1
|
Bhandare SD, Malode SS. Cytotoxic activity of isoquinoline alkaloids and herbal extracts from selected plants against human cancer cell lines: harnessing the research potential in cancer drug discovery with modern scientific trends and technology. Toxicol Res (Camb) 2023; 12:1034-1040. [PMID: 38145094 PMCID: PMC10734601 DOI: 10.1093/toxres/tfad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/28/2023] [Accepted: 11/05/2023] [Indexed: 12/26/2023] Open
Abstract
The increasing prevalence of cancer has led to a growing interest in alternative medicine methods and treatments. This study aimed to assess the cytotoxicity of isoquinoline alkaloids and herbal extracts from selected plants against human cancer cell lines, including melanoma and squamous cell carcinoma. The investigation involved in vitro cell viability assays using various cancer cell lines and normal skin fibroblasts as control cells. Additionally, a zebrafish model was employed for in vivo evaluation of cytotoxic activity. The results indicated that the tested alkaloids and extracts exhibited promising cytotoxic effects, showing higher potency than standard chemotherapeutic drugs. In comparison, these findings support the exploration of isoquinoline alkaloids and herbal extracts as potential candidates for developing novel anti-melanoma and anti-squamous cell carcinoma drugs. The primary inclusion criterion that was taken into consideration in this study effort was the therapeutic application of the cytotoxic effects of specific plant-based pharmacological components or chemicals produced from herbal extracts that are ordinarily cytotoxic.
Collapse
Affiliation(s)
- Saurabh Dilip Bhandare
- Nashik Gramin Shikshan Prasarak Mandal’s College of Pharmacy, Bramha Valley Educational Campus, Anjaneri, Trambakeshwar, Trambak Road, Nashik, Maharashtra 422213, India
| | - Sarika Shivaji Malode
- Nashik Gramin Shikshan Prasarak Mandal’s College of Pharmacy, Bramha Valley Educational Campus, Anjaneri, Trambakeshwar, Trambak Road, Nashik, Maharashtra 422213, India
| |
Collapse
|
2
|
Wang W, Zhang M, Ren X, Song Y, Xu Y, Zhuang K, Xiao T, Guo X, Wang S, Hong Q, Feng Z, Chen X, Cai G. Single-cell dissection of cellular and molecular features underlying mesenchymal stem cell therapy in ischemic acute kidney injury. Mol Ther 2023; 31:3067-3083. [PMID: 37533253 PMCID: PMC10556187 DOI: 10.1016/j.ymthe.2023.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) exert beneficial therapeutic effects in acute kidney injury (AKI), while the detailed repair mechanism remains unclear. Herein, we probed the underlying mechanisms of MSC therapy in AKI by performing unbiased single-cell RNA sequencing in IRI model with/without MSC treatment. Our analyses uncovered the tubular epithelial cells (TECs) and immune cells transcriptomic diversity and highlighted a repair trajectory involving renal stem/progenitor cell differentiation. Our findings also suggested that profibrotic TECs expressing pro-fibrotic factors such as Zeb2 and Pdgfb promoted the recruitment of inflammatory monocytes and Th17 cells to injured kidney tissue, inducing TGF-β1 secretion and renal fibrosis. Finally, in addition to activating the repair properties of renal progenitor/stem cells, we uncovered a role for MSC-derived miR-26a-5p in mediating the therapeutic effects of MSCs by inhibiting Zeb2 expression and suppressing pro-fibrotic TECs and its subsequent recruitment of immune cell subpopulations. These findings may help to optimize future AKI treatment strategies.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Min Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xuejing Ren
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Key Laboratory of Kidney Disease and Immunology, Academy of Medical Sciences, Zhengzhou, Henan 450001, China
| | - Yanqi Song
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yue Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Kaiting Zhuang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Tuo Xiao
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xinru Guo
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Siyang Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Zhe Feng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| | - Guangyan Cai
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| |
Collapse
|
3
|
Zhou Q, Jiang L, Su T, Liu G, Yang L. Overview of aristolochic acid nephropathy: an update. Kidney Res Clin Pract 2023; 42:579-590. [PMID: 37448287 PMCID: PMC10565449 DOI: 10.23876/j.krcp.22.211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/31/2022] [Accepted: 01/16/2023] [Indexed: 07/15/2023] Open
Abstract
Aristolochic acid nephropathy (AAN) is a rapidly progressive renal interstitial fibrosis caused by medical or environmental exposure to aristolochic acid (AA). Since the outbreak of AAN in Belgium was reported nearly 30 years ago, the safety of herbal remedies has drawn considerable attention, and AAN has become a global public health problem. Breakthroughs have been made to better understand the disease, including the toxicity of AAs, the possible mechanisms of AAN, the disease patterns, and the pathological features; however, some critical problems remain unresolved. Because of the insidious onset of the disease, the incidence of AAN and the prevalence of exposure to AAs are unknown and might be largely underestimated. During the past decades, AA-containing herbs have been strictly administrated in many regions and the occurrence of AAN has declined sharply, yet cases of AAN are still sporadically reported. Despite the progress in the understanding of the disease's pathogenesis, there is no effective treatment for delaying or reversing the renal deterioration caused by AAN. Therefore, the risk of exposure to AAs should be taken seriously by public health workers and clinicians. In this review, we updated the latest data on AAN, summarized the advances throughout these years, and put forward some challenges for future research.
