating the myogenic cytokine, fibroblast growth factor 19 (FGF19), into microspheres composed of methacrylate gelatin (GelMA). Then adipose-derived stem cells (ADSCs) were highly absorbed into the porous structure of the microspheres, overcoming the insufficient loading efficiency and activities by conventional encapsulation strategy. The fabricated ADSCs/FGF19@μsphere system demonstrated a uniform size of about 180 μm and a highly porous structure with pore sizes between 20 and 40 μm. The resultant system allowed high doses of ADSCs to be precisely engrafted in the lesion and to survive, and achieved sustained FGF19 release in the ischemic region to facilitate myoblast recruitment and differentiation and myofibrils growth. Furthermore, the combination of ADSCs and FGF19 exhibited a positive synergistic effect which substantially improved the therapeutic benefit of angiogenesis and myogenesis, both in vitro and in vivo. In summary, a stem cell and cytokine co-delivery system with the properties of easy preparation and minimal invasiveness was designed to ensure highly efficient cell delivery, sustained cytokine release, and ultimately realizes effective treatment of ischemic limb regeneration.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Fangqian Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China
| | - Shan Lu
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Bin Gao
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Yuanqing Kan
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Tong Yuan
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chen Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Daqiao Guo
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Xiaohua Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China
| | - Yi Si
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| |
Collapse
|
11
|
Zhang Q, Chiu Y, Chen Y, Wu Y, Dunne LW, Largo RD, Chang EI, Adelman DM, Schaverien MV, Butler CE. Harnessing the synergy of perfusable muscle flap matrix and adipose-derived stem cells for prevascularization and macrophage polarization to reconstruct volumetric muscle loss. Bioact Mater 2023; 22:588-614. [PMID: 36382023 PMCID: PMC9646752 DOI: 10.1016/j.bioactmat.2022.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Muscle flaps must have a strong vascular network to support a large tissue volume and ensure successful engraftment. We developed porcine stomach musculofascial flap matrix (PDSF) comprising extracellular matrix (ECM) and intact vasculature. PDSF had a dominant vascular pedicle, microcirculatory vessels, a nerve network, well-retained 3-dimensional (3D) nanofibrous ECM structures, and no allo- or xenoantigenicity. In-depth proteomic analysis demonstrated that PDSF was composed of core matrisome proteins (e.g., collagens, glycoproteins, proteoglycans, and ECM regulators) that, as shown by Gene Ontology term enrichment analysis, are functionally related to musculofascial biological processes. Moreover, PDSF-human adipose-derived stem cell (hASC) synergy not only induced monocytes towards IL-10-producing M2 macrophage polarization through the enhancement of hASCs' paracrine effect but also promoted the proliferation and interconnection of both human skeletal muscle myoblasts (HSMMs) and human umbilical vein endothelial cells (HUVECs) in static triculture conditions. Furthermore, PDSF was successfully prevascularized through a dynamic perfusion coculture of hASCs and HUVECs, which integrated with PDSF and induced the maturation of vascular networks in vitro. In a xenotransplantation model, PDSF demonstrated myoconductive and immunomodulatory properties associated with the predominance of M2 macrophages and regulatory T cells. In a volumetric muscle loss (VML) model, prevascularized PDSF augmented neovascularization and constructive remodeling, which was characterized by the predominant infiltration of M2 macrophages and significant musculofascial tissue formation. These results indicate that hASCs' integration with PDSF enhances the cells' dual function in immunomodulation and angiogenesis. Owing in part to this PDSF-hASC synergy, our platform shows promise for vascularized muscle flap engineering for VML reconstruction.
