1
|
Siddiqui AA, Peter S, Ngoh EZX, Wang CI, Ng S, Dangerfield JA, Gunzburg WH, Dröge P, Makhija H. A versatile genomic transgenesis platform with enhanced λ integrase for human Expi293F cells. Front Bioeng Biotechnol 2023; 11:1198465. [PMID: 37425360 PMCID: PMC10325659 DOI: 10.3389/fbioe.2023.1198465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Reliable cell-based platforms to test and/or produce biologics in a sustainable manner are important for the biotech industry. Utilizing enhanced λ integrase, a sequence-specific DNA recombinase, we developed a novel transgenesis platform involving a fully characterized single genomic locus as an artificial landing pad for transgene insertion in human Expi293F cells. Importantly, transgene instability and variation in expression were not observed in the absence of selection pressure, thus enabling reliable long-term biotherapeutics testing or production. The artificial landing pad for λ integrase can be targeted with multi-transgene constructs and offers future modularity involving additional genome manipulation tools to generate sequential or nearly seamless insertions. We demonstrated broad utility with expression constructs for anti PD-1 monoclonal antibodies and showed that the orientation of heavy and light chain transcription units profoundly affected antibody expression levels. In addition, we demonstrated encapsulation of our PD-1 platform cells into bio-compatible mini-bioreactors and the continued secretion of antibodies, thus providing a basis for future cell-based applications for more effective and affordable therapies.
Collapse
Affiliation(s)
- Asim Azhar Siddiqui
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sabrina Peter
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eve Zi Xian Ngoh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Cheng-I. Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shirelle Ng
- Austrianova Singapore Pte. Ltd., Singapore, Singapore
| | | | - Walter H. Gunzburg
- Austrianova Singapore Pte. Ltd., Singapore, Singapore
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine, Vienna, Austria
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | |
Collapse
|
2
|
Deol S, Donahue PS, Mitrut RE, Hammitt-Kess IJ, Ahn J, Zhang B, Leonard JN. Comparative Evaluation of Synthetic Cytokines for Enhancing Production and Performance of NK92 Cell-Based Therapies. GEN BIOTECHNOLOGY 2023; 2:228-246. [PMID: 37363412 PMCID: PMC10286265 DOI: 10.1089/genbio.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Off-the shelf immune cell therapies are potentially curative and may offer cost and manufacturing advantages over autologous products, but further development is needed. The NK92 cell line has a natural killer-like phenotype, has efficacy in cancer clinical trials, and is safe after irradiation. However, NK92 cells lose activity post-injection, limiting efficacy. This may be addressed by engineering NK92 cells to express stimulatory factors, and comparative analysis is needed. Thus, we systematically explored the expression of synthetic cytokines for enhancing NK92 cell production and performance. All synthetic cytokines evaluated (membrane-bound IL2 and IL15, and engineered versions of Neoleukin-2/15, IL15, IL12, and decoy resistant IL18) enhanced NK92 cell cytotoxicity. Engineered cells were preferentially expanded by expressing membrane-bound but not soluble synthetic cytokines, without compromising the radiosensitivity required for safety. Some membrane-bound cytokines conferred cell-contact independent paracrine activity, partly attributable to extracellular vesicles. Finally, we characterized interactions within consortia of differently engineered NK92 cells.
Collapse
Affiliation(s)
- Simrita Deol
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Patrick S. Donahue
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Roxana E. Mitrut
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Iva J. Hammitt-Kess
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jihae Ahn
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bin Zhang
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
3
|
Aslan A, Yuka SA. Stem Cell-Based Therapeutic Approaches in Genetic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:19-53. [PMID: 36735185 DOI: 10.1007/5584_2023_761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stem cells, which can self-renew and differentiate into different cell types, have become the keystone of regenerative medicine due to these properties. With the achievement of superior clinical results in the therapeutic approaches of different diseases, the applications of these cells in the treatment of genetic diseases have also come to the fore. Foremost, conventional approaches of stem cells to genetic diseases are the first approaches in this manner, and they have brought safety issues due to immune reactions caused by allogeneic transplantation. To eliminate these safety issues and phenotypic abnormalities caused by genetic defects, firstly, basic genetic engineering practices such as vectors or RNA modulators were combined with stem cell-based therapeutic approaches. However, due to challenges such as immune reactions and inability to target cells effectively in these applications, advanced molecular methods have been adopted in ZFN, TALEN, and CRISPR/Cas genome editing nucleases, which allow modular designs in stem cell-based genetic diseases' therapeutic approaches. Current studies in genetic diseases are in the direction of creating permanent treatment regimens by genomic manipulation of stem cells with differentiation potential through genome editing tools. In this chapter, the stem cell-based therapeutic approaches of various vital genetic diseases were addressed wide range from conventional applications to genome editing tools.