Collapse
Affiliation(s)
- Qingqing Zhou
- Division of Renal, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
| | - Lei Jiang
- Division of Renal, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Su
- Division of Renal, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Liu
- Division of Renal, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Yang
- Division of Renal, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Guo Y, He M, Wang P, Bai D, Park JH, Dashnyam K, Lee JH, Huck O, Benkirane-Jessel N, Kim HW, Ramalingam M. A Combinatorial Approach to Regenerate the Periodontal Ligament and Cementum in a Nondental Microenvironment. J Tissue Eng Regen Med 2023; 2023:1277760. [PMID: 40226405 PMCID: PMC11919150 DOI: 10.1155/2023/1277760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 06/21/2023] [Indexed: 04/15/2025]
Abstract
While treated dentin matrix (TDM) has been used for regeneration of dental tissues, the quality and quantity of regenerated periodontal tissue structure are suboptimal. The present study was undertaken to test whether the combined use of the TDM with dental follicle cells (DFCs) and Hertwig's epithelial root sheath (HERS) cells enhances the regeneration of periodontal structures in a nondental microenvironment. TDMs were fabricated from 3-month-old Sprague-Dawley (SD) rats. DFCs and HERS cells were isolated from postnatal 7-day SD rats. Purified DFCs and HERS cells, both in combination or alone, were seeded and cultured on TDM in vitro and characterized. The cell-seeded TDMs were subsequently implanted into a 3-month-old rat greater omentum for 6 weeks, and further histological evaluation was performed. The results showed that cells grew well on the surface of TDMs, and mineralized nodules could be seen, especially in the HERS + DFCs group. After transplantation in rat omentum, periodontal ligament-like fibers and cementum-like structures were observed around the TDM in 1/3 of the samples in both the HERS group and the DFCs group and in 2/3 of the samples in the HERS + DFCs group, while almost no attached tissue formation was found in the TDM only group. The formed cementum width and the periodontal ligament length were significantly larger in the HERS + DFCs group. The periodontal ligament-like fibers in the HERS + DFCs group were orderly arranged and attached to the cementum-like tissues, which resembled the cementum-periodontal structure. Therefore, the combined use of DFCs, TDM, and HERS cells may be a promising strategy for the regeneration of the periodontal structures, especially in the nondental microenvironment.
