1
|
Lin HS, Sung PH, Huang SH, Lin WC, Chiang JY, Ma MC, Chen YL, Chen KH, Lee FY, Ko SF, Yip HK. Long term outcomes of intracarotid arterial transfusion of circulatory-derived autologous CD34 + cells for acute ischemic stroke patients-A randomized, open-label, controlled phase II clinical trial. Stem Cell Res Ther 2024; 15:443. [PMID: 39568005 PMCID: PMC11577584 DOI: 10.1186/s13287-024-04021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND This phase II randomized controlled trial tested whether the intracarotid arterial administration (ICAA) of autologous CD34 + cells to patients within 14 ± 7 days after acute ischemic stroke (IS) could be safe and further improve short- and long-term outcomes. METHODS Between January 2018 and March 2022, 28 consecutive patients were equally randomly allocated to the cell-treated group (CD34 + cells/3.0 × 107/patient) or the control group (receiving optimal medical therapy). CD34 + cells were transfused into the ipsilateral brain infarct zone of cell-treated patients via the ICAA in the catheterization room. RESULTS The results demonstrated 100% safety and success rates for the procedure, and no long-term tumorigenesis was observed in cell-treated patients. In cell-treated patients, the angiogenesis capacity of circulating endothelial progenitor cells (EPCs)/Matrigel was significantly greater after treatment than before treatment with granulocyte colony-stimulating factor (all p < 0.001). Blood samples from the right internal jugular vein of the cell-treated patients presented significantly greater levels of the stromal cell-derived factor 1α/EPC at 5, 10 and 30 min compared with 0 min (all p < 0.005). The National Institute of Health Stroke Scale scores were similar upon presentation, but a greater response was observed by Days 30 and 90 in the cell-treated group than in the control group. Tc-99 m brain perfusion was significantly greater at 180 days in the cell-treated group than in the control group (p = 0.046). The combined long-term end points (defined as death/recurrent stroke/or severe disability) were notably lower in the control group compared with the cell-treated group (14.3% vs. 50.0%, p = 0.103). CONCLUSION Intracarotid transfusion of autologous CD34 + cells is safe and might improve long-term outcomes in patients with acute IS. Trial registration ISRCTN, ISRCTN15677760. Registered 23 April 2018- Retrospectively registered, https://doi.org/10.1186/ISRCTN15677760.
Collapse
Affiliation(s)
- Hung-Sheng Lin
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Dapi Road, Niaosung Dist., Kaohsiung City, 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital and, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ming-Chun Ma
- Department of Internal Medicine, Division of Hema-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Dapi Road, Niaosung Dist., Kaohsiung City, 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Fan-Yen Lee
- Department of Surgery, Division of Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Dapi Road, Niaosung Dist., Kaohsiung City, 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
2
|
Rust R, Nih LR, Liberale L, Yin H, El Amki M, Ong LK, Zlokovic BV. Brain repair mechanisms after cell therapy for stroke. Brain 2024; 147:3286-3305. [PMID: 38916992 PMCID: PMC11449145 DOI: 10.1093/brain/awae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Cell-based therapies hold great promise for brain repair after stroke. While accumulating evidence confirms the preclinical and clinical benefits of cell therapies, the underlying mechanisms by which they promote brain repair remain unclear. Here, we briefly review endogenous mechanisms of brain repair after ischaemic stroke and then focus on how different stem and progenitor cell sources can promote brain repair. Specifically, we examine how transplanted cell grafts contribute to improved functional recovery either through direct cell replacement or by stimulating endogenous repair pathways. Additionally, we discuss recently implemented preclinical refinement methods, such as preconditioning, microcarriers, genetic safety switches and universal (immune evasive) cell transplants, as well as the therapeutic potential of these pharmacologic and genetic manipulations to further enhance the efficacy and safety of cell therapies. By gaining a deeper understanding of post-ischaemic repair mechanisms, prospective clinical trials may be further refined to advance post-stroke cell therapy to the clinic.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
