1
|
Cao L, Li P, Liu T, Ma Y, Lu X, Wang H. Met-Exo attenuates pyroptosis in miniature pig liver IRI by improving mitochondrial quality control. Int Immunopharmacol 2025; 152:114437. [PMID: 40068522 DOI: 10.1016/j.intimp.2025.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/24/2025]
Abstract
Metformin(Met) and adipose-derived stem cell exosomes(ADSCs-Exo) both demonstrate therapeutic effects on mitochondrial dysfunction and pyroptosis. There is also a phenomenon of mutual promotion between these two pathological states. The synergistic effect of metformin-loaded exosomes (Met-Exo) via electroporation in a miniature pig liver ischemia-reperfusion injury (IRI) model remains unexplored. This study established a liver IRI model in miniature pigs to compare the effects of ADSCs-Exo and Met-Exo. We found that Met-Exo intervention better activated the Adenosine 5'-monophosphate activated protein kinase (AMPK)/NAD-dependent deacetylase sirtuin-1(SIRT1) axis, improved mitochondrial dynamics, promoted mitochondrial biogenesis, and inhibited the sustained excessive autophagy of mitochondria after liver IRI. It was then demonstrated that by improving mitochondrial dysfunction, ATP production in liver tissue could be ensured, and ROS generation could be suppressed. This also further inhibited the occurrence of pyroptosis and ensured that mitochondria were protected from gasdermin D-N(GSDMD-N) attack. Met-Exo inhibited the occurrence of pyroptosis through the above pathways, reducing the release of inflammatory factors such as IL-1β and IL-18, and alleviating inflammation. This provides a new therapeutic approach for clinical treatment of liver IRI and improving the success rate of liver transplantation.
Collapse
Affiliation(s)
- Lei Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, PR China
| | - Pujun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, PR China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, PR China
| | - Yajun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, PR China
| | - Xiangyu Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, PR China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, PR China.
| |
Collapse
|
2
|
Soleimani MZ, Khorsandi L, Asadi-Fard Y, Rezaei-Tazangi F, Ashtari A. Protective Effects of Adipose Mesenchymal Stem Cell Secretome On Oxidative Stress-Induced Bisphenol-A in Isolated Rat Testes Mitochondria and Sperm Quality. JBRA Assist Reprod 2025; 29:53-60. [PMID: 39688440 PMCID: PMC11867245 DOI: 10.5935/1518-0557.20240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/03/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVE This study aimed to explore the potential protective effects of adipose-derived mesenchymal stem cell secretome (ASE) on oxidative stress triggered by Bisphenol-A (BisA) exposure in testicular mitochondria and sperm quality of rats. METHODS Testicular tissue mitochondria and sperms were exposed to BisA (8 μM) and ASE (50 or 100 μg). ∆Ψm (mitochondrial membrane potential), reactive oxygen species (ROS) levels, antioxidant biomarkers, and sperm parameters were measured. RESULTS BisA elevated biomarkers of oxidative stress in mitochondria, while the levels of antioxidant activity and ∆Ψm decreased significantly. BisA harmed the morphology, survival rate, and mobility of the spermatozoids. ASE lowered malondialdehyde contents and ROS generation in the mitochondria, increased ∆Ψm, and reversed sperm quality. CONCLUSIONS These data indicated that ASE effectively reduced BisA-induced damage to mitochondria and enhanced sperm quality by averting oxidative stress.
Collapse
Affiliation(s)
- Maryam Zohour Soleimani
- Student Research Committee, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz
Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz
Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences
Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yousef Asadi-Fard
- Department of Anatomy, School of Medicine, Arak University of
Medical Sciences, Arak, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of
Medical Sciences, Fasa, Iran
| | - Atefeh Ashtari
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz
Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences
Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Da Silva K, Kumar P, Choonara YE. The paradigm of stem cell secretome in tissue repair and regeneration: Present and future perspectives. Wound Repair Regen 2025; 33:e13251. [PMID: 39780313 PMCID: PMC11711308 DOI: 10.1111/wrr.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
As the number of patients requiring organ transplants continues to rise exponentially, there is a dire need for therapeutics, with repair and regenerative properties, to assist in alleviating this medical crisis. Over the past decade, there has been a shift from conventional stem cell treatments towards the use of the secretome, the protein and factor secretions from cells. These components may possess novel druggable targets and hold the key to profoundly altering the field of regenerative medicine. Despite the progress in this field, clinical translation of secretome-containing products is limited by several challenges including but not limited to ensuring batch-to-batch consistency, the prevention of further heterogeneity, production of sufficient secretome quantities, product registration, good manufacturing practice protocols and the pharmacokinetic/pharmacodynamic profiles of all the components. Despite this, the secretome may hold the key to unlocking the regenerative blockage scientists have encountered for years. This review critically analyses the secretome derived from different cell sources and used in several tissues for tissue regeneration. Furthermore, it provides an overview of the current delivery strategies and the future perspectives for the secretome as a potential therapeutic. The success and possible shortcomings of the secretome are evaluated.
