1
|
Kavousi S, Hosseinpour A, Bahmanzadegan Jahromi F, Attar A. Efficacy of mesenchymal stem cell transplantation on major adverse cardiovascular events and cardiac function indices in patients with chronic heart failure: a meta-analysis of randomized controlled trials. J Transl Med 2024; 22:786. [PMID: 39174960 PMCID: PMC11342608 DOI: 10.1186/s12967-024-05352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/29/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The effects of mesenchymal stem cells (MSCs) on heart failure (HF) have been controversial. This study was conducted to investigate whether the transplantation of MSCs after HF could help improve clinical outcomes and myocardial performance indices. METHODS Using a systematic approach, electronic databases were searched for randomized controlled trials (RCTs), which evaluated the transplantation of MSCs after HF. The outcomes owf interest included clinical outcomes and myocardial function indices. We also assessed the role of age, cause of heart failure, cell origin, cell number, type of donor (autologous/allogeneic), and route of cell delivery on these outcomes. Using the random-effects method, a relative risk (RR) or mean difference (MD) and their corresponding 95% confidence intervals (CI) were pooled. RESULTS Seventeen RCTs including 1684 patients (927 and 757 patients in the intervention and control arms, respectively) were enrolled. The RR (95% CI) of mortality was 0.78 (0.62; 0.99, p = 0.04) in the MSC group compared to the controls. HF rehospitalization decreased in the MSC group (RR = 0.85 (0.71-1.01), p = 0.06), but this was only significant in those who received autologous MSCs (RR = 0.67 (0.49; 0.90), p = 0.008). LVEF was significantly increased among those who received MSC (MD = 3.38 (1.89; 4.87), p < 0.001). LVESV (MD = -9.14 (-13.25; -5.03), p < 0.001), LVEDV (MD = -8.34 -13.41; -3.27), p < 0.001), and scar size (standardized MD = -0.32 (-0.60; -0.05), p = 0.02) were significantly decreased. NYHA class (MD = -0.19 (-0.34; -0.06), p = 0.006), BNP level (standardized MD = -0.28 (-0.50; -0.06), p = 0.01), and MLHFQ (MD = -11.55 (-16.77; -6.33), p = 0.005) significantly decreased and 6-min walk test significantly improved (MD = 36.86 (11.22; 62.50), p = 0.001) in the MSC group. Trials were not affected by the participants' etiology of heart failure, while trials with the autologous source of cells, MSC doses lower than 100 million cells, and intracoronary injection performed significantly better in some of the outcomes. CONCLUSION Transplantation of MSCs for ischemic or dilated heart failure patients may reduce all-cause mortality and improve clinical condition. Moreover, this treatment would improve left ventricular function indices and reduce scar size.
Collapse
Affiliation(s)
- Shahin Kavousi
- Shiraz University of Medical Sciences and Health Services, Shiraz, Iran
| | | | | | - Armin Attar
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran.
| |
Collapse
|
2
|
Alradwan I, AL Fayez N, Alomary MN, Alshehri AA, Aodah AH, Almughem FA, Alsulami KA, Aldossary AM, Alawad AO, Tawfik YMK, Tawfik EA. Emerging Trends and Innovations in the Treatment and Diagnosis of Atherosclerosis and Cardiovascular Disease: A Comprehensive Review towards Healthier Aging. Pharmaceutics 2024; 16:1037. [PMID: 39204382 PMCID: PMC11360443 DOI: 10.3390/pharmaceutics16081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are classed as diseases of aging, which are associated with an increased prevalence of atherosclerotic lesion formation caused by such diseases and is considered as one of the leading causes of death globally, representing a severe health crisis affecting the heart and blood vessels. Atherosclerosis is described as a chronic condition that can lead to myocardial infarction, ischemic cardiomyopathy, stroke, and peripheral arterial disease and to date, most pharmacological therapies mainly aim to control risk factors in patients with cardiovascular disease. Advances in transformative therapies and imaging diagnostics agents could shape the clinical applications of such approaches, including nanomedicine, biomaterials, immunotherapy, cell therapy, and gene therapy, which are emerging and likely to significantly impact CVD management in the coming decade. This review summarizes the current anti-atherosclerotic therapies' major milestones, strengths, and limitations. It provides an overview of the recent discoveries and emerging technologies in nanomedicine, cell therapy, and gene and immune therapeutics that can revolutionize CVD clinical practice by steering it toward precision medicine. CVD-related clinical trials and promising pre-clinical strategies that would significantly impact patients with CVD are discussed. Here, we review these recent advances, highlighting key clinical opportunities in the rapidly emerging field of CVD medicine.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Nojoud AL Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Mohammad N. Alomary