| | - Lina R Nih
- Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Lin Kooi Ong
- School of Health and Medical Sciences & Centre for Health Research, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
3
|
Additional benefit of induced pluripotent stem cell-derived mesenchymal stem cell therapy on sepsis syndrome-associated acute kidney injury in rat treated with antibiotic. Stem Cell Res Ther 2021; 12:526. [PMID: 34620235 PMCID: PMC8499569 DOI: 10.1186/s13287-021-02582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study tested whether human induced-pluripotent stem-cell-derived mesenchymal-stem-cells (iPS-MSCs) would offer an additional benefit to the rodent with acute kidney injury (AKI) (ischemia for 1 h followed by reperfusion for 120 h) associated sepsis syndrome (SS) (by cecal-ligation-puncture immediately after AKI-induction) undergoing ciprofloxacin therapy. RESULTS Male-adult SD rats (n = 80) were categorized into group 1 (sham-operated-control, n = 10), group 2 (AKI + SS, n = 24), group 3 (AKI + SS + ciprofloxacin/3 mg/kg, orally for 120 h, n = 12), group 4 (AKI + SS + iPS-MSCs/1.2 × 106/intravenously administered by 3 h after AKI, n = 12), group 5 (AKI + SS + iPS-MSCs/1.2 × 106/intravenously administered by 18 h after AKI, n = 12), group 6 (AKI + SS + iPS-MSCs/1.2 × 106/intravenously administered by 3 h after AKI induction + ciprofloxacin, n = 10] and euthanized by 120 h. The result showed that the mortality was significantly higher in group 2 than in other groups (all p < 0.01). The creatinine level was highest in group 2, lowest in group 1, significantly lower in group 6 than in groups 3, 4 and 5, (all p < 0.0001), but it showed no difference among the latter 3 groups. Flow cytometric analysis showed that the circulatory inflammatory cells (Ly6G/CD11b/c), early (AN-V+/PI-)/late (AN-V+/PI+) apoptosis, and circulatory/splenic immune cells (CD3+/CD4+, CD3+/CD8a+) were highest in group 2, lowest in group 1, significantly lower in group 6 than in groups 3/4/5 and significantly lower in group 4 than in groups 3/5 (all p < 0.0001), but they showed no difference between groups 3/5. Protein expressions of oxidative-stress (NOX-1/NOX2/oxidized protein), apoptotic (cleaved-caspase3/cleaved-PARP/mitochondrial-Bax), fibrotic (TGF-ß/Smad3), inflammatory (MMP-9/IL-6/TNF-α) and autophagic (Atg5/Beclin) biomarkers in kidney exhibited an identical pattern of circulatory inflammatory cells (all p < 0.0001). CONCLUSION Combined iPS-MSCs-ciprofloxacin therapy was superior to either one alone for protecting AKI complicated by SS.
Collapse
|
4
|
Role of Stromal Cell-Derived Factor-1 in Endothelial Progenitor Cell-Mediated Vascular Repair and Regeneration. Tissue Eng Regen Med 2021; 18:747-758. [PMID: 34449064 PMCID: PMC8440704 DOI: 10.1007/s13770-021-00366-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are immature endothelial cells that participate in vascular repair and postnatal neovascularization and provide a novel and promising therapy for the treatment of vascular disease. Studies in different animal models have shown that EPC mobilization through pharmacological agents and autologous EPC transplantation contribute to restoring blood supply and tissue regeneration after ischemic injury. However, these effects of the progenitor cells in clinical studies exhibit mixed results. The therapeutic efficacy of EPCs is closely associated with the number of the progenitor cells recruited into ischemic regions and their functional abilities and survival in injury tissues. In this review, we discussed the regulating role of stromal cell-derived factor-1 (also known CXCL12, SDF-1) in EPC mobilization, recruitment, homing, vascular repair and neovascularization, and analyzed the underlying machemisms of these functions. Application of SDF-1 to improve the regenerative function of EPCs following vascular injury was also discussed. SDF-1 plays a crucial role in mobilizing EPC from bone marrow into peripheral circulation, recruiting the progenitor cells to target tissue and protecting against cell death under pathological conditions; thus improve EPC regenerative capacity. SDF-1 are crucial for regulating EPC regenerative function, and provide a potential target for improve therapeutic efficacy of the progenitor cells in treatment of vascular disease.