Collapse
Affiliation(s)
- Kate Da Silva
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
4
|
Gładyś A, Mazurski A, Czekaj P. Potential Consequences of the Use of Adipose-Derived Stem Cells in the Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:7806. [PMID: 39063048 PMCID: PMC11277008 DOI: 10.3390/ijms25147806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks as the most prevalent of primary liver cancers and stands as the third leading cause of cancer-related deaths. Early-stage HCC can be effectively managed with available treatment modalities ranging from invasive techniques, such as liver resection and thermoablation, to systemic therapies primarily employing tyrosine kinase inhibitors. Unfortunately, these interventions take a significant toll on the body, either through physical trauma or the adverse effects of pharmacotherapy. Consequently, there is an understandable drive to develop novel HCC therapies. Adipose-derived stem cells (ADSCs) are a promising therapeutic tool. Their facile extraction process, coupled with the distinctive immunomodulatory capabilities of their secretome, make them an intriguing subject for investigation in both oncology and regenerative medicine. The factors they produce are both enzymes affecting the extracellular matrix (specifically, metalloproteinases and their inhibitors) as well as cytokines and growth factors affecting cell proliferation and invasiveness. So far, the interactions observed with various cancer cell types have not led to clear conclusions. The evidence shows both inhibitory and stimulatory effects on tumor growth. Notably, these effects appear to be dependent on the tumor type, prompting speculation regarding their potential inhibitory impact on HCC. This review briefly synthesizes findings from preclinical and clinical studies examining the effects of ADSCs on cancers, with a specific focus on HCC, and emphasizes the need for further research.
Collapse
Affiliation(s)
- Aleksandra Gładyś
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| | - Adam Mazurski
- Students Scientific Society, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| |
Collapse
|
5
|
Shi L, Liu Y, Liu Q, Chang C, Liu W, Zhang Z. Adipose-derived stem cells can alleviate RHDV2 induced acute liver injury in rabbits. Res Vet Sci 2024; 172:105255. [PMID: 38608346 DOI: 10.1016/j.rvsc.2024.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Rabbit hemorrhagic disease virus (RHDV) can cause fatal fulminant hepatitis, which is very similar to human acute liver failure. The aim of this study was to investigate whether adipose-derived stem cells (ADSCs) could alleviate RHDV2-induced liver injury in rabbits. Twenty 50-day-old rabbits were divided randomly into two groups (RHDV2 group, ADSCs + RHDV2 group). Starting from the 1st day, two groups of rabbits were given 0.5 ml of viral suspensions by subcutaneous injection in the neck. Meanwhile, the ADSCs + RHDV2 group was injected with ADSCs cell suspension (1.5 × 107 cells/ml) via a marginal ear vein, and the RHDV2 group was injected with an equal amount of saline via a marginal ear vein. At the end of the 48 h experiment, the animals were euthanized and gross hepatic changes were observed before liver specimens were collected. Histopathological analysis was performed using hematoxylin-eosin (HE), periodic acid schiff (PAS) and Masson's trichrome staining. For RHDV2 affected rabbits, HE staining demonstrated disorganized hepatic cords, loss of cellular detail, and severe cytoplasmic vacuolation within hepatocytes. Glycogen was not observed with PAS staining, and Masson's Trichrome staining showed increased hepatic collagen deposition. For rabbits treated with ADSCs at the time of inoculation, hepatic pathological changes were significantly less severe, liver glycogen synthesis was increased, and collagen fiber deposition was decreased. For RHDV2 affected rabbits, Tunel and immunofluorescence staining showed that the number of apoptotic cells, TGF-β, and MMP-9 protein expression increased. And that in the ADSC treated group there was less hepatocyte apoptosis. In addition, RHDV2 induces liver inflammation and promotes the expression of IL-1β, IL-6, and TNF-α. In rabbits administered ADSCs at time of inoculation, the expression of inflammatory factors in liver tissue decreased significantly. Our experiments show that ADSCs can protect rabbits from liver injury by RHDV2 and reduce the pathological and inflammatory response of liver. However, the specific protective mechanism needs further study.
