1
|
Meng Z, Zhong X, Liang D, Ma X, Chen W, He X. MiR-143-5p regulates the proangiogenic potential of human dental pulp stem cells by targeting HIF-1α/RORA under hypoxia: A laboratory investigation in pulp regeneration. Int Endod J 2024; 57:1802-1818. [PMID: 39126298 DOI: 10.1111/iej.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
AIM Angiogenesis is a key event in the successful healing of pulp injuries, and hypoxia is the main stimulator of pulpal angiogenesis. In this study, we investigated the effect of hypoxia on the proangiogenic potential of human dental pulp stem cells (hDPSCs) and the role of miR-143-5p in the process. METHODOLOGY Human dental pulp stem cells were isolated, cultured and characterized in vitro. Cobalt chloride (CoCl2) was used to induce hypoxia in hDPSCs. CCK-8 and Transwell assays were used to determine the effect of hypoxia on hDPSCs proliferation and migration. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting (WB) and ELISA were performed to assess the mRNA and protein levels of HIF-1α and angiogenic cytokines in hDPSCs. The effect of hypoxia on hDPSCs proangiogenic potential was measured in vitro using Matrigel tube formation and chick chorioallantoic membrane (CAM) assays. Recombinant lentiviral vectors were constructed to stably overexpress or inhibit miR-143-5p in hDPSCs, and the proangiogenic effects were assessed using qRT-PCR, WB, and tube formation assays. miR-143-5p target genes were identified and verified using bioinformatics prediction tools, dual-luciferase reporter assays and RNA pull-down experiments. Finally, a subcutaneous transplantation model in nude mice was used to determine the effects of hypoxia treatment and miR-143-5p overexpression/inhibition in hDPSCs in dental pulp regeneration. RESULTS Hypoxia promotes hDPSCs proliferation, migration and proangiogenic potential. The in vivo experiments showed that hypoxia treatment (50 and 100 μM CoCl2) promoted pulp angiogenesis and dentine formation. In contrast to the levels of proangiogenic factors, miR-143-5p levels decreased with increasing CoCl2 concentration. miR-143-5p inhibition significantly promoted proangiogenic potential of hDPSCs, whereas miR-143-5p overexpression inhibited angiogenesis in vitro. Dual-luciferase reporter assay identified retinoic acid receptor-related orphan receptor alpha (RORA) as an miR-143-5p target gene in hDPSCs. RNA pull-down experiments demonstrated that HIF-1α and RORA were pulled down by biotin-labelled miR-143-5p, and the levels of HIF-1α and RORA bound to miR-143-5p in the hypoxia group were lower than those in the normoxia group. Inhibition of miR-143-5p expression in hDPSCs promoted ectopic dental pulp tissue regeneration. CONCLUSIONS CoCl2-induced hypoxia promotes hDPSCs-driven paracrine angiogenesis and pulp regeneration. The inhibition of miR-143-5p upregulates the proangiogenic potential of hDPSCs under hypoxic conditions by directly targeting HIF-1α and RORA.
Collapse
Affiliation(s)
- Zijun Meng
- The Department of Operative Dentistry and Endodontology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyi Zhong
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- General Dental Clinic I, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Dan Liang
- The Department of Operative Dentistry and Endodontology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xuemeng Ma
- Department of Oral Pathology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Wenxia Chen
- The Department of Operative Dentistry and Endodontology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xuan He
- The Department of Operative Dentistry and Endodontology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Liao F, Zhang T, Jiang W, Zhu P, Su X, Zhou N, Huang X. Characterization of the Angiogenic and Proteomic Features of Circulating Exosomes in a Canine Mandibular Model of Distraction Osteogenesis. J Proteome Res 2024; 23:4924-4939. [PMID: 39417529 DOI: 10.1021/acs.jproteome.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Distraction osteogenesis (DO) represents a highly effective method for addressing significant bone defects; however, it necessitates a long treatment period. Exosomes are key mediators of intercellular communication. To investigate their role in the angiogenesis and osteogenesis of DO, we established a canine mandibular DO model with a bone defect (BD) group as the control. Higher levels of angiogenesis were observed in the regenerating tissue from the DO group compared to those from the BD group, accompanied by earlier osteogenesis. Proteomic analysis was performed on circulating exosomes at different phases of the DO using a data-independent acquisition method. Data are available via ProteomeXchange with the identifier PXD050531. The results indicated specific alterations in circulating exosome proteins at different phases of DO, reflecting the regenerative activities in the corresponding tissues. Notably, fibronectin 1 (FN1), thrombospondin 1 (THBS1), and transferrin receptor (TFRC) emerged as potential candidate proteins related to the angiogenic response in DO. Further cellular experiments validated the potential of DO-associated circulating exosomes to promote angiogenesis in endothelial cells. Collectively, these data reveal previously unknown mechanisms that may underlie the efficacy of DO and suggest that exosome-derived proteins may be useful as therapeutic targets for strategies designed to improve DO-related angiogenesis and bone regeneration.