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Alhassan H. Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Khulud A. Alsulami
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Ahmad M. Aldossary
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Abdullah O. Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Yahya M. K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| |
Collapse
|
3
|
Hosseinpour A, Kamalpour J, Dehdari Ebrahimi N, Mirhosseini SA, Sadeghi A, Kavousi S, Attar A. Comparative effectiveness of mesenchymal stem cell versus bone-marrow mononuclear cell transplantation in heart failure: a meta-analysis of randomized controlled trials. Stem Cell Res Ther 2024; 15:202. [PMID: 38971816 PMCID: PMC11227704 DOI: 10.1186/s13287-024-03829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND There is no clear evidence on the comparative effectiveness of bone-marrow mononuclear cell (BMMNC) vs. mesenchymal stromal cell (MSC) stem cell therapy in patients with chronic heart failure (HF). METHODS Using a systematic approach, eligible randomized controlled trials (RCTs) of stem cell therapy (BMMNCs or MSCs) in patients with HF were retrieved to perform a meta-analysis on clinical outcomes (major adverse cardiovascular events (MACE), hospitalization for HF, and mortality) and echocardiographic indices (including left ventricular ejection fraction (LVEF)) were performed using the random-effects model. A risk ratio (RR) or mean difference (MD) with corresponding 95% confidence interval (CI) were pooled based on the type of the outcome and subgroup analysis was performed to evaluate the potential differences between the types of cells. RESULTS The analysis included a total of 36 RCTs (1549 HF patients receiving stem cells and 1252 patients in the control group). Transplantation of both types of cells in patients with HF resulted in a significant improvement in LVEF (BMMNCs: MD (95% CI) = 3.05 (1.11; 4.99) and MSCs: MD (95% CI) = 2.82 (1.19; 4.45), between-subgroup p = 0.86). Stem cell therapy did not lead to a significant change in the risk of MACE (MD (95% CI) = 0.83 (0.67; 1.06), BMMNCs: RR (95% CI) = 0.59 (0.31; 1.13) and MSCs: RR (95% CI) = 0.91 (0.70; 1.19), between-subgroup p = 0.12). There was a marginally decreased risk of all-cause death (MD (95% CI) = 0.82 (0.68; 0.99)) and rehospitalization (MD (95% CI) = 0.77 (0.61; 0.98)) with no difference among the cell types (p > 0.05). CONCLUSION Both types of stem cells are effective in improving LVEF in patients with heart failure without any noticeable difference between the cells. Transplantation of the stem cells could not decrease the risk of major adverse cardiovascular events compared with controls. Future trials should primarily focus on the impact of stem cell transplantation on clinical outcomes of HF patients to verify or refute the findings of this study.
Collapse
Affiliation(s)
- Alireza Hosseinpour
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jahangir Kamalpour
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Alireza Sadeghi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahin Kavousi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Attar
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Bakinowska E, Kiełbowski K, Boboryko D, Bratborska AW, Olejnik-Wojciechowska J, Rusiński M, Pawlik A. The Role of Stem Cells in the Treatment of Cardiovascular Diseases. Int J Mol Sci 2024; 25:3901. [PMID: 38612710 PMCID: PMC11011548 DOI: 10.3390/ijms25073901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and include several vascular and cardiac disorders, such as atherosclerosis, coronary artery disease, cardiomyopathies, and heart failure. Multiple treatment strategies exist for CVDs, but there is a need for regenerative treatment of damaged heart. Stem cells are a broad variety of cells with a great differentiation potential that have regenerative and immunomodulatory properties. Multiple studies have evaluated the efficacy of stem cells in CVDs, such as mesenchymal stem cells and induced pluripotent stem cell-derived cardiomyocytes. These studies have demonstrated that stem cells can improve the left ventricle ejection fraction, reduce fibrosis, and decrease infarct size. Other studies have investigated potential methods to improve the survival, engraftment, and functionality of stem cells in the treatment of CVDs. The aim of the present review is to summarize the current evidence on the role of stem cells in the treatment of CVDs, and how to improve their efficacy.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | | | - Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Marcin Rusiński
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| |
Collapse
|
5
|
Mulari S, Kesävuori R, Stewart JA, Karjalainen P, Holmström M, Lehtinen M, Peltonen J, Laine M, Sinisalo J, Juvonen T, Kupari M, Harjula A, Pätilä T, Kivistö S, Kankuri E, Vento A. Follow-up of intramyocardial bone marrow mononuclear cell transplantation beyond 10 years. Sci Rep 2024; 14:3747. [PMID: 38355940 PMCID: PMC10866866 DOI: 10.1038/s41598-024-53776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Bone marrow mononuclear cells (BMMCs) have been evaluated for their ability to improve cardiac repair and benefit patients with severe ischemic heart disease and heart failure. In our single-center trial in 2006-2011 we demonstrated the safety and efficacy of BMMCs injected intramyocardially in conjunction with coronary artery bypass surgery. The effect persisted in the follow-up study 5 years later. In this study, we investigated the efficacy of BMMC therapy beyond 10 years. A total of 18 patients (46%) died during over 10-years follow-up and 21 were contacted for participation. Late gadolinium enhancement cardiac magnetic resonance imaging (CMRI) and clinical evaluation were performed on 14 patients, seven from each group. CMRIs from the study baseline, 1-year and 5-years follow-ups were re-analyzed to enable comparison. The CMRI demonstrated a 2.1-fold larger reduction in the mass of late gadolinium enhancement values between the preoperative and the over 10-years follow-up, suggesting less scar or fibrosis after BMMC treatment (- 15.1%; 95% CI - 23 to - 6.7% vs. - 7.3%; 95% CI - 16 to 4.5%, p = 0.039), compared to placebo. No differences in mortality or morbidity were observed. Intramyocardially injected BMMCs may exert long-term benefits in patients with ischemic heart failure. This deserves further evaluation in patients who have received BMMCs in international clinical studies over two decades.
Collapse
Affiliation(s)
- Severi Mulari
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Haartmaninkatu 8, PO Box 63, 00014, Helsinki, Finland
| | - Risto Kesävuori
- Department of Radiology, HUS Medical Imaging Center and Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juhani A Stewart
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pasi Karjalainen
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Miia Holmström
- Department of Radiology, HUS Medical Imaging Center and Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Miia Lehtinen
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Peltonen
- Department of Radiology, HUS Medical Imaging Center and Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mika Laine
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tatu Juvonen
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markku Kupari
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ari Harjula
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tommi Pätilä
- Pediatric Cardiac Surgery, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sari Kivistö
- Department of Radiology, HUS Medical Imaging Center and Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Haartmaninkatu 8, PO Box 63, 00014, Helsinki, Finland.
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Attar A, Farjoud Kouhanjani M, Hessami K, Vosough M, Kojuri J, Ramzi M, Hosseini SA, Faghih M, Monabati A. Effect of once versus twice intracoronary injection of allogeneic-derived mesenchymal stromal cells after acute myocardial infarction: BOOSTER-TAHA7 randomized clinical trial. Stem Cell Res Ther 2023; 14:264. [PMID: 37740221 PMCID: PMC10517503 DOI: 10.1186/s13287-023-03495-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) transplantation can improve the left ventricular ejection fraction (LVEF) after an acute myocardial infarction (AMI). Transplanted MSCs exert a paracrine effect, which might be augmented if repeated doses are administered. This study aimed to compare the effects of single versus double transplantation of Wharton's jelly MSCs (WJ-MSCs) on LVEF post-AMI. METHODS We conducted a single-blind, randomized, multicenter trial. After 3-7 days of an AMI treated successfully by primary PCI, 70 patients younger than 65 with LVEF < 40% on baseline echocardiography were randomized to receive conventional care, a single intracoronary infusion of WJ-MSCs, or a repeated infusion 10 days later. The primary endpoint was the 6-month LVEF improvement as per cardiac magnetic resonance (CMR) imaging. RESULTS The mean baseline EF measured by CMR was similar (~ 40%) in all three groups. By the end of the trial, while all patients experienced a rise in EF, the most significant change was seen in the repeated intervention group. Compared to the control group (n = 25), single MSC transplantation (n = 20) improved the EF by 4.54 ± 2%, and repeated intervention (n = 20) did so by 7.45 ± 2% when measured by CMR imaging (P < 0.001); when evaluated by echocardiography, these values were 6.71 ± 2.4 and 10.71 ± 2.5%, respectively (P < 0.001). CONCLUSIONS Intracoronary transplantation of WJ-MSCs 3-7 days after AMI in selected patients significantly improves LVEF, with the infusion of a booster dose 10 days later augmenting this effect. TRIAL REGISTRATION Trial registration: Iranian Registry of Clinical Trials, IRCT20201116049408N1. Retrospectively Registered 20 Nov. 2020, https://en.irct.ir/trial/52357.
Collapse
Affiliation(s)
- Armin Attar
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71344-1864, Iran.
| | | | - Kamran Hessami
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Javad Kojuri
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Hematopathology and Molecular Pathology Service, Department of Pathology, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, 71344-1864, Iran
| | | | - Marjan Faghih
- Department of Biostatistics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ahmad Monabati
- Hematopathology and Molecular Pathology Service, Department of Pathology, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, 71344-1864, Iran.
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Leancă SA, Afrăsânie I, Crișu D, Matei IT, Duca ȘT, Costache AD, Onofrei V, Tudorancea I, Mitu O, Bădescu MC, Șerban LI, Costache II. Cardiac Reverse Remodeling in Ischemic Heart Disease with Novel Therapies for Heart Failure with Reduced Ejection Fraction. Life (Basel) 2023; 13:1000. [PMID: 37109529 PMCID: PMC10143569 DOI: 10.3390/life13041000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the improvements in the treatment of coronary artery disease (CAD) and acute myocardial infarction (MI) over the past 20 years, ischemic heart disease (IHD) continues to be the most common cause of heart failure (HF). In clinical trials, over 70% of patients diagnosed with HF had IHD as the underlying cause. Furthermore, IHD predicts a worse outcome for patients with HF, leading to a substantial increase in late morbidity, mortality, and healthcare costs. In recent years, new pharmacological therapies have emerged for the treatment of HF, such as sodium-glucose cotransporter-2 inhibitors, angiotensin receptor-neprilysin inhibitors, selective cardiac myosin activators, and oral soluble guanylate cyclase stimulators, demonstrating clear or potential benefits in patients with HF with reduced ejection fraction. Interventional strategies such as cardiac resynchronization therapy, cardiac contractility modulation, or baroreflex activation therapy might provide additional therapeutic benefits by improving symptoms and promoting reverse remodeling. Furthermore, cardiac regenerative therapies such as stem cell transplantation could become a new therapeutic resource in the management of HF. By analyzing the existing data from the literature, this review aims to evaluate the impact of new HF therapies in patients with IHD in order to gain further insight into the best form of therapeutic management for this large proportion of HF patients.
Collapse
Affiliation(s)
- Sabina Andreea Leancă
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Irina Afrăsânie
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Daniela Crișu
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Iulian Theodor Matei
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ștefania Teodora Duca
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandru Dan Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Viviana Onofrei
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ionuţ Tudorancea
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ovidiu Mitu
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Minerva Codruța Bădescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Lăcrămioara Ionela Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Irina Iuliana Costache
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
8
|
Tonkin D, Yee-Goh A, Katare R. Healing the Ischaemic Heart: A Critical Review of Stem Cell Therapies. Rev Cardiovasc Med 2023; 24:122. [PMID: 39076280 PMCID: PMC11273058 DOI: 10.31083/j.rcm2404122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 07/31/2024] Open
Abstract
Ischaemic heart disease (IHD) remains the leading cause of mortality worldwide. Current pharmaceutical treatments focus on delaying, rather than preventing disease progression. The only curative treatment available is orthotopic heart transplantation, which is greatly limited by a lack of available donors and the possibility for immune rejection. As a result, novel therapies are consistently being sought to improve the quality and duration of life of those suffering from IHD. Stem cell therapies have garnered attention globally owing to their potential to replace lost cardiac cells, regenerate the ischaemic myocardium and to release protective paracrine factors. Despite recent advances in regenerative cardiology, one of the biggest challenges in the clinical translation of cell-based therapies is determining the most efficacious cell type for repair. Multiple cell types have been investigated in clinical trials; with inconsistent methodologies and isolation protocols making it difficult to draw strong conclusions. This review provides an overview of IHD focusing on pathogenesis and complications, followed by a summary of different stem cells which have been trialled for use in the treatment of IHD, and ends by exploring the known mechanisms by which stem cells mediate their beneficial effects on ischaemic myocardium.
