1
|
Bei M, Cao Q, Zhao C, Xiao Y, Chen Y, Xiao H, Sun X, Tian F, Yang M, Wu X. Heterotopic ossification: Current developments and emerging potential therapies. Chin Med J (Engl) 2025; 138:389-404. [PMID: 39819765 PMCID: PMC11845195 DOI: 10.1097/cm9.0000000000003244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Indexed: 01/19/2025] Open
Abstract
ABSTRACT This review aimed to provide a comprehensive analysis of the etiology, epidemiology, pathology, and conventional treatment of heterotopic ossification (HO), especially emerging potential therapies. HO is the process of ectopic bone formation at non-skeletal sites. HO can be subdivided into two major forms, acquired and hereditary, with acquired HO predