1
|
Li M, Zhang L, Guan T, Huang L, Zhu Y, Wen Y, Ma X, Yang X, Wan R, Chen J, Zhang C, Wang F, Tang H, Liu T. Energy stress-activated AMPK phosphorylates Snail1 and suppresses its stability and oncogenic function. Cancer Lett 2024; 595:216987. [PMID: 38815798 DOI: 10.1016/j.canlet.2024.216987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly lethal malignancy with limited therapy options. Aberrant metabolism, a key hallmark of human cancers, plays a crucial role in tumor progression, therapeutic responses and TNBC-related death. However, the underlying mechanisms are not fully understood. In this study, we delineate a previously unrecognized role of aberrant glucose metabolism in regulating the turnover of Snail1, which is a key transcriptional factor of epithelial-mesenchymal transition (EMT) and critically contributes to the acquisition of stemness, metastasis and chemo-resistance. Mechanistically, we demonstrate that AMP-activated protein kinase (AMPK), when activated in response to glucose deprivation, directly phosphorylates Snail1 at Ser11. Such a phosphorylation modification of Snail1 facilitates its recruitment of the E3 ligase FBXO11 and promotes its degradation, thereby suppressing stemness, metastasis and increasing cellular sensitivity to chemotherapies in vitro and in vivo. Clinically, histological analyses reveal a negative correlation between p-AMPKα and Snail1 in TNBC specimens. Taken together, our findings establish a novel mechanism and functional significance of AMPK in linking glucose status to Snail1-dependent malignancies and underscore the potential of AMPK agonists as a promising therapeutic strategy in the management of TNBC.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Litao Zhang
- Department of Breast Surgery, The First Affiliate Hospital of Jinan University, Guangzhou, 510632, China
| | - Tangming Guan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yingjie Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yalei Wen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiuqing Ma
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Rui Wan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jiayi Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Caishi Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Feng Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Hui Tang
- Department of Central Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University Heyuan Shenhe People's Hospital, Heyuan, 517000, China.
| | - Tongzheng Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China; The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
| |
Collapse
|
2
|
Moauro A, Kruger RE, O'Hagan D, Ralston A. Fluorescent Reporters Distinguish Stem Cell Colony Subtypes During Somatic Cell Reprogramming. Cell Reprogram 2022; 24:353-362. [PMID: 36342671 PMCID: PMC9805857 DOI: 10.1089/cell.2022.0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Somatic cell reprogramming was first developed to create induced pluripotent stem (iPS) cells. Since that time, the highly dynamic and heterogeneous nature of the reprogramming process has come to be appreciated. Remarkably, a distinct type of stem cell, called induced extraembryonic endoderm (iXEN) stem cell, is also formed during reprogramming of mouse somatic cells by ectopic expression of the transcription factors, OCT4, SOX2, KLF4, and MYC (OSKM). The mechanisms leading somatic cells to adopt differing stem cell fates are challenging to resolve given that formation of either stem cell type is slow, stochastic, and rare. For these reasons, fluorescent gene expression reporters have provided an invaluable tool for revealing the path from the somatic state to pluripotency. However, no such reporters have been established for comparable studies of iXEN cell formation. In this study, we examined the expression of multiple fluorescent reporters, including Nanog, Oct4, and the endodermal genes, Gata4 and Gata6-alone and in combination, during reprogramming. We show that only simultaneous evaluation of Nanog and Gata4 reliably distinguishes iPS and iXEN cell colonies during reprogramming.
Collapse
Affiliation(s)
- Alexandra Moauro
- Molecular, Cellular and Integrative Physiology Ph.D. Program, Michigan State University, East Lansing, Michigan, USA
- D.O.-Ph.D. Program, Michigan State University, East Lansing, Michigan, USA
| | - Robin E. Kruger
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, Michigan, USA
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - Daniel O'Hagan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Amy Ralston
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|