Collapse
Affiliation(s)
- Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Youbai Chen
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Plastic Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yewen Wu
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lina W. Dunne
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rene D. Largo
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Edward I. Chang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David M. Adelman
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark V. Schaverien
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Charles E. Butler
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
12
|
Otsuka T, Kan HM, Mason TD, Nair LS, Laurencin CT. Overexpression of NDST1 Attenuates Fibrotic Response in Murine Adipose-Derived Stem Cells. Stem Cells Dev 2022; 31:787-798. [PMID: 35920108 PMCID: PMC9836701 DOI: 10.1089/scd.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/01/2022] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) hold tremendous potential for treating diseases and repairing damaged tissues. Heparan sulfate (HS) plays various roles in cellular signaling mechanisms. The importance of HS in stem cell function has been reported and well documented. However, there has been little progress in using HS for therapeutic purposes. We focused on one of the sulfotransferases, NDST1, which influences overall HS chain extent and sulfation pattern, with the expectation to enhance stem cell function by increasing the N-sulfation level. We herein performed transfections of a green fluorescent protein-vector control and NDST1-vector into mouse ADSCs to evaluate stem cell functions. Overexpression of NDST1 suppressed the osteogenic differentiation of ADSCs. There was no pronounced effect observed on the stemness, inflammatory gene expression, nor any noticeable effect in adipogenic and chondrogenic differentiation. Under the tumor necrosis factor-alpha stimulation, NDST1 overexpression induced several chemokine productions that attract neutrophils and macrophages. Finally, we identified an antifibrotic response in ADSCs overexpressing NDST1. This study provides a foundation for the evaluation of HS-related effects in ADSCs undergoing ex vivo gene manipulation.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
| | - Timothy D. Mason
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
| | - Lakshmi S. Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Cato T. Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
13
|
Li X, Zhu Z, Xu Y, Xu S. The Downregulated Lipo-Related Gene Expression Pattern in Keloid Indicates Fat Graft Is a Potential Clinical Option for Keloid. Front Med (Lausanne) 2022; 9:846895. [PMID: 35677827 PMCID: PMC9168263 DOI: 10.3389/fmed.2022.846895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Keloids are a common complication of wounds, often manifesting with continuous hyperplasia and aggressive growth. Keloids also have a high recurrence rate and are largely resistant to treatment, making them clinically incurable, highlighting the need to translate basic research into clinical practice. Materials and Methods We used GSE158395 and GSE92566 as discovery datasets to identify specific enriched hub genes and lncRNAs associated with keloid development and progression. This data was then used to identify the competing endogenous RNAs (ceRNAs) in these pathways by using a bidirectional selection method. Then, all hub genes and lncRNAs in ceRNAs were validated using GSE90051, GSE178562, and GSE175866, which describe the transcriptional profiles of keloid tissues, fibroblasts from pathological scars, and keloid fibroblast subpopulations, respectively. The keloid tissues were measured with qPCR. Results Both fat-associated biological processes and fat cell differentiation were enriched in the downregulated gene set. Further evaluation revealed that all 11 hub genes were lipo-related, and most of these were differentially expressed in all three validation datasets. We then identified a clear ceRNA network within the data comprising six hub genes and four lncRNAs. Evaluations of the validation datasets confirmed that all six of these hub genes and two of the four lncRNAs were downregulated in keloid tissues; two hub genes and one lncRNA were downregulated in fibroblasts from pathological scars; and five hub genes and one lncRNA were significantly downregulated in mesenchymal subpopulation. Three genes had statistical difference and eight genes showed downregulated trend through qPCR of the keloid tissue. Conclusion Our results suggest that keloid development relies on the downregulation of lipo-related genes and pre-adipocytes in diseased tissues and may be one of the key mechanisms underlying fat grafting-mediated treatment of pathological scarring.
Collapse
Affiliation(s)
| | | | - Yangbin Xu
- Yangbin Xu ; orcid.org/0000-0002-2587-9619
| | - Shuqia Xu
- *Correspondence: Shuqia Xu ; orcid.org/0000-0003-1004-4202
| |
Collapse
|
14
|
Agareva M, Stafeev I, Michurina S, Sklyanik I, Shestakova E, Ratner E, Hu X, Menshikov M, Shestakova M, Parfyonova Y. Type 2 Diabetes Mellitus Facilitates Shift of Adipose-Derived Stem Cells Ex Vivo Differentiation toward Osteogenesis among Patients with Obesity. Life (Basel) 2022; 12:life12050688. [PMID: 35629356 PMCID: PMC9146836 DOI: 10.3390/life12050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
Objective: Sedentary behavior with overnutrition provokes the development of obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). The main progenitor cells of adipose tissue are adipose-derived stem cells (ADSCs) which can change differentiation, metabolic, and secretory phenotypes under obesity conditions. The purpose of this study was to evaluate ADSC osteogenesis activity among patients with obesity in normal glucose tolerance (NGT) and T2DM conditions. Methods: In the study, ADSCs from donors with obesity were used. After clinical characterization, all patients underwent bariatric surgery and ADSCs were isolated from subcutaneous fat biopsies. ADSCs were subjected to osteogenic differentiation, stained with Alizarin Red S, and harvested for real-time PCR and Western blotting. Cell senescence was evaluated with a β-galactosidase-activity-based assay. Results: Our results demonstrated the significantly increased calcification of ADSC on day 28 of osteogenesis in the T2DM group. These data were confirmed by the statistically significant enhancement of RUNX2 gene expression, which is a master regulator of osteogenesis. Protein expression analysis showed the increased expression of syndecan 1 and collagen I before and during osteogenesis, respectively. Moreover, T2DM ADSCs demonstrated an increased level of cellular senescence. Conclusion: We suggest that T2DM-associated cellular senescence can cause ADSC differentiation to shift toward osteogenesis, the impaired formation of new fat depots in adipose tissue, and the development of insulin resistance. The balance between ADSC adipo- and osteogenesis commitment is crucial for the determination of the metabolic fate of patients and their adipose tissue.