Collapse
Affiliation(s)
- Lihui Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qianni Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chenhao Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Weiqi Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
6
|
Yang M, Wang Z, Xie J, Reyad‐ul‐Ferdous M, Li S, Song Y. Cyclophilin D as a potential therapeutic target of liver ischemia/reperfusion injury by mediating crosstalk between apoptosis and autophagy. Chronic Dis Transl Med 2023; 9:238-249. [PMID: 37711863 PMCID: PMC10497823 DOI: 10.1002/cdt3.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 09/16/2023] Open
Abstract
Background Liver ischemia/reperfusion (I/R) injury is a complex and multifactorial pathophysiological process. It is well recognized that the membrane permeability transition pore (mPTP) opening of mitochondria plays a crucial role in cell death after I/R injury. Cyclophilin D (CypD) is a critical positive regulator of mPTP. However, the effect of CypD on the pathogenesis of liver I/R injury and whether CypD is a potential therapeutic target are still unclear. Methods We constructed liver-specific CypD knockout and AAV8-peptidyl prolyl isomerase F (PPIF) overexpression mice. Then, a 70% liver I/R injury model was established in mice, with 90 min of ischemia and 6 h of reperfusion. The liver function was detected by the level of serum glutamic pyruvic transaminase (alanine transaminase) and glutamic oxaloacetic transaminase (aspartate aminotransferase), the liver damage score and degree of necrosis were measured by hematoxylin and eosin (H&E) staining of liver tissues. Reactive oxygen species (ROS) staining, apoptosis, and autophagy-related molecules were used to detect apoptosis and autophagy during liver I/R. Results The liver-specific knockout of CypD alleviated necrosis and dysfunction in liver I/R injury, by reducing the excessive production of ROS, and inhibiting cell apoptosis and autophagy. On the contrary, overexpression of CypD exacerbated I/R-induced liver damage. Conclusion We found that the downregulation of CypD expression alleviated liver I/R injury by reducing apoptosis and autophagy through caspase-3/Beclin1 crosstalk; in contrast, the upregulation of CypD expression aggravated liver I/R injury. Therefore, interfering with the expression of CypD seems to be a promising treatment for liver I/R injury.
Collapse
Affiliation(s)
- Mengjiao Yang
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
| | - Zhihui Wang
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
| | - Jin Xie
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
| | - Md. Reyad‐ul‐Ferdous
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Siying Li
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
- Department of Endocrinology and MetabolismCentral Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yongfeng Song
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
- Department of Endocrinology and MetabolismCentral Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
7
|
Miceli V, Bulati M, Gallo A, Iannolo G, Busà R, Conaldi PG, Zito G. Role of Mesenchymal Stem/Stromal Cells in Modulating Ischemia/Reperfusion Injury: Current State of the Art and Future Perspectives. Biomedicines 2023; 11:689. [PMID: 36979668 PMCID: PMC10045387 DOI: 10.3390/biomedicines11030689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) is a multistep damage that occurs in several tissues when a blood flow interruption is inevitable, such as during organ surgery or transplantation. It is responsible for cell death and tissue dysfunction, thus leading, in the case of transplantation, to organ rejection. IRI takes place during reperfusion, i.e., when blood flow is restored, by activating inflammation and reactive oxygen species (ROS) production, causing mitochondrial damage and apoptosis of parenchymal cells. Unfortunately, none of the therapies currently in use are definitive, prompting the need for new therapeutic approaches. Scientific evidence has proven that mesenchymal stem/stromal cells (MSCs) can reduce inflammation and ROS, prompting this cellular therapy to also be investigated for treatment of IRI. Moreover, it has been shown that MSC therapeutic effects were mediated in part by their secretome, which appears to be involved in immune regulation and tissue repair. For these reasons, mediated MSC paracrine function might be key for injury amelioration upon IRI damage. In this review, we highlight the scientific literature on the potential beneficial use of MSCs and their products for improving IRI outcomes in different tissues/organs, focusing in particular on the paracrine effects mediated by MSCs, and on the molecular mechanisms behind these effects.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | | | | | | | | | - Giovanni Zito
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| |
Collapse
|
8
|
Cell-Free Therapies: The Use of Cell Extracts to Mitigate Irradiation-Injured Salivary Glands. BIOLOGY 2023; 12:biology12020305. [PMID: 36829582 PMCID: PMC9953449 DOI: 10.3390/biology12020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Radiotherapy is a standard treatment for head and neck cancer patients worldwide. However, millions of patients who received radiotherapy consequently suffer from xerostomia because of irreversible damage to salivary glands (SGs) caused by irradiation (IR). Current treatments for IR-induced SG hypofunction only provide temporary symptom alleviation but do not repair the damaged SG, thus resulting in limited treatment efficacy. Therefore, there has recently been a growing interest in regenerative treatments, such as cell-free therapies. This review aims to summarize cell-free therapies for IR-induced SG, with a particular emphasis on utilizing diverse cell extract (CE) administrations. Cell extract is a group of heterogeneous mixtures containing multifunctional inter-cellular molecules. This review discusses the current knowledge of CE's components and efficacy. We propose optimal approaches to improve cell extract treatment from multiple perspectives (e.g., delivery routes, preparation methods, and other details regarding CE administration). In addition, the advantages and limitations of CE treatment are systematically discussed by comparing it to other cell-free (such as conditioned media and exosomes) and cell-based therapies. Although a comprehensive identification of the bioactive factors within CEs and their mechanisms of action have yet to be fully understood, we propose cell extract therapy as an effective, practical, user-friendly, and safe option to conventional therapies in IR-induced SG.
Collapse
|