Collapse
Affiliation(s)
- Devin Tonkin
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 9010 Dunedin, New Zealand
| | - Anthony Yee-Goh
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 9010 Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 9010 Dunedin, New Zealand
| |
Collapse
|
9
|
Gil-Cabrerizo P, Scaccheti I, Garbayo E, Blanco-Prieto MJ. Cardiac tissue engineering for myocardial infarction treatment. Eur J Pharm Sci 2023; 185:106439. [PMID: 37003408 DOI: 10.1016/j.ejps.2023.106439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Myocardial infarction is one of the major causes of morbidity and mortality worldwide. Current treatments can relieve the symptoms of myocardial ischemia but cannot repair the necrotic myocardial tissue. Novel therapeutic strategies based on cellular therapy, extracellular vesicles, non-coding RNAs and growth factors have been designed to restore cardiac function while inducing cardiomyocyte cycle re-entry, ensuring angiogenesis and cardioprotection, and preventing ventricular remodeling. However, they face low stability, cell engraftment issues or enzymatic degradation in vivo, and it is thus essential to combine them with biomaterial-based delivery systems. Microcarriers, nanocarriers, cardiac patches and injectable hydrogels have yielded promising results in preclinical studies, some of which are currently being tested in clinical trials. In this review, we cover the recent advances made in cellular and acellular therapies used for cardiac repair after MI. We present current trends in cardiac tissue engineering related to the use of microcarriers, nanocarriers, cardiac patches and injectable hydrogels as biomaterial-based delivery systems for biologics. Finally, we discuss some of the most crucial aspects that should be addressed in order to advance towards the clinical translation of cardiac tissue engineering approaches.
Collapse
Affiliation(s)
- Paula Gil-Cabrerizo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ilaria Scaccheti
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain..
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain..
| |
Collapse
|
10
|
Caiati C, Jirillo E. Transplantation of Mesenchymal Stem Cells as a New Approach for Cardiovascular Diseases: From Bench to Bedside: A Perspective. Endocr Metab Immune Disord Drug Targets 2023; 23:1359-1364. [PMID: 37055907 DOI: 10.2174/1871530323666230411142308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/01/2023] [Indexed: 04/15/2023]
Affiliation(s)
- Carlo Caiati
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
11
|
Controlled Release of Encapsuled Stromal-Derived Factor 1α Improves Bone Marrow Mesenchymal Stromal Cells Migration. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120754. [PMID: 36550960 PMCID: PMC9774977 DOI: 10.3390/bioengineering9120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
Stem cell treatment is a promising method of therapy for the group of patients whose conventional options for treatment have been limited or rejected. Stem cells have the potential to repair, replace, restore and regenerate cells. Moreover, their proliferation level is high. Owing to these features, they can be used in the treatment of numerous diseases, such as cancer, lung diseases or ischemic heart diseases. In recent years, stem cell therapy has greatly developed, shedding light on stromal-derived factor 1α (SDF-1α). SDF-1α is a mobilizing chemokine for application of endogenous stem cells to injury sites. Unfortunately, SDF-1α presented short-term results in stem cell treatment trials. Considering the tremendous benefits of this therapy, we developed biodegradable polymeric microspheres for the release of SDF-1α in a controlled and long-lasting manner. The microspheres were designed from poly(L-lactide/glycolide/trimethylene carbonate) (PLA/GA/TMC). The effect of controlled release of SDF-1α from microspheres was investigated on the migration level of bone marrow Mesenchymal Stromal Cells (bmMSCs) derived from a pig. The study showed that SDF-1α, released from the microspheres, is more efficient at attracting bmMSCs than SDF-1α alone. This may enable the controlled delivery of selected and labeled MSCs to the destination in the future.