Collapse
Affiliation(s)
- Margarita Agareva
- Institute of Fine Chemical Technologies Named after M.V. Lomonosov, 119571 Moscow, Russia;
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Iurii Stafeev
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Correspondence:
| | - Svetlana Michurina
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor Sklyanik
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Ekaterina Shestakova
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Elizaveta Ratner
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Mikhail Menshikov
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Marina Shestakova
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Yelena Parfyonova
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
15
|
Wise RM, Al-Ghadban S, Harrison MAA, Sullivan BN, Monaco ER, Aleman SJ, Donato UM, Bunnell BA. Short-Term Autophagy Preconditioning Upregulates the Expression of COX2 and PGE2 and Alters the Immune Phenotype of Human Adipose-Derived Stem Cells In Vitro. Cells 2022; 11:cells11091376. [PMID: 35563682 PMCID: PMC9101706 DOI: 10.3390/cells11091376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 12/28/2022] Open
Abstract
Human adipose-derived stem cells (hASCs) are potent modulators of inflammation and promising candidates for the treatment of inflammatory and autoimmune diseases. Strategies to improve hASC survival and immunoregulation are active areas of investigation. Autophagy, a homeostatic and stress-induced degradative pathway, plays a crucial role in hASC paracrine signaling—a primary mechanism of therapeutic action. Therefore, induction of autophagy with rapamycin (Rapa), or inhibition with 3-methyladenine (3-MA), was examined as a preconditioning strategy to enhance therapeutic efficacy. Following preconditioning, both Rapa and 3-MA-treated hASCs demonstrated preservation of stemness, as well as upregulated transcription of cyclooxygenase-2 (COX2) and interleukin-6 (IL-6). Rapa-ASCs further upregulated TNFα-stimulated gene-6 (TSG-6) and interleukin-1 beta (IL-1β), indicating additional enhancement of immunomodulatory potential. Preconditioned cells were then stimulated with the inflammatory cytokine interferon-gamma (IFNγ) and assessed for immunomodulatory factor production. Rapa-pretreated cells, but not 3-MA-pretreated cells, further amplified COX2 and IL-6 transcripts following IFNγ exposure, and both groups upregulated secretion of prostaglandin-E2 (PGE2), the enzymatic product of COX2. These findings suggest that a 4-h Rapa preconditioning strategy may bestow the greatest improvement to hASC expression of cytokines known to promote tissue repair and regeneration and may hold promise for augmenting the therapeutic potential of hASCs for inflammation-driven pathological conditions.
Collapse
Affiliation(s)
- Rachel M. Wise
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sara Al-Ghadban
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Mark A. A. Harrison
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Brianne N. Sullivan
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Emily R. Monaco
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
| | - Sarah J. Aleman
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
| | - Umberto M. Donato
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
| | - Bruce A. Bunnell
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
16
|
Macrophage IL-1β promotes arteriogenesis by autocrine STAT3- and NF-κB-mediated transcription of pro-angiogenic VEGF-A. Cell Rep 2022; 38:110309. [PMID: 35108537 PMCID: PMC8865931 DOI: 10.1016/j.celrep.2022.110309] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/20/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022] Open
Abstract
Peripheral artery disease (PAD) leads to considerable morbidity, yet strategies for therapeutic angiogenesis fall short of being impactful. Inflammatory macrophage subsets play an important role in orchestrating post-developmental angiogenesis, but the underlying mechanisms are unclear. Here, we find that macrophage VEGF-A expression is dependent upon the potent inflammatory cytokine, IL-1β. IL-1β promotes pro-angiogenic VEGF-A165a isoform transcription via activation and promoter binding of STAT3 and NF-κB, as demonstrated by gene-deletion, gain-of-function, inhibition, and chromatin immunoprecipitation assays. Conversely, IL-1β-deletion or inhibition of STAT3 or NF-κB increases anti-angiogenic VEGF-A165b isoform expression, indicating IL-1β signaling may also direct splice variant selection. In an experimental PAD model of acute limb ischemia, macrophage IL-1β expression is required for pro-angiogenic VEGF-A expression and for VEGF-A-induced blood flow recovery via angio- or arteriogenesis. Though further study is needed, macrophage IL-1β-dependent transcription of VEGF-A via STAT3 and NF-κB may have potential to therapeutically promote angiogenesis in the setting of PAD. Mantsounga et al. show inflammatory macrophage IL-1β expression to be required for pro-angiogenic VEGF-A expression and consequent post-developmental angio- or arteriogenesis in an experimental model of peripheral artery disease. Autocrine IL-1β signaling promotes transcription of pro-angiogenic VEGF-A165a isoform expression relative to anti-angiogenic isoform, VEGF-A165b, through activation of STAT3 and NF-κB.