Collapse
Affiliation(s)
- Fengchun Liao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, China
| | - Tao Zhang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, China
| | - Weidong Jiang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200001, China
| | - Peiqi Zhu
- School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai 200072, China
| | - Xiaoping Su
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, China
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, China
| |
Collapse
|
3
|
Hu W, Guo Z, Tang W, Long J. Mechanoresponsive regulation of tissue regeneration during distraction osteogenesis. FASEB J 2024; 38:e70056. [PMID: 39282872 DOI: 10.1096/fj.202401303r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 03/17/2025]
Abstract
Distraction osteogenesis is widely used for bone tissue engineering. Mechanical stimulation plays a central role in the massive tissue regeneration observed during distraction osteogenesis. Although distraction osteogenesis has been a boon for patients with bone defects, we still have limited knowledge about the intrinsic mechanotransduction that converts physical forces into biochemical signals capable of inducing cell behavior changes and new tissue formation. In this review, we summarize the findings for mechanoresponsive factors, including cells, genes, and signaling pathways, during the distraction osteogenesis different phases. These elements function for coupling of osteogenesis and angiogenesis via the Integrin-FAK, TGF-β/BMP, Wnt/β-catenin, Hippo, MAPK, PI3K/Akt, and HIF-1α signaling pathways in a mechanoresponsive niche. The available evidence further suggests the existence of a balance between the epithelial-mesenchymal transition and mesenchymal-epithelial transition under hypoxic stress. We also briefly summarize the current in silico simulation algorithms and propose several future research directions that may advance understanding of distraction osteogenesis in the era of bioinformation, particularly the integration of artificial intelligence models with reliable single-cell RNA sequencing datasets. The objective of this review is to utilize established knowledge to further optimize existing distraction protocols and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Wenzhong Hu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City, China
| | - Zeyou Guo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City, China
| | - Weibing Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City, China
| | - Jie Long
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City, China
| |
Collapse
|
4
|
Tien T, Wu Y, Chang C, Hung C, Lee Y, Lee H, Chou Y, Lin C, Lee C, Su C, Yeh H. Hsa-miR-134-5p predicts cardiovascular risk in circulating mononuclear cells and improves angiogenic action of senescent endothelial progenitor cells. J Cell Mol Med 2024; 28:e18523. [PMID: 38957039 PMCID: PMC11220343 DOI: 10.1111/jcmm.18523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024] Open
Abstract
This research explores the role of microRNA in senescence of human endothelial progenitor cells (EPCs) induced by replication. Hsa-miR-134-5p was found up-regulated in senescent EPCs where overexpression improved angiogenic activity. Hsa-miR-134-5p, which targeted transforming growth factor β-activated kinase 1-binding protein 1 (TAB1) gene, down-regulated TAB1 protein, and inhibited phosphorylation of p38 mitogen-activated protein kinase (p38) in hsa-miR-134-5p-overexpressed senescent EPCs. Treatment with siRNA specific to TAB1 (TAB1si) down-regulated TAB1 protein and subsequently inhibited p38 activation in senescent EPCs. Treatment with TAB1si and p38 inhibitor, respectively, showed angiogenic improvement. In parallel, transforming growth factor Beta 1 (TGF-β1) was down-regulated in hsa-miR-134-5p-overexpressed senescent EPCs and addition of TGF-β1 suppressed the angiogenic improvement. Analysis of peripheral blood mononuclear cells (PBMCs) disclosed expression levels of hsa-miR-134-5p altered in adult life, reaching a peak before 65 years, and then falling in advanced age. Calculation of the Framingham risk score showed the score inversely correlates with the hsa-miR-134-5p expression level. In summary, hsa-miR-134-5p is involved in the regulation of senescence-related change of angiogenic activity via TAB1-p38 signalling and via TGF-β1 reduction. Hsa-miR-134-5p has a potential cellular rejuvenation effect in human senescent EPCs. Detection of human PBMC-derived hsa-miR-134-5p predicts cardiovascular risk.