Collapse
|
12
|
Czyż Ł, Tekieli Ł, Miszalski-Jamka T, Banyś RP, Szot W, Mazur W, Chmiel J, Mazurek A, Skubera M, Dąbrowski W, Jarocha D, Podolec P, Majka M, Musiałek P. Infarct size and long-term left ventricular remodelling in acute myocardial infarction patients subjected to transcoronary delivery of progenitor cells. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2022; 18:465-471. [PMID: 36967855 PMCID: PMC10031670 DOI: 10.5114/aic.2023.125079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/21/2022] [Indexed: 02/18/2023] Open
Abstract
Introduction Infarct size (IS) is a fundamental determinant of left-ventricular (LV) remodelling (end-systolic and end-diastolic volume change, ΔESV, ΔEDV) and adverse clinical outcomes after myocardial infarction (MI). Our prior work found that myocardial uptake of transcoronary-delivered progenitor cells is governed by IS. Aim To evaluate the relationship between IS, stem cell uptake, and the magnitude of LV remodelling in patients receiving transcoronary administration of progenitor cells shortly after MI. Material and methods Thirty-one subjects (age 36-69 years) with primary percutaneous coronary intervention (pPCI)-treated anterior ST-elevation MI (peak CK-MB 584 [181-962] U/l, median [range]) and sustained left ventricle ejection fraction (LVEF) ≤ 45% were studied. On day 10 (median) 4.3 × 106 (median) autologous CD34+ cells (50% labelled with 99mTc-extametazime) were administered via the infarct-related artery (left anterior descending). ΔESV, ΔEDV, and mid circumferential myocardial strain (mCS) were evaluated at 24 months. Results Infarct mass (cMRI) was 57 [11-112] g. Cell label myocardial uptake (whole-body γ-scans) was proportional to IS (r = 0.62), with a median 2.9% uptake in IS 1st tercile (≤ 45 g), 5.2% in 2nd (46-76 g), and 6.7% in 3rd (> 76 g) (p = 0.0006). Cell uptake in proportion to IS attenuated the IS-ΔESV (p = 0.41) and IS-ΔEDV (p = 0.09) relationship. At 24 months, mCS improved in IS 2nd tercile (p = 0.028) while it showed no significant change in smaller (p = 0.87) or larger infarcts (p = 0.58). Conclusions This largest human study with labelled CD34+ cell transplantation shortly after MI suggests that cell uptake (proportional to IS) may attenuate the effect of IS on LV adverse remodelling. To boost this effect, further strategies should involve cell types and delivery techniques to maximize myocardial uptake.
Collapse
Affiliation(s)
- Łukasz Czyż
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Łukasz Tekieli
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
- Department of Interventional Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | | | - R. Paweł Banyś
- Department of Radiology, John Paul II Hospital, Krakow, Poland
| | - Wojciech Szot
- Nuclear Imaging Laboratory, John Paul II Hospital, Krakow, Poland
| | - Wojciech Mazur
- Division of Cardiology, The Christ Hospital Health Network, Cincinnati, United States of America
| | - Jakub Chmiel
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Adam Mazurek
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Maciej Skubera
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Władysław Dąbrowski
- Department of Interventional Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Danuta Jarocha
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, United States of America
| | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Musiałek
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| |
Collapse
|
13
|
Hsiao LC, Lin YN, Shyu WC, Ho M, Lu CR, Chang SS, Wang YC, Chen JY, Lu SY, Wu MY, Li KY, Lin YK, Tseng WYI, Su MY, Hsu CT, Tsai CK, Chiu LT, Chen CL, Lin CL, Hu KC, Cho DY, Tsai CH, Chang KC, Jeng LB. First-in-human pilot trial of combined intracoronary and intravenous mesenchymal stem cell therapy in acute myocardial infarction. Front Cardiovasc Med 2022; 9:961920. [PMID: 36017096 PMCID: PMC9395611 DOI: 10.3389/fcvm.2022.961920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/13/2022] [Indexed: 12/17/2022] Open
Abstract
BackgroundAcute ST-elevation myocardial infarction (STEMI) elicits a robust cardiomyocyte death and inflammatory responses despite timely revascularization.ObjectivesThis phase 1, open-label, single-arm, first-in-human study aimed to assess the safety and efficacy of combined intracoronary (IC) and intravenous (IV) transplantation of umbilical cord-derived mesenchymal stem cells (UMSC01) for heart repair in STEMI patients with impaired left ventricular ejection fraction (LVEF 30-49%) following successful reperfusion by percutaneous coronary intervention.MethodsConsenting patients received the first dose of UMSC01 through IC injection 4-5 days after STEMI followed by the second dose of UMSC01 via IV infusion 2 days later. The primary endpoint was occurrence of any treatment-related adverse events and the secondary endpoint was changes of serum biomarkers and heart function by cardiac magnetic resonance imaging during a 12-month follow-up period.ResultsEight patients gave informed consents, of whom six completed the study. None of the subjects experienced treatment-related serious adverse events or major adverse cardiovascular events during IC or IV infusion of UMSC01 and during the follow-up period. The NT-proBNP level decreased (1362 ± 1801 vs. 109 ± 115 pg/mL, p = 0.0313), the LVEF increased (52.67 ± 12.75% vs. 62.47 ± 17.35%, p = 0.0246), and the wall motion score decreased (26.33 ± 5.57 vs. 22.33 ± 5.85, p = 0.0180) at the 12-month follow-up compared to the baseline values. The serial changes of LVEF were 0.67 ± 3.98, 8.09 ± 6.18, 9.04 ± 10.91, and 9.80 ± 7.56 at 1, 3, 6, and 12 months, respectively as compared to the baseline.ConclusionThis pilot study shows that combined IC and IV transplantation of UMSC01 in STEMI patients with impaired LVEF appears to be safe, feasible, and potentially beneficial in improving heart function. Further phase 2 studies are required to explore the effectiveness of dual-route transplantation of UMSC01 in STEMI patients.