Collapse
|
17
|
Ragni E, Viganò M, De Luca P, Pedrini E, de Girolamo L. Adipose-Derived Stem/Stromal Cells, Stromal Vascular Fraction, and Microfragmented Adipose Tissue. ORTHOBIOLOGICS 2022:47-61. [DOI: 10.1007/978-3-030-84744-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
de Sousa CAZ, Sierra APR, Martínez Galán BS, Maciel JFDS, Manoel R, Barbeiro HV, de Souza HP, Cury-Boaventura MF. Time Course and Role of Exercise-Induced Cytokines in Muscle Damage and Repair After a Marathon Race. Front Physiol 2021; 12:752144. [PMID: 34721075 PMCID: PMC8554198 DOI: 10.3389/fphys.2021.752144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Endurance exercise induces an increase in the expression of exercise-induced peptides that participate in the repair and regeneration of skeletal muscles. The present study aimed to evaluate the time course and role of exercise-induced cytokines in muscle damage and repair after a marathon race. Fifty-seven Brazilian male amateur marathon finishers, aged 30–55 years, participated in this study. The blood samples were collected 24 h before, immediately after, and 24 and 72 h after the São Paulo International Marathon. The leukogram and muscle damage markers were analyzed using routine automated methodology in the clinical laboratory. The plasma levels of the exercise-induced cytokines were determined using the Human Magnetic Bead Panel or enzyme-linked immunosorbent assays [decorin and growth differentiation factor 15 (GDF-15)]. A muscle damage was characterized by an increase in plasma myocellular proteins and immune changes (leukocytosis and neutrophilia). Running the marathon increased interleukin (IL)-6 (4-fold), IL-8 (1.5-fold), monocyte chemoattractant protein-1 (2.4-fold), tumor necrosis factor alpha (TNF-α) (1.5-fold), IL-10 (11-fold), decorin (1.9-fold), GDF-15 (1.8-fold), brain-derived neurotrophic factor (BDNF) (2.7-fold), follistatin (2-fold), and fibroblast growth factor (FGF-21) (3.4-fold) plasma levels. We also observed a reduction in musclin, myostatin, IL-15, and apelin levels immediately after the race (by 22–36%), 24 h (by 26–52%), and 72 h after the race (by 25–53%). The changes in BDNF levels were negatively correlated with the variations in troponin levels (r = −0.36). The variations in IL-6 concentrations were correlated with the changes in follistatin (r = 0.33) and FGF-21 (r = 0.31) levels after the race and with myostatin and irisin levels 72 h after the race. The changes in IL-8 and IL-10 levels had positive correlation with variation in musclin (p < 0.05). Regeneration of exercise-induced muscle damage involves the participation of classical inflammatory mediators, as well as GDF-15, BDNF, follistatin, decorin, and FGF-21, whose functions include myogenesis, mytophagia, satellite cell activation, and downregulation of protein degradation. The skeletal muscle damage markers were not associated to myokines response. However, BDNF had a negative correlation with a myocardial damage marker. The classical anti-inflammatory mediators (IL-10, IL-8, and IL-6) induced by exercise are associated to myokines response immediately after the race and in the recovery period and may affect the dynamics of muscle tissue repair.
Collapse
Affiliation(s)
- Cesar Augustus Zocoler de Sousa
- Interdisciplinary Post-graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro Do Sul University, São Paulo, Brazil
| | | | - Bryan Steve Martínez Galán
- Interdisciplinary Post-graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro Do Sul University, São Paulo, Brazil
| | - Jaqueline Fernanda de Sousa Maciel
- Interdisciplinary Post-graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro Do Sul University, São Paulo, Brazil
| | - Richelieau Manoel
- Interdisciplinary Post-graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro Do Sul University, São Paulo, Brazil
| | | | | | - Maria Fernanda Cury-Boaventura
- Interdisciplinary Post-graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro Do Sul University, São Paulo, Brazil
| |
Collapse
|
19
|
Dymowska M, Aksamit A, Zielniok K, Kniotek M, Kaleta B, Roszczyk A, Zych M, Dabrowski F, Paczek L, Burdzinska A. Interaction between Macrophages and Human Mesenchymal Stromal Cells Derived from Bone Marrow and Wharton's Jelly-A Comparative Study. Pharmaceutics 2021; 13:pharmaceutics13111822. [PMID: 34834238 PMCID: PMC8624657 DOI: 10.3390/pharmaceutics13111822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
Despite intensive clinical research on the use of mesenchymal stromal cells (MSCs), further basic research in this field is still required. Herein, we compared human bone marrow MSCs (BM-MSCs, n = 6) and Wharton’s jelly MSCs (WJ-MSCs, n = 6) in their ability to interact with human primary macrophages. Evaluation of secretory potential revealed that under pro-inflammatory stimulation, WJ-MSCs secreted significantly more IL-6 than BM-MSCs (2-fold). This difference did not translate into the effect of MSCs on macrophages: both types of MSCs significantly directed M1-like macrophages toward the M2 phenotype (based on CD206 expression) to a similar extent. This observation was consistent both in flow cytometry analysis and immunocytochemical assessment. The effect of MSCs on macrophages was sustained when IL-6 signaling was blocked with Tocilizumab. Macrophages, regardless of polarization status, enhanced chemotaxis of both BM-MSCs and WJ-MSCs (p < 0.01; trans-well assay), with WJ-MSCs being significantly more responsive to M1-derived chemotactic signals than BM-MSCs. Furthermore, WJ-MSCs increased their motility (scratch assay) when exposed to macrophage-conditioned medium while BM-MSCs did not. These results indicate that although both BM-MSCs and WJ-MSCs have the ability to reciprocally interact with macrophages, the source of MSCs could slightly but significantly modify the response under clinical settings.