Collapse
Affiliation(s)
- Ting‐Yi Tien
- Department of Medical ResearchMackay Memorial HospitalTaipeiTaiwan
- MacKay Junior College of Medicine, Nursing and ManagementTaipeiTaiwan
| | - Yih‐Jer Wu
- Division of Cardiology/Cardiovascular CenterMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Chiung‐Yin Chang
- Department of Medical ResearchMackay Memorial HospitalTaipeiTaiwan
| | - Chung‐Lieh Hung
- Division of Cardiology/Cardiovascular CenterMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Yi‐Nan Lee
- Department of Medical ResearchMackay Memorial HospitalTaipeiTaiwan
| | - Hsin‐I Lee
- Department of Medical ResearchMackay Memorial HospitalTaipeiTaiwan
| | - Yen‐Hung Chou
- Department of Medical ResearchMackay Memorial HospitalTaipeiTaiwan
| | - Chao‐Feng Lin
- Division of Cardiology/Cardiovascular CenterMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Chun‐Wei Lee
- MacKay Junior College of Medicine, Nursing and ManagementTaipeiTaiwan
- Division of Cardiology/Cardiovascular CenterMacKay Memorial HospitalTaipeiTaiwan
| | - Cheng‐Huang Su
- Division of Cardiology/Cardiovascular CenterMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Hung‐I Yeh
- Division of Cardiology/Cardiovascular CenterMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| |
Collapse
|
5
|
Li S, Wu H, Wang F, Kong L, Yu Y, Zuo R, Zhao H, Xu J, Kang Q. Enhanced Bone Regeneration through Regulation of Mechanoresponsive FAK-ERK1/2 Signaling by ZINC40099027 during Distraction Osteogenesis. Int J Med Sci 2024; 21:137-150. [PMID: 38164350 PMCID: PMC10750334 DOI: 10.7150/ijms.88298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/21/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Focal adhesion kinase (FAK) is activated by mechanical stimulation and plays a vital role in distraction osteogenesis (DO), a well-established but lengthy procedure for repairing large bone defects. Both angiogenesis and osteogenesis contribute to bone regeneration during DO. However, the effects of ZINC40099027 (ZN27), a potent FAK activator, on angiogenesis, osteogenesis, and bone regeneration in DO remain unknown. Methods: The angiogenic potential of human umbilical vein endothelial cells (HUVECs) was evaluated using transwell migration and tube formation assays. The osteogenic activity of bone marrow mesenchymal stem cells (BMSCs) was assessed using alkaline phosphatase (ALP) and alizarin red s (ARS) staining. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and immunofluorescence staining were used to assay angiogenic markers, osteogenic markers, and FAK-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. In vivo, a rat tibia DO model was established to verify the effects of ZN27 on neovascularization and bone regeneration using radiological and histological analyses. Results: ZN27 promoted the migration and angiogenesis of HUVECs. Additionally, ZN27 facilitated the osteogenic differentiation of BMSCs, as revealed by increased ALP activity, calcium deposition, and expression of osteogenesis-specific markers. The ERK1/2-specific inhibitor PD98059 significantly hindered the effects of ZN27, suggesting the participation of FAK-ERK1/2 signaling in ZN27-enhanced angiogenesis and osteogenesis. As indicated by improved radiological and histological features, ZN27 induced active angiogenesis within the distraction area and accelerated bone regeneration in a rat DO model. Conclusion: Our results show that ZN27 targets FAK-ERK1/2 signaling to stimulate both angiogenesis and osteogenesis, and ZN27 accelerates bone regeneration in DO, suggesting the therapeutic potential of ZN27 for repairing large bone defects in the mechanobiological environment during DO.
Collapse
Affiliation(s)
- Shanyu Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hongxiao Wu
- Department of Orthopedics, Dongying People's Hospital, Dongying, Shandong, PR China
| | - Feng Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lingchi Kong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yifan Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Rongtai Zuo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Haoyu Zhao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jia Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
6
|
Shi C, Jiao P, Chen Z, Ma L, Yao S. Exploring the roles of noncoding RNAs in craniofacial abnormalities: A systematic review. Dev Biol 2024; 505:75-84. [PMID: 37923186 DOI: 10.1016/j.ydbio.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Congenital craniofacial abnormalities are congenital anomalies of variable expressivity and severity with a recognizable set of abnormalities, which are derived from five identifiable primordial structures. They can occur unilaterally or bilaterally and include various malformations such as cleft lip with/without palate, craniosynostosis, and craniofacial microsomia. To date, the molecular etiology of craniofacial abnormalities is largely unknown. Noncoding RNAs (ncRNAs), including microRNAs, long ncRNAs, circular RNAs and PIWI-interacting RNAs, function as major regulators of cellular epigenetic hallmarks via regulation of various molecular and cellular processes. Recently, aberrant expression of ncRNAs has been implicated in many diseases, including craniofacial abnormalities. Consequently, this review focuses on the role and mechanism of ncRNAs in regulating craniofacial development in the hope of providing clues to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Cheng Shi
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, 215000, China; Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Pengfei Jiao
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, 215000, China
| | - Zhiyi Chen
- Suzhou Stomatological Hospital, Suzhou, 215000, China
| | - Lan Ma
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China.
| | - Siyue Yao
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, 215000, China.
| |
Collapse
|
7
|
Varvil MS, dos Santos AP. A review on microRNA detection and expression studies in dogs. Front Vet Sci 2023; 10:1261085. [PMID: 37869503 PMCID: PMC10585042 DOI: 10.3389/fvets.2023.1261085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function by post-transcriptional regulation of gene expression. Their stability and abundance in tissue and body fluids makes them promising potential tools for both the diagnosis and prognosis of diseases and attractive therapeutic targets in humans and dogs. Studies of miRNA expression in normal and disease processes in dogs are scarce compared to studies published on miRNA expression in human disease. In this literature review, we identified 461 peer-reviewed papers from database searches using the terms "canine," "dog," "miRNA," and "microRNA"; we screened 244 for inclusion criteria and then included a total of 148 original research peer-reviewed publications relating to specific miRNA expression in canine samples. We found an overlap of miRNA expression changes between the four groups evaluated (normal processes, non-infectious and non-inflammatory conditions, infectious and/or inflammatory conditions, and neoplasia) in 39 miRNAs, 83 miRNAs in three of the four groups, 110 miRNAs in two of the three groups, where 158 miRNAs have only been reported in one of the groups. Additionally, the mechanism of action of these overlapping miRNAs varies depending on the disease process, elucidating a need for characterization of the mechanism of action of each miRNA in each disease process being evaluated. Herein we also draw attention to the lack of standardization of miRNA evaluation, consistency within a single evaluation method, and the need for standardized methods for a direct comparison.
Collapse
Affiliation(s)
- Mara S. Varvil
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, United States
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
8
|
Jin L, Long Y, Zhang Q, Long J. MiRNAs regulate cell communication in osteogenesis-angiogenesis coupling during bone regeneration. Mol Biol Rep 2023; 50:8715-8728. [PMID: 37642761 DOI: 10.1007/s11033-023-08709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Bone regeneration is a complex process that requires not only the participation of multiple cell types, but also signal communication between cells. The two basic processes of osteogenesis and angiogenesis are closely related to bone regeneration and bone homeostasis. H-type vessels are a subtype of bone vessels characterized by high expression of CD31 and EMCN. These vessels play a key role in the regulation of bone regeneration and are important mediators of coupling between osteogenesis and angiogenesis. Molecular regulation between different cell types is important for coordination of osteogenesis and angiogenesis that promotes bone regeneration. MiRNAs are small non-coding RNAs that predominantly regulate gene expression at the post-transcriptional level and are closely related to cell communication. Specifically, miRNAs transduce external stimuli through various cell signaling pathways and cause a series of physiological and pathological effects. They are also deeply involved in the bone repair process. This review focuses on three signaling pathways related to osteogenesis-angiogenesis coupling, as well as the miRNAs involved in these pathways. Elucidation of the molecular mechanisms governing osteogenesis and angiogenesis is of great significance for bone regeneration.
Collapse
Affiliation(s)
- Liangyu Jin
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, PR China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China
| | - Yifei Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China
| | - Qiuling Zhang
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, PR China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China
| | - Jie Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China.
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, PR China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
9
|
Huang X, Li Z, Zhang L, Yang Y, Wang Y, Li S, Li G, Feng H, Yang X. miR-205-5p inhibits homocysteine-induced pulmonary microvascular endothelium dysfunction by targeting FOXO1. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1456-1466. [PMID: 37491880 PMCID: PMC10520487 DOI: 10.3724/abbs.2023127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/31/2023] [Indexed: 07/27/2023] Open
Abstract
Homocysteine (Hcy) is a risk factor for multiple chronic diseases, and vascular endothelial cell injury has been regarded as the initiating step for this process. miRNAs are involved in Hcy-induced endothelial dysfunction, while the underlying mechanism and roles of miRNAs in pulmonary endothelial dysfunction induced by homocysteine are unknown. Here, we find that miR-205-5p alleviates pulmonary endothelial dysfunction by targeting FOXO1 in CBS +/‒ mice to protect against Hcy-induced pulmonary endothelial dysfunction. Mechanistically, we show that Hcy can lead to DNA hypermethylation of the miR-205-5p promoter due to the increased binding of DNMT1 to its promoter, which contributes to reduction of miR-205-5p expression. In summary, miR-205-5p promoter hypermethylation causes downregulation of miR-205-5p expression, resulting in a reduction in miR-205-5p binding to FOXO1 during homocysteine-induced pulmonary endothelial dysfunction. Our data indicate that miR-205-5p may be a potential therapeutic target against Hcy-induced pulmonary injury.
Collapse
Affiliation(s)
- Xiaobo Huang
- Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Ningxia Medical University (The First People′s Hospital of Yinchuan)Yinchuan750001China
| | - Zhen Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Ling Zhang
- Department of PathologyPeople’s Hospital of Ningxia Hui Autonomous RegionYinchuan750004China
| | - Yali Yang
- Department of PathologyGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Yanjia Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | - Sirui Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | | | - Xiaoling Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| |
Collapse
|
10
|
Han Z, He X, Feng Y, Jiang W, Zhou N, Huang X. Hsp20 Promotes Endothelial Progenitor Cell Angiogenesis via Activation of PI3K/Akt Signaling Pathway under Hypoxia. Tissue Eng Regen Med 2022; 19:1251-1266. [PMID: 36042130 PMCID: PMC9679071 DOI: 10.1007/s13770-022-00481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Mandibular distraction osteogenesis (MDO) is a kind of endogenous tissue engineering technology that lengthens the jaw and opens airway so that a patient can breathe safely and comfortably on his or her own. Endothelial progenitor cells (EPCs) are crucial for MDO-related angiogenesis. Moreover, emerging evidence suggests that heat shock protein 20 (Hsp20) modulates angiogenesis under hypoxic conditions. However, the specific role of Hsp20 in EPCs, in the context of MDO, is not yet known. The aim of this study was to explore the expression of Hsp20 during MDO and the effects of Hsp20 on EPCs under hypoxia. METHODS Mandibular distraction osteogenesis and mandibular bone defect (MBD) canine model were established. The expression of CD34, CD133, HIF-1α, and Hsp20 in callus was detected by immunofluorescence on day 14 after surgery. Canine bone marrow EPCs were cultured, with or without optimal cobalt chloride (CoCl2) concentration. Hypoxic effects, caused by CoCl2, were evaluated by means of the cell cycle, cell apoptosis, transwell cell migration, and tube formation assays. The Hsp20/KDR/PI3K/Akt expression levels were evaluated via immunofluorescence, RT-qPCR, and western blot. Next, EPCs were incorporated with either Hsp20-overexpression or Hsp20-siRNA lentivirus. The resulting effects were evaluated as described above. RESULTS CD34, CD133, HIF-1α, and Hsp20 were displayed more positive in the callus of MDO compared with MBD. In addition, hypoxic conditions, generated by 0.1 mM CoCl2, in canine EPCs, accelerated cell proliferation, migration, tube formation, and Hsp20 expression. Hsp20 overexpression in EPCs significantly stimulated cell proliferation, migration, and tube formation, whereas Hsp20 inhibition produced the opposite effect. Additionally, the molecular mechanism was partly dependent on the KDR/PI3K/Akt pathway. CONCLUSION In summary, herein, we present a novel mechanism of Hsp20-mediated regulation of canine EPCs via Akt activation in a hypoxic microenvironment.
Collapse
Affiliation(s)
- Zhiqi Han
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China
| | - Xuan He
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuan Feng
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China
| | - Weidong Jiang
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China
| | - Nuo Zhou
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China.
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China.
| | - Xuanping Huang
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China.
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
11
|
Liao F, Liao Z, Zhang T, Jiang W, Zhu P, Zhao Z, Shi H, Zhao D, Zhou N, Huang X. ECFC-derived exosomal THBS1 mediates angiogenesis and osteogenesis in distraction osteogenesis via the PI3K/AKT/ERK pathway. J Orthop Translat 2022; 37:12-22. [PMID: 36196150 PMCID: PMC9513111 DOI: 10.1016/j.jot.2022.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Distraction osteogenesis (DO) is a widely used bone regenerative technique. However, the DO process is slow, and the consolidation phase is long. Therefore, it is of great clinical significance to explore the mechanism of DO, and shorten its duration. Recent studies reported that stem cell exosomes may play an important role in promoting angiogenesis related to DO, but the mechanism remains unclear. Methods Canine endothelial colony-forming cells (ECFCs) were isolated and cultured, and the expression of THBS1 in canine ECFCs were inhibited using a lentiviral vector. The exosomes secreted by canine ECFCs were isolated and extracted, and the effect of exosomes on the angiogenic activity of Human umbilical vein endothelial cells (HUVECs) was detected by proliferation, migration, and tube formation experiments. WB and qRT-PCR were used to explore the effects and mechanisms of THBS1-mediated ECFC-Exos on HUVECs angiogenesis. Then, a mandibular distraction osteogenesis (MDO) model was established in adult male beagles, and exosomes were injected into the canine peripheral blood. Micro-CT, H&E, Masson, and IHC staining were used to explore the effects and mechanisms of THBS1-mediated ECFC-Exos on angiogenesis and osteogenesis in the DO area. Results ECFC-Exo accelerated HUVECs proliferation, migration and tube formation, and this ability was enhanced by inhibiting the expression of THBS1 in ECFC-Exo. Using Western blot-mediated detection, we demonstrated that inhibiting THBS1 expression in ECFCs-Exo activated PI3K, AKT, and ERK phosphorylation levels in HUVECs, which promoted VEGF and bFGF expressions. In the DO model of the canine mandible, ECFCs-Exo injected into the peripheral blood aggregated into the DO gap, thus promoting angiogenesis and bone formation in the DO tissue by reducing THBS1 expression in ECFC-Exo. Conclusion Our findings suggested that ECFC-Exos markedly enhances angiogenesis of endothelial cells, and promotes bone healing in canine MDO. Thus, THBS1 plays a crucial role in the ECFC-Exos-mediated regulation of canine MDO angiogenesis and bone remodeling. The translational potential of this article This study reveals that the angiogenic promotion via THBS1 suppression in ECFC-Exos may be a promising strategy for shortening the DO duration.
Collapse
Affiliation(s)
- Fengchun Liao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Ziqi Liao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Tao Zhang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Weidong Jiang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Peiqi Zhu
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Zhenchen Zhao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Henglei Shi
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Dan Zhao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
- Corresponding author. Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
- Corresponding author. Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China.
| |
Collapse
|
12
|
Shen H, Jiang W, Yu Y, Feng Y, Zhang T, Liu Y, Guo L, Zhou N, Huang X. microRNA-146a mediates distraction osteogenesis via bone mesenchymal stem cell inflammatory response. Acta Histochem 2022; 124:151913. [PMID: 35759812 DOI: 10.1016/j.acthis.2022.151913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
Distraction osteogenesis (DO) is a widely used surgical technique to repair bone defects, partly owing to its high efficiency in inducing osteogenesis; however, the process of osteogenesis is complex, and the precise mechanism is still unclear. Among the factors identified for an effective DO procedure, well-controlled inflammation is essential. We aimed to explore how microRNA(miR)-146a, a negative regulator of inflammation, influences osteogenesis in DO. First, we established canine right mandibular DO and bone fracture models to evaluate the expression level of miR-146a in response to these procedures. Second, bone marrow mesenchymal stem cells (BMSCs) were isolated from healthy puppies and cultured with lipopolysaccharide (LPS) to observe how inflammation affects osteogenesis. Finally, the osteogenesis activity of BMSCs transfected with lentiviral vector either overexpressing (miR-146a-up) or inhibited for miR-146a expression was evaluated. miR-146a-up-transfected BMSCs were injected locally into the distraction gaps of the DO model canines. On days 42 and 56 post-surgery, the bone volume/tissue volume and bone mineral density values were evaluated via using micro-computed tomography, and newly formed tissues were harvested and evaluated via histological staining. The expression of miR-146a in both the DO canine model and LPS-stimulated BMSCs increased. Overexpression of miR-146a enhanced cell proliferation, migration, and osteogenic differentiation. Additionally, the newly formed callus was improved in canine mandibles injected with miR-146a-up-transfected BMSCs. In summary, miR-146a regulates mandibular DO by improving osteogenesis, and can serve as a potential target to shorten the therapy period of DO.
Collapse
Affiliation(s)
- Huijuan Shen
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Weidong Jiang
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Yangyang Yu
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Yuan Feng
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Tao Zhang
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Yan Liu
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Lina Guo
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Nuo Zhou
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China.
| | - Xuanping Huang
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China.
| |
Collapse
|
13
|
Shi H, Zhao Z, Jiang W, Zhu P, Zhou N, Huang X. A Review Into the Insights of the Role of Endothelial Progenitor Cells on Bone Biology. Front Cell Dev Biol 2022; 10:878697. [PMID: 35686054 PMCID: PMC9173585 DOI: 10.3389/fcell.2022.878697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
In addition to its important transport functions, the skeletal system is involved in complex biological activities for the regulation of blood vessels. Endothelial progenitor cells (EPCs), as stem cells of endothelial cells (ECs), possess an effective proliferative capacity and a powerful angiogenic capacity prior to their differentiation. They demonstrate synergistic effects to promote bone regeneration and vascularization more effectively by co-culturing with multiple cells. EPCs demonstrate a significant therapeutic potential for the treatment of various bone diseases by secreting a combination of growth factors, regulating cellular functions, and promoting bone regeneration. In this review, we retrospect the definition and properties of EPCs, their interaction with mesenchymal stem cells, ECs, smooth muscle cells, and immune cells in bone regeneration, vascularization, and immunity, summarizing their mechanism of action and contribution to bone biology. Additionally, we generalized their role and potential mechanisms in the treatment of various bone diseases, possibly indicating their clinical application.
Collapse
Affiliation(s)
- Henglei Shi
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Zhenchen Zhao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Weidong Jiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Peiqi Zhu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| |
Collapse
|
14
|
Zhang T, Jiang W, Liao F, Zhu P, Guo L, Zhao Z, Liu Y, Huang X, Zhou N. Identification of the key exosomal lncRNAs/mRNAs in the serum during distraction osteogenesis. J Orthop Surg Res 2022; 17:291. [PMID: 35643547 PMCID: PMC9148531 DOI: 10.1186/s13018-022-03163-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Distraction osteogenesis (DO), a kind of bone regenerative process, is not only extremely effective, but the osteogenesis rate is far beyond ordinary bone fracture (BF) healing. Exosomes (Exo) are thought to play a part in bone regeneration and healing as key players in cell-to-cell contact. The object of this work was to determine whether exosomes derived from DO and BF serum could stimulate the Osteogenic Differentiation in these two processes, and if so, which genes could be involved. Methods The osteogenesis in DO-gap or BF-gap was evaluated using radiographic analysis and histological analysis. On the 14th postoperative day, DO-Exos and BF-Exos were isolated and cocultured with the jaw of bone marrow mesenchymal stem cells (JBMMSCs). Proliferation, migration and osteogenic differentiation of JBMMSCs were ascertained, after which exosomes RNA-seq was performed to identify the relevant gene. Results Radiographic and histological analyses manifested that osteogenesis was remarkably accelerated in DO-gap in comparison with BF-gap. Both of the two types of Exos were taken up by JBMMSCs, and their migration and osteogenic differentiation were also seen to improve. However, the proliferation showed no significant difference. Finally, exosome RNA-seq revealed that the lncRNA MSTRG.532277.1 and the mRNA F-box and leucine-rich repeat protein 14(FBXL14) may play a key role in DO. Conclusions Our findings suggest that exosomes from serum exert a critical effect on the rapid osteogenesis in DO. This promoting effect might have relevance with the co-expression of MSTRG.532277.1 and FBXL14. On the whole, these findings provide new insights into bone regeneration, thereby outlining possible therapeutic targets for clinical intervention.
Collapse
|
15
|
Kennedy DC, Coen B, Wheatley AM, McCullagh KJA. Microvascular Experimentation in the Chick Chorioallantoic Membrane as a Model for Screening Angiogenic Agents including from Gene-Modified Cells. Int J Mol Sci 2021; 23:452. [PMID: 35008876 PMCID: PMC8745510 DOI: 10.3390/ijms23010452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The chick chorioallantoic membrane (CAM) assay model of angiogenesis has been highlighted as a relatively quick, low cost and effective model for the study of pro-angiogenic and anti-angiogenic factors. The chick CAM is a highly vascularised extraembryonic membrane which functions for gas exchange, nutrient exchange and waste removal for the growing chick embryo. It is beneficial as it can function as a treatment screening tool, which bridges the gap between cell based in vitro studies and in vivo animal experimentation. In this review, we explore the benefits and drawbacks of the CAM assay to study microcirculation, by the investigation of each distinct stage of the CAM assay procedure, including cultivation techniques, treatment applications and methods of determining an angiogenic response using this assay. We detail the angiogenic effect of treatments, including drugs, metabolites, genes and cells used in conjunction with the CAM assay, while also highlighting the testing of genetically modified cells. We also present a detailed exploration of the advantages and limitations of different CAM analysis techniques, including visual assessment, histological and molecular analysis along with vascular casting methods and live blood flow observations.
Collapse
Affiliation(s)
| | | | - Antony M. Wheatley
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| | - Karl J. A. McCullagh
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| |
Collapse
|
16
|
Jiang W, Zhu P, Huang F, Zhao Z, Zhang T, An X, Liao F, Guo L, Liu Y, Zhou N, Huang X. The RNA Methyltransferase METTL3 Promotes Endothelial Progenitor Cell Angiogenesis in Mandibular Distraction Osteogenesis via the PI3K/AKT Pathway. Front Cell Dev Biol 2021; 9:720925. [PMID: 34790657 PMCID: PMC8591310 DOI: 10.3389/fcell.2021.720925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023] Open
Abstract
Distraction osteogenesis (DO) is used to treat large bone defects in the field of oral and maxillofacial surgery. Successful DO-mediated bone regeneration is dependent upon angiogenesis, and endothelial progenitor cells (EPCs) are key mediators of angiogenic processes. The N6-methyladenosine (m6A) methyltransferase has been identified as an important regulator of diverse biological processes, but its role in EPC-mediated angiogenesis during DO remains to be clarified. In the present study, we found that the level of m6A modification was significantly elevated during the process of DO and that it was also increased in the context of EPC angiogenesis under hypoxic conditions, which was characterized by increased METTL3 levels. After knocking down METTL3 in EPCs, m6A RNA methylation, proliferation, tube formation, migration, and chicken embryo chorioallantoic membrane (CAM) angiogenic activity were inhibited, whereas the opposite was observed upon the overexpression of METTL3. Mechanistically, METTL3 silencing reduced the levels of VEGF and PI3Kp110 as well as the phosphorylation of AKT, whereas METTL3 overexpression reduced these levels. SC79-mediated AKT phosphorylation was also able to restore the angiogenic capabilities of METTL3-deficient EPCs in vitro and ex vivo. In vivo, METTL3-overexpressing EPCs were additionally transplanted into the DO callus, significantly enhancing bone regeneration as evidenced by improved radiological and histological manifestations in a canine mandibular DO model after consolidation over a 4-week period. Overall, these results indicate that METTL3 accelerates bone regeneration during DO by enhancing EPC angiogenesis via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Weidong Jiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Peiqi Zhu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Fangfang Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Zhenchen Zhao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Tao Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Xiaoning An
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Fengchun Liao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Lina Guo
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Yan Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| |
Collapse
|
17
|
Panax notoginseng Saponin Promotes Bone Regeneration in Distraction Osteogenesis via the TGF- β1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2895659. [PMID: 34721625 PMCID: PMC8553434 DOI: 10.1155/2021/2895659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/04/2021] [Indexed: 01/17/2023]
Abstract
Distraction osteogenesis (DO) is an efficient strategy that is employed for the treatment of large bone defects in craniomaxillofacial surgery. Despite its utility, however, DO is associated with a prolonged consolidation phase and a high complication rate that hinder its more widespread utilization. Panax notoginseng saponin (PNS) is a traditional Chinese medicine that is frequently administered for the treatment of a range of conditions. Herein, we explored the ability of PNS treatment to influence osteogenic differentiation using both rabbit bone marrow mesenchymal cells (BMSCs) and a model of mandibular DO. BMSC proliferation was assessed via CCK-8 assay, while osteogenic differentiation was monitored through ALP and alizarin red S staining. A PCR approach was used to evaluate the expression of genes associated with osteogenesis (ALP, Runx2, and OCN) and genes linked to the TGF pathway (TβR-II, SMAD2, SMAD3, and PPM1A). For in vivo experiments, treated BMSCs were locally injected into the DO gap, with PNS being injected into treated rabbits every other day throughout the experimental period. The quality of the regenerative process was assessed via scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray imaging, and hematoxylin and eosin (H&E) staining. These analyses revealed that PNS was able to promote BMSC osteogenesis and mandibular generation, driving the upregulation of osteogenesis-related genes at the mRNA levels through the modulation of the TGF-β1/Smad pathway. Consistently, the overexpression or silencing of TβR-II in PNS-treated BMSCs was sufficient to modulate their osteogenic potential. Analyses of in vivo mandibular DO outcomes revealed significantly augmented new bone growth in the PNS-treated group relative to control animals, with maximal osteogenesis in the group overexpressing rabbit TβR-II. Together, these results highlight the PNS as a promising and cost-effective therapeutic tool with the potential to enhance bone regeneration in clinical contexts through the modulation of the TGF-β1/Smad pathway.
Collapse
|