Collapse
Affiliation(s)
- Lien-Cheng Hsiao
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Yen-Nien Lin
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Woei-Cherng Shyu
- Department of Neurology and Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Ever Supreme Bio Technology Co., Ltd, Taichung, Taiwan
| | - Ming Ho
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Chiung-Ray Lu
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Sheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chen Wang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jan-Yow Chen
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Yao Wu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Keng-Yuan Li
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Kai Lin
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Yih I. Tseng
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Mao-Yuan Su
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Chin-Ting Hsu
- Ever Supreme Bio Technology Co., Ltd, Taichung, Taiwan
| | | | - Lu-Ting Chiu
- Ever Supreme Bio Technology Co., Ltd, Taichung, Taiwan
| | | | - Cheng-Li Lin
- School of Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Kai-Chieh Hu
- School of Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Der-Yang Cho
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Chang-Hai Tsai
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Kuan-Cheng Chang,
| | - Long-Bin Jeng
- School of Medicine, China Medical University, Taichung, Taiwan
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
- Long-Bin Jeng,
| |
Collapse
|
14
|
Attar A, Monabati A, Montaseri M, Vosough M, Hosseini SA, Kojouri J, Abdi-Ardekani A, Izadpanah P, Azarpira N, Pouladfar G, Ramzi M. Transplantation of mesenchymal stem cells for prevention of acute myocardial infarction induced heart failure: study protocol of a phase III randomized clinical trial (Prevent-TAHA8). Trials 2022; 23:632. [PMID: 35927674 PMCID: PMC9351242 DOI: 10.1186/s13063-022-06594-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Results from recent clinical trials on bone marrow mononuclear cell (BM-MNC) transplantation show that this intervention can help reduce the incidence of heart failure (HF) after acute myocardial infarction (AMI). However, no study has evaluated the effect of the transplantation of mesenchymal stem cells (MSCs) on a clinical endpoint such as HF. Methods This single-blinded, randomized, multicenter trial aims to establish whether the intracoronary infusion of umbilical cord-derived Wharton’s jelly MSCs (WJ-MSCs) helps prevent HF development after AMI. The study will enroll 390 patients 3 to 7 days following AMI. Only patients aged below 65 years with impaired LV function (LVEF < 40%) will be included. They will be randomized (2:1 ratio) to either receive standard care or a single intracoronary infusion of 107 WJ-MSCs. The primary outcome of this study is the assessment of HF development during long-term follow-up (3 years). Discussion Data will be collected until Nov 2024. Thereafter, the analysis will be conducted. Results are expected to be ready by Dec 2024. We will prepare and submit the related manuscript following the CONSORT guidelines. This study will help determine whether or not the infusion of intracoronary WJ-MSCs in patients with AMI will reduce the incidence of AMI-induced HF. Trial registration ClinicalTrials.gov NCT05043610, Registered on 14 September 2021 - retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06594-1.
Collapse
Affiliation(s)
- Armin Attar
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71344-1864, Iran.
| | - Ahmad Monabati
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Montaseri
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71344-1864, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Ali Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Kojouri
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71344-1864, Iran
| | - Alireza Abdi-Ardekani
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71344-1864, Iran
| | - Peyman Izadpanah
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71344-1864, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Pouladfar
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|