Collapse
Affiliation(s)
- Marta Dymowska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.D.); (A.A.); (L.P.)
- Laboratory of Cell Research and Application, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Aleksandra Aksamit
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.D.); (A.A.); (L.P.)
| | - Katarzyna Zielniok
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.D.); (A.A.); (L.P.)
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.K.); (B.K.); (A.R.); (M.Z.)
- Correspondence: (K.Z.); (A.B.)
| | - Monika Kniotek
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.K.); (B.K.); (A.R.); (M.Z.)
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.K.); (B.K.); (A.R.); (M.Z.)
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.K.); (B.K.); (A.R.); (M.Z.)
| | - Michal Zych
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.K.); (B.K.); (A.R.); (M.Z.)
| | - Filip Dabrowski
- Department of Gynecology and Obstetrics, Medical University of Silesia, Medykow 14, 40-752 Katowice, Poland;
| | - Leszek Paczek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.D.); (A.A.); (L.P.)
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Anna Burdzinska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.D.); (A.A.); (L.P.)
- Correspondence: (K.Z.); (A.B.)
| |
Collapse
|
20
|
Li K, Shi G, Lei X, Huang Y, Li X, Bai L, Qin C. Age-related alteration in characteristics, function, and transcription features of ADSCs. Stem Cell Res Ther 2021; 12:473. [PMID: 34425900 PMCID: PMC8383427 DOI: 10.1186/s13287-021-02509-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Adipose tissue-derived stem cells (ADSCs) autologous transplantation has been a promising strategy for aging-related disorders. However, the relationship between ADSCs senescence and organismal aging has not been clearly established. Therefore, we aimed at evaluating senescence properties of ADSCs from different age donors and to verify the influence of organismal aging on the proliferation and function of ADSCs in vitro, providing the theoretical basis for the clinical application of autologous ADSCs transplantation. METHODS AND RESULTS The ADSCs were obtained from 1-month-old and 20-month-old mice. The cells characteristics, functions, gene expression levels, apoptosis proportion, cell cycle, SA-β-gal staining, and transcription features were evaluated. Compared to ADSCs from 1-month-old mice, ADSCs from 20-month-old mice exhibited some senescence-associated changes, including inhibited abilities to proliferate. Moreover, differentiation abilities, cell surface markers, and cytokines secreting differed between 1M and 20M ADSCs. SA-β-Gal staining did not reveal differences between the two donor groups, while cells exhibited more remarkable age-related changes through continuous passages. Based on transcriptome analysis and further detection, the CCL7-CCL2-CCR2 axis is the most probable mechanism for the differences. CONCLUSIONS ADSCs from old donors have some age-related alterations. The CCL7-CCL2-CCR2 axis is a potential target for gene therapy to reduce the harmful effects of ADSCs from old donors. To improve on autologous transplantation, we would recommend that ADSCs should be cryopreserved in youth with a minimum number of passages or block CCL7-CCL2-CCR2 to abolish the effects of age-related alterations in ADSCs through the Chemokine signaling pathway.
Collapse
Affiliation(s)
- Keya Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Guiying Shi
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Xuepei Lei
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Yiying Huang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Xinyue Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Lin Bai
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|
21
|
Gao X, Gao M, Gorecka J, Langford J, Liu J, Luo J, Taniguchi R, Matsubara Y, Liu H, Guo L, Gu Y, Qyang Y, Dardik A. Human-Induced Pluripotent Stem-Cell-Derived Smooth Muscle Cells Increase Angiogenesis to Treat Hindlimb Ischemia. Cells 2021; 10:792. [PMID: 33918299 PMCID: PMC8066461 DOI: 10.3390/cells10040792] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSC) represent an innovative, somatic cell-derived, easily obtained and renewable stem cell source without considerable ethical issues. iPSC and their derived cells may have enhanced therapeutic and translational potential compared with other stem cells. We previously showed that human iPSC-derived smooth muscle cells (hiPSC-SMC) promote angiogenesis and wound healing. Accordingly, we hypothesized that hiPSC-SMC may be a novel treatment for human patients with chronic limb-threatening ischemia who have no standard options for therapy. We determined the angiogenic potential of hiPSC-SMC in a murine hindlimb ischemia model. hiPSC-SMC were injected intramuscularly into nude mice after creation of hindlimb ischemia. Functional outcomes and perfusion were measured using standardized scores, laser Doppler imaging, microCT, histology and immunofluorescence. Functional outcomes and blood flow were improved in hiPSC-SMC-treated mice compared with controls (Tarlov score, p < 0.05; Faber score, p < 0.05; flow, p = 0.054). hiPSC-SMC-treated mice showed fewer gastrocnemius fibers (p < 0.0001), increased fiber area (p < 0.0001), and enhanced capillary density (p < 0.01); microCT showed more arterioles (<96 μm). hiPSC-SMC treatment was associated with fewer numbers of macrophages, decreased numbers of M1-type (p < 0.05) and increased numbers of M2-type macrophages (p < 0.0001). Vascular endothelial growth factor (VEGF) expression in ischemic limbs was significantly elevated with hiPSC-SMC treatment (p < 0.05), and inhibition of VEGFR-2 with SU5416 was associated with fewer capillaries in hiPSC-SMC-treated limbs (p < 0.0001). hiPSC-SMC promote VEGF-mediated angiogenesis, leading to improved hindlimb ischemia. Stem cell therapy using iPSC-derived cells may represent a novel and potentially translatable therapy for limb-threatening ischemia.