Collapse
|
5
|
Yip HK, Lin KC, Sung PH, Chiang JY, Yin TC, Wu RW, Chen KH. Umbilical cord-derived MSC and hyperbaric oxygen therapy effectively protected the brain in rat after acute intracerebral haemorrhage. J Cell Mol Med 2021; 25:5640-5654. [PMID: 33938133 PMCID: PMC8184691 DOI: 10.1111/jcmm.16577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
This study tested the hypothesis that combined therapy with human umbilical cord‐derived mesenchymal stem cells (HUCDMSCs) and hyperbaric oxygen (HBO) was superior to either one on preserving neurological function and reducing brain haemorrhagic volume (BHV) in rat after acute intracerebral haemorrhage (ICH) induced by intracranial injection of collagenase. Adult male SD rats (n = 30) were equally divided into group 1 (sham‐operated control), group 2 (ICH), group 3 (ICH +HUCDMSCs/1.2 × 106 cells/intravenous injection at 3h and days 1 and 2 after ICH), group 4 (ICH +HBO/at 3 hours and days 1 and 2 after ICH) and group 5 (ICH +HUCDMSCs‐HBO), and killed by day 28 after ICH. By day 1, the neurological function was significantly impaired in groups 2‐5 than in group 1 (P < .001), but it did not differ among groups 2 to 5. By days 7, 14 and 28, the integrity of neurological function was highest in group 1, lowest in group 2 and significantly progressively improved from groups 3 to 5 (all P < .001). By day 28, the BHV was lowest in group 1, highest in group 2 and significantly lower in group 5 than in groups 3/4 (all P < .0001). The protein expressions of inflammation (HMGB1/TLR‐2/TLR‐4/MyD88/TRAF6/p‐NF‐κB/IFN‐γ/IL‐1ß/TNF‐α), oxidative stress/autophagy (NOX‐1/NOX‐2/oxidized protein/ratio of LC3B‐II/LC3B‐I) and apoptosis (cleaved‐capspase3/PARP), and cellular expressions of inflammation (CD14+, F4/80+) in brain tissues exhibited an identical pattern, whereas cellular levels of angiogenesis (CD31+/vWF+/small‐vessel number) and number of neurons (NeuN+) exhibited an opposite pattern of BHV among the groups (all P < .0001). These results indicate that combined HUCDMSC‐HBO therapy offered better outcomes after rat ICH.
Collapse
Affiliation(s)
- Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, China
| | - Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Cheng Yin
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Re-Wen Wu
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Zhang XL, Zhang XG, Huang YR, Zheng YY, Ying PJ, Zhang XJ, Lu X, Wang YJ, Zheng GQ. Stem Cell-Based Therapy for Experimental Ischemic Stroke: A Preclinical Systematic Review. Front Cell Neurosci 2021; 15:628908. [PMID: 33935650 PMCID: PMC8079818 DOI: 10.3389/fncel.2021.628908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Stem cell transplantation offers promise in the treatment of ischemic stroke. Here we utilized systematic review, meta-analysis, and meta-regression to study the biological effect of stem cell treatments in animal models of ischemic stroke. A total of 98 eligible publications were included by searching PubMed, EMBASE, and Web of Science from inception to August 1, 2020. There are about 141 comparisons, involving 5,200 animals, that examined the effect of stem cell transplantation on neurological function and infarct volume as primary outcome measures in animal models for stroke. Stem cell-based therapy can improve both neurological function (effect size, −3.37; 95% confidence interval, −3.83 to −2.90) and infarct volume (effect size, −11.37; 95% confidence interval, −12.89 to −9.85) compared with controls. These results suggest that stem cell therapy could improve neurological function deficits and infarct volume, exerting potential neuroprotective effect for experimental ischemic stroke, but further clinical studies are still needed.
Collapse
Affiliation(s)
- Xi-Le Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Guang Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Ran Huang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Yan Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Jie Ying
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Jing Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|