Collapse
Affiliation(s)
- Yongwen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Lanzhou Stomatological Hospital, Lanzhou 730031, China
| | - Mengting He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Olivier Huck
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg 67084, France
| | - Nadia Benkirane-Jessel
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg 67084, France
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Murugan Ramalingam
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
- Joint Research Laboratory on Advanced Pharma Development Initiative, A Joined Venture of TECNALIA and School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Madrid 28029, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
- Department of Metallurgical and Materials Engineering, Atilim University, Ankara 06830, Turkey
- Institute of Precision Medicine, Furtwangen University, 78054 Villingen-Schwenningen, Schwarzwald, Germany
| |
Collapse
|
5
|
Yang G, Tan L, Yao H, Xiong Z, Wu J, Huang X. Long-Term Effects of Severe Burns on the Kidneys: Research Advances and Potential Therapeutic Approaches. J Inflamm Res 2023; 16:1905-1921. [PMID: 37152866 PMCID: PMC10162109 DOI: 10.2147/jir.s404983] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Burns are a seriously underestimated form of trauma that not only damage the skin system but also cause various complications, such as acute kidney injury (AKI). Recent clinical studies have shown that the proportion of chronic kidney diseases (CKD) in burn patients after discharge is significantly higher than that in the general population, but the mechanism behind this is controversial. The traditional view is that CKD is associated with hypoperfusion, AKI, sepsis, and drugs administered in the early stages of burns. However, recent studies have shown that burns can cause long-term immune dysfunction, which is a high-risk factor for CKD. This suggests that burns affect the kidneys more than previously recognized. In other words, severe burns are not only an acute injury but also a chronic disease. Neglecting to study long-term kidney function in burn patients also results in a lack of preventive and therapeutic methods being developed. Furthermore, stem cells and their exosomes have shown excellent comprehensive therapeutic properties in the prevention and treatment of CKD, making them increasingly the focus of research attention. Their engineering strategy further improved the therapeutic performance. This review will focus on the research advances in burns on the development of CKD, illustrating the possible mechanism of burn-induced CKD and introducing potential biological treatment options and their engineering strategies.
Collapse
Affiliation(s)
- Guang Yang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
- Department of Life Sciences, Yuncheng University, Yuncheng, 044006, People’s Republic of China
| | - Lishan Tan
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| | - Hua Yao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541004, People’s Republic of China
| | - Zuying Xiong
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, Verona, Venetia, 37134, Italy
| | - Xiaoyan Huang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| |
Collapse
|
6
|
Fu Z, Zhang Y, Geng X, Chi K, Liu C, Song C, Cai G, Chen X, Hong Q. Optimization strategies of mesenchymal stem cell-based therapy for acute kidney injury. Stem Cell Res Ther 2023; 14:116. [PMID: 37122024 PMCID: PMC10150535 DOI: 10.1186/s13287-023-03351-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
Considering the high prevalence and the lack of targeted pharmacological management of acute kidney injury (AKI), the search for new therapeutic approaches for it is in urgent demand. Mesenchymal stem cells (MSCs) have been increasingly recognized as a promising candidate for the treatment of AKI. However, clinical translation of MSCs-based therapies is hindered due to the poor retention and survival rates as well as the impaired paracrine ability of MSCs post-delivery. To address these issues, a series of strategies including local administration, three-dimensional culture, and preconditioning have been applied. Owing to the emergence and development of these novel biotechnologies, the effectiveness of MSCs in experimental AKI models is greatly improved. Here, we summarize the different approaches suggested to optimize the efficacy of MSCs therapy, aiming at promoting the therapeutic effects of MSCs on AKI patients.
Collapse
Affiliation(s)
- Zhangning Fu
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yifan Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Beidaihe Rehabilitation and Recuperation Center, Chinese People's Liberation Army Joint Logistics Support Force, Qinhuangdao, China
| | - Kun Chi
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chengcheng Song
- Department of Nephrology, Beijing Electric Power Hospital, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.
| |
Collapse
|
7
|
Huang M, Li D, Chen J, Ji Y, Su T, Chen Y, Zhang Y, Wang Y, Li F, Chen S, Dong Y, Li Q, Wu L, Feng Z, Wu J, Zhang L, Li Z, Cai G, Chen X. Comparison of the treatment efficacy of umbilical mesenchymal stem cell transplantation via renal subcapsular and parenchymal routes in AKI-CKD mice. Stem Cell Res Ther 2022; 13:128. [PMID: 35337372 PMCID: PMC8953025 DOI: 10.1186/s13287-022-02805-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 12/28/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have emerged as a promising cell-based therapy for acute kidney injury (AKI). However, the optimal route of MSC transplantation remains controversial, and there have been no comparisons of the therapeutic benefits of MSC administration through different delivery routes. Methods In this study, we encapsulated MSCs into a collagen matrix to help achieve local MSC retention in the kidney and assessed the survival of MSCs in vitro and in vivo. After transplanting collagen matrix-encapsulated-MSCs (Col-MSCs) under the renal capsule or into the parenchyma using the same cell dose and suspension volume in an ischemia/reperfusion injury model, we evaluated the treatment efficacy of two local transplantation routes at different stages of AKI. Results We found that Col-MSCs could be retained in the kidney for at least 14 days. Both local MSC therapies could reduce tubular injury, promote the proliferation of renal tubular epithelial cells on Day 3 and alleviate renal fibrosis on Day 14 and 28. MSC transplantation via the subcapsular route exerts better therapeutic effects for renal functional and structural recovery after AKI than MSC administration via the parenchymal route. Conclusions Subcapsular MSC transplantation may be an ideal route of MSC delivery for AKI treatment, and collagen I can provide a superior microenvironment for cell–cell and cell–matrix interactions to stabilize the retention rate of MSCs in the kidney. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02805-3.
Collapse
Affiliation(s)
- Mengjie Huang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Duo Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China
| | - Jianwen Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Yuwei Ji
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Tingyu Su
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Yulan Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Yingjie Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Yuanda Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Fei Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China.,School of Medicine, Nankai University, Weijin 20 Road, Tianjin, 300071, China
| | - Shang Chen
- School of Medicine, Nankai University, Weijin 20 Road, Tianjin, 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China
| | - Yu Dong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Lingling Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Zhe Feng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Jie Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Li Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Zongjin Li
- School of Medicine, Nankai University, Weijin 20 Road, Tianjin, 300071, China. .,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China.
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
8
|
Xu D, Yin L, Lin J, Fu H, Peng X, Chang L, Zheng Y, Zhao X, Shu G. Aristolochic Acid I-Induced Hepatotoxicity in Tianfu Broilers Is Associated with Oxidative-Stress-Mediated Apoptosis and Mitochondrial Damage. Animals (Basel) 2021; 11:ani11123437. [PMID: 34944214 PMCID: PMC8698099 DOI: 10.3390/ani11123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Aristolochic acid (AA) is a component of traditional Chinese herbs and commonly used in the farm poultry industry in China for anti-infection, anti-viral and anti-bacterial treatment. However, long-term and over-exposure of these drugs has been proven to be associated with serious hepatotoxicity, but the mechanism of AA-I-induced hepatotoxicity remains unknown. Therefore, in this study, a subchronic toxicity test was conducted to evaluate the mechanism of AA-I-induced hepatotoxicity in Tianfu broilers. Subchronic exposure to high doses of AA-I in broilers can cause serious hepatotoxicity by breaking the redox balance to form oxidative stress, along with promoting oxidative-stress-mediated apoptosis and mitochondrial damage. In conclusion, AA-I has been found to damage broilers’ livers in high doses. This study provides suggestions for the clinical application of traditional Chinese medicine containing AA-I in the poultry industry. Abstract Aristolochic acid (AA) is a component of traditional Chinese herbs and commonly used for farm animals in China. Over-exposure of AA has been proven to be associated with hepatotoxicity; however, the mechanism of action of AA-I-induced hepatotoxicity remains unknown. In the current study, a subchronic toxicity test was conducted to evaluate the mechanism of AA-induced hepatotoxicity in Tianfu broilers. According to the results, AA-I-induced hepatotoxicity in Tianfu broilers was evidenced by the elevation of liver weight, levels of serum glutamic oxalacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). Furthermore, hepatocyte swelling, vesicular degeneration and steatosis were observed. Additionally, AA-I elevated the production of reactive oxygen species (ROS) and induced oxidative stress, which further led to excessive apoptosis, characterized by mitochondrial depolarization, upregulation of Bax, and down-regulation of Bcl-2 expression. In conclusion, the mechanism of AA-I-induced hepatotoxicity was associated with oxidative-stress-mediated apoptosis and mitochondrial damage.
Collapse
Affiliation(s)
- Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (D.X.); (X.Z.)
| | - Lizi Yin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.Y.); (J.L.); (H.F.)
| | - Juchun Lin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.Y.); (J.L.); (H.F.)
| | - Hualin Fu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.Y.); (J.L.); (H.F.)
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 611130, China;
| | - Lijen Chang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Yilei Zheng
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55791, USA;
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (D.X.); (X.Z.)
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.Y.); (J.L.); (H.F.)
- Correspondence:
| |
Collapse
|