Collapse
Affiliation(s)
- Xixiang Gao
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China; (X.G.); (L.G.); (Y.G.)
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| | - Mingjie Gao
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Vascular Ultrasound, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jolanta Gorecka
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| | - John Langford
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| | - Jia Liu
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| | - Jiesi Luo
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Ryosuke Taniguchi
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| | - Yutaka Matsubara
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Surgery and Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hao Liu
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China; (X.G.); (L.G.); (Y.G.)
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China; (X.G.); (L.G.); (Y.G.)
| | - Yibing Qyang
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Alan Dardik
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Surgery, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
22
|
Yang CY, Chang PY, Chen JY, Wu BS, Yang AH, Lee OKS. Adipose-derived mesenchymal stem cells attenuate dialysis-induced peritoneal fibrosis by modulating macrophage polarization via interleukin-6. Stem Cell Res Ther 2021; 12:193. [PMID: 33741073 PMCID: PMC7977319 DOI: 10.1186/s13287-021-02270-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background Life-long peritoneal dialysis (PD) as a renal replacement therapy is limited by peritoneal fibrosis. Previous studies showed immunomodulatory and antifibrotic effects of adipose-derived mesenchymal stem cells (ADSCs) on peritoneal fibrosis. However, the role of the peritoneal macrophage in this process remains uninvestigated. Methods We examined the therapeutic effects of ADSC and bone marrow-derived mesenchymal stem cells (BM-MSC) in the rat model of dialysis-induced peritoneal fibrosis using methylglyoxal. In addition, treatment of macrophages with the conditioned medium of ADSC and BM-MSC was performed individually to identify the beneficial component of the stem cell secretome. Results In the in vivo experiments, we found dialysis-induced rat peritoneal fibrosis was attenuated by both ADSC and BM-MSC. Interestingly, ADSC possessed a more prominent therapeutic effect than BM-MSC in ameliorating peritoneal membrane thickening while also upregulating epithelial cell markers in rat peritoneal tissues. The therapeutic effects of ADSC were positively associated with M2 macrophage polarization. In the in vitro experiments, we confirmed that interleukin-6 (IL-6) secreted by MSCs upon transforming growth factor-β1 stimulation promotes M2 macrophage polarization. Conclusions In dialysis-induced peritoneal fibrosis, MSCs are situated in an inflammatory environment of TGF-β1 and secrete IL-6 to polarize macrophages into the M2 phenotype. Our findings reveal a previously unidentified role of tissue macrophage in this antifibrotic process. ADSC has the advantage of abundance and accessibility, making the application values extremely promising. Graphical abstract In dialysis-induced peritoneal fibrosis, peritoneal mesothelial cells secrete transforming growth factor-β1 (TGF-β1) when exposed to methylglyoxal (MGO)-containing peritoneal dialysate. When situated in TGF-β1, the inflammatory environment induces mesenchymal stem cells to secrete interleukin-6 (IL-6), IL-6 polarizes macrophages into the M2 phenotype. The dominant peritoneal tissue M2 macrophages, marked by upregulated Arg-1 expression, account for the attenuation of MGO-induced dedifferentiation of peritoneal mesothelial cells to maintain epithelial integrity.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02270-4.
Collapse
Affiliation(s)
- Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu, 30010, Taiwan.
| | - Pu-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Jun-Yi Chen
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Bo-Sheng Wu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - An-Hang Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Pathology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Orthopedics, China Medical University Hospital, Taichung, 40447, Taiwan
| |
Collapse
|
23
|
Yu D, Cai Z, Li D, Zhang Y, He M, Yang Y, Liu D, Xie W, Li Y, Xiao W. Myogenic Differentiation of Stem Cells for Skeletal Muscle Regeneration. Stem Cells Int 2021; 2021:8884283. [PMID: 33628275 PMCID: PMC7884123 DOI: 10.1155/2021/8884283] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Stem cells have become a hot research topic in the field of regenerative medicine due to their self-renewal and differentiation capabilities. Skeletal muscle tissue is one of the most important tissues in the human body, and it is difficult to recover when severely damaged. However, conventional treatment methods can cause great pain to patients. Stem cell-based tissue engineering can repair skeletal muscle to the greatest extent with little damage. Therefore, the application of stem cells to skeletal muscle regeneration is very promising. In this review, we discuss scaffolds and stem cells for skeletal muscle regeneration and put forward our ideas for future development.