Collapse
Affiliation(s)
- Ayça Aslan
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Selcen Arı Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey.
| |
Collapse
|
4
|
Blanch-Asensio A, Grandela C, Brandão KO, de Korte T, Mei H, Ariyurek Y, Yiangou L, Mol MP, van Meer BJ, Kloet SL, Mummery CL, Davis RP. STRAIGHT-IN enables high-throughput targeting of large DNA payloads in human pluripotent stem cells. CELL REPORTS METHODS 2022; 2:100300. [PMID: 36313798 PMCID: PMC9606106 DOI: 10.1016/j.crmeth.2022.100300] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 07/12/2022] [Accepted: 08/31/2022] [Indexed: 04/20/2023]
Abstract
Inserting large DNA payloads (>10 kb) into specific genomic sites of mammalian cells remains challenging. Applications ranging from synthetic biology to evaluating the pathogenicity of disease-associated variants for precision medicine initiatives would greatly benefit from tools that facilitate this process. Here, we merge the strengths of different classes of site-specific recombinases and combine these with CRISPR-Cas9-mediated homologous recombination to develop a strategy for stringent site-specific replacement of genomic fragments at least 50 kb in size in human induced pluripotent stem cells (hiPSCs). We demonstrate the versatility of STRAIGHT-IN (serine and tyrosine recombinase-assisted integration of genes for high-throughput investigation) by (1) inserting various combinations of fluorescent reporters into hiPSCs to assess the excitation-contraction coupling cascade in derivative cardiomyocytes and (2) simultaneously targeting multiple variants associated with inherited cardiac arrhythmic disorders into a pool of hiPSCs. STRAIGHT-IN offers a precise approach to generate genetically matched panels of hiPSC lines efficiently and cost effectively.
Collapse
Affiliation(s)
- Albert Blanch-Asensio
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Catarina Grandela
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Karina O. Brandão
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Tessa de Korte
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333RC Leiden, the Netherlands
| | - Yavuz Ariyurek
- Leiden Genome Technology Center, Leiden University Medical Center, 2333RC Leiden, the Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Mervyn P.H. Mol
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Berend J. van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Susan L. Kloet
- Leiden Genome Technology Center, Leiden University Medical Center, 2333RC Leiden, the Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, 7500AE Enschede, the Netherlands
| | - Richard P. Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| |
Collapse
|
5
|
Roy S, Peter S, Dröge P. Versatile seamless DNA vector production in E. coli using enhanced phage lambda integrase. PLoS One 2022; 17:e0270173. [PMID: 36149906 PMCID: PMC9506625 DOI: 10.1371/journal.pone.0270173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Seamless DNA vectors derived from bacterial plasmids are devoid of bacterial genetic elements and represent attractive alternatives for biomedical applications including DNA vaccines. Larger scale production of seamless vectors employs engineered Escherichia coli strains in order to enable tightly regulated expression of site-specific DNA recombinases which precisely delete unwanted sequences from bacterial plasmids. As a novel component of a developing lambda integrase genome editing platform, we describe here strain MG1655-ISC as a means to easily produce different scales of seamless vectors, ranging in size from a few hundred base pairs to more than ten kilo base pairs. Since we employed an engineered lambda integrase that is able to efficiently recombine pairs of DNA crossover sites that differ in sequence, the resulting seamless vectors will be useful for subsequent genome editing in higher eukaryotes to accommodate variations in target site sequences. Future inclusion of single cognate sites for other genome targeting systems could enable modularity. These features, together with the demonstrated simplicity of in vivo seamless vector production, add to their utility in the biomedical space.
Collapse
Affiliation(s)
- Suki Roy
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sabrina Peter
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
6
|
Hosur V, Low BE, Wiles MV. Programmable RNA-Guided Large DNA Transgenesis by CRISPR/Cas9 and Site-Specific Integrase Bxb1. Front Bioeng Biotechnol 2022; 10:910151. [PMID: 35866031 PMCID: PMC9294445 DOI: 10.3389/fbioe.2022.910151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
The inability to insert large DNA constructs into the genome efficiently and precisely is a key challenge in genomic engineering. Random transgenesis, which is widely used, lacks precision, and comes with a slew of drawbacks. Lentiviral and adeno-associated viral methods are plagued by, respectively, DNA toxicity and a payload capacity of less than 5 kb. Homology-directed repair (HDR) techniques based on CRISPR-Cas9 can be effective, but only in the 1-5 kb range. In addition, long homology arms-DNA sequences that permit construct insertion-of lengths ranging from 0.5 to 5 kb are required by currently known HDR-based techniques. A potential new method that uses Cas9-guided transposases to insert DNA structures up to 10 kb in length works well in bacteria, but only in bacteria. Surmounting these roadblocks, a new toolkit has recently been developed that combines RNA-guided Cas9 and the site-specific integrase Bxb1 to integrate DNA constructs ranging in length from 5 to 43 kb into mouse zygotes with germline transmission and into human cells. This ground-breaking toolkit will give researchers a valuable resource for developing novel, urgently needed mouse and human induced pluripotent stem cell (hiPSC) models of cancer and other genetic diseases, as well as therapeutic gene integration and biopharmaceutical applications, such as the development of stable cell lines to produce therapeutic protein products.
Collapse
Affiliation(s)
- Vishnu Hosur
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States
| | | | | |
Collapse
|