Collapse
Affiliation(s)
- Dengjie Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Zijun Cai
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yuntao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| |
Collapse
|
24
|
Czapla J, Cichoń T, Pilny E, Jarosz-Biej M, Matuszczak S, Drzyzga A, Krakowczyk Ł, Smolarczyk R. Adipose tissue-derived stromal cells stimulated macrophages-endothelial cells interactions promote effective ischemic muscle neovascularization. Eur J Pharmacol 2020; 883:173354. [PMID: 32663541 DOI: 10.1016/j.ejphar.2020.173354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022]
Abstract
Neovascularization, the process of new blood vessels formation in response to hypoxia induced signals, is an essential step during wound healing or ischemia repair. It follows as a cascade of consecutive events leading to new blood vessels formation and their subsequent remodeling to a mature and functional state, enabling tissue regeneration. Any disruption in consecutive stages of neovascularization can lead to chronic wounds or impairment of tissue repair. In the study we try to explain the biological basis of accelerated blood vessels formation in ischemic tissue after adipose tissue-derived stromal cells (ADSCs) administration. Experiments were performed on mouse models of hindlimb ischemia. We have evaluated the level of immune cells (neutrophils, macrophages) infiltration. The novelty of our work was the assessment of bone marrow-derived stem/progenitor cells (BMDCs) infiltration and their contribution to the neovascularization process in ischemic tissue. We have noticed that ADSCs regulated immune response and affected the kinetics and ratio of macrophages population infiltrating ischemic tissue. Our research revealed that ADSCs promoted changes in the morphology of infiltrating macrophages and their tight association with forming blood vessels. We assume that recruited macrophages may take over the role of pericytes and stabilize the new blood vessel or even differentiate into endothelial cells, which in consequence can accelerate vascular formation upon ADSCs administration. Our findings indicate that administration of ADSCs into ischemic muscle influence spatio-temporal distribution of infiltrating cells (macrophages, neutrophils and BMDCs), which are involved in each step of vascular formation, promoting effective ischemic tissue neovascularization.
Collapse
Affiliation(s)
- Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland.
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland
| | - Ewelina Pilny
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland; Department of Organic Chemistry, Biochemistry and Biotechnology, Silesian University of Technology, Księdza Marcina Strzody 9 Street, 44-100, Gliwice, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland
| | - Alina Drzyzga
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland
| | - Łukasz Krakowczyk
- Department of Oncologic and Reconstructive Surgery, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland
| |
Collapse
|
25
|
Bai X, Li J, Li L, Liu M, Liu Y, Cao M, Tao K, Xie S, Hu D. Extracellular Vesicles From Adipose Tissue-Derived Stem Cells Affect Notch-miR148a-3p Axis to Regulate Polarization of Macrophages and Alleviate Sepsis in Mice. Front Immunol 2020; 11:1391. [PMID: 32719678 PMCID: PMC7347748 DOI: 10.3389/fimmu.2020.01391] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) from adipose tissue-derived stem cells have been reported to attenuate lipopolysaccharide (LPS) induced inflammation and sepsis while the specific mechanism is unclear. This study explored the underlying molecular mechanisms of EVs from adipose tissue-derived stem cells in reducing inflammation. LPS- induced macrophage models and mice model were established to mimic inflammation in vitro and in vivo. EVs were extracted from adipose tissue-derived stem cells and identified. It was found that proinflammatory cytokines, including IL-1β, IL-6, and TNF-α, substantially decreased after EVs were applied to LPS-stimulated macrophages and mice, and thus, LPS induced M1 polarization was inhibited and sepsis was strongly alleviated. In the LPS induced macrophages, the expression of Notch signaling molecules and the activation of the NF-κB pathway were substantially decreased after the administration of EVs. Then, RBP-J -/- mice and macrophages were used. It was found that the miR-148a-3p level was significantly lower in the RBP-J -/- macrophages than in the wildtype macrophages. In the LPS induced macrophages, the increasing of miR-148a-3p was milder in the RBP-J -/- macrophages than in the wild type macrophages. Then, miR-148a-3p was overexpressed in macrophages and mice, and we found that the expression of proinflammatory cytokines was increased both in vivo and in vitro. The protective effect of EVs in LPS induced sepsis was diminished by the overexpression of miR-148a-3p. In conclusion, we proved that EVs could attenuate inflammation and further protect organ function by regulating the Notch-miR148a-3p signaling axis and then decreasing macrophage polarization to M1.
Collapse
Affiliation(s)
- Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Junjie Li
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lincheng Li
- Brigade 4, College of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mingchuan Liu
- Brigade 4, College of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mengyuan Cao
- Chinese People's Liberation Army Hospital 961, Qiqihar, China
| | - Ke Tao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Songtao Xie
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
26
|
Skorupa A, Ciszek M, Pilny E, Smolarczyk R, Jarosz-Biej M, Boguszewicz Ł, Krakowczyk Ł, Szala S, Sokół M, Cichoń T. Monitoring of diffusion properties and transverse relaxation time of mouse ischaemic muscle after administration of human mesenchymal stromal cells derived from adipose tissue. Cell Prolif 2019; 52:e12672. [PMID: 31441162 PMCID: PMC6869084 DOI: 10.1111/cpr.12672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
Objectives Application of non‐invasive imaging methods plays an important role in the assessment of cellular therapy effects in peripheral artery disease. The purpose of this work was to evaluate the kinetics of MRI‐derived parameters characterizing ischaemic hindlimb muscle after administration of human mesenchymal stromal cells derived from adipose tissue (hADSC) in mice. Materials and methods MRI experiments were performed on a 9.4T Bruker system. The measurement protocol included transverse relaxation time mapping and diffusion tensor imaging. The monitoring period encompassed 14 days after femoral artery ligation and subsequent cell administration. The effect of hADSC transplantation was compared with the effect of normal human dermal fibroblasts (NHDFs) and phosphate‐buffered saline injection. Results The most significant differences between the hADSC group and the remaining ones were observed around day 3 after ischaemia induction (increased transverse relaxation time in the hADSC group in comparison with the control group) and around day 7 (increased transverse relaxation time and decreased third eigenvalue of the diffusion tensor in the hADSC group in comparison with the control and NHDF groups) at the site of hADSC injection. Histologically, it was associated with increased macrophage infiltration at days 3‐7 and with the presence of small regenerating fibres in the ischaemic tissue at day 7. Conclusions Our results underscore the important role of macrophages in mediating the therapeutic effects of hADSCs and confirm the huge potential of magnetic resonance imaging in monitoring of cellular therapy effects.
Collapse
Affiliation(s)
- Agnieszka Skorupa
- Department of Medical Physics, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Mateusz Ciszek
- Department of Medical Physics, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Ewelina Pilny
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Łukasz Boguszewicz
- Department of Medical Physics, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Łukasz Krakowczyk
- Department of Oncologic and Reconstructive Surgery, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Stanisław Szala
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
27
|
The effect of culture media on large-scale expansion and characteristic of adipose tissue-derived mesenchymal stromal cells. Stem Cell Res Ther 2019; 10:235. [PMID: 31383013 PMCID: PMC6683465 DOI: 10.1186/s13287-019-1331-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/18/2019] [Accepted: 07/07/2019] [Indexed: 12/17/2022] Open
Abstract
Background Adipose tissue-derived mesenchymal stromal cells (ASCs) have been shown to exhibit some promising properties of their use in regenerative medicine as advanced therapy medicinal products (ATMP). However, different sources of their origin, methods of isolation, and expansion procedures cause the laboratory and clinical results difficult to compare. Methods ASCs were isolated from lipoaspirates and cultured in three different medium formulations: αMEM and DMEM as a basal medium supplemented with 10% of human platelet lysate (hPL) and DMEM supplemented with 20% fetal bovine serum (FBS) and bFGF as a gold standard medium. Subsequently, the impact of culture media on ASCs growth kinetics, their morphology and immunophenotype, ability to differentiate, clonogenic potential, and secretion profile was evaluated. Results All cultured ASCs lines showed similar morphology and similar clonogenic potential and have the ability to differentiate into three lines: adipocytes, osteoblasts, and chondroblasts. The immunophenotype of all cultured ASCs was consistent with the guidelines of the International Society for Cell Therapy (ISCT) allowing to define cells as mesenchymal stromal cell (MSC) (≥ 95% CD105, CD73, CD90 and ≤ 2% CD45, CD34, CD14, CD19, HLA-DR). The immunophenotype stabilized after the second passage and did not differ between ASCs cultured in different conditions. The exception was the ASCs grown in the presence of FBS and bFGF, which expressed CD146 antigens. The secretion profile of ASCs cultured in different media was similar. The main secreted cytokine was IL-6, and its level was donor-specific. However, we observed a strong influence of the medium formulation on ASCs growth kinetics. The proliferation rate of ASCs in medium supplemented with hPL was the highest. Conclusions Culture media that do not contain animal-derived antigens (xeno-free) can be used to culture cells defined as MSC. Xeno-free medium is a safe alternative for the production of clinical-grade MSC as an advanced therapy medicinal product. Additionally, in such culture conditions, MSC can be easily expanded in accordance with the Good Manufacturing Process (GMP) requirements to a desired amount of cells for clinical applications.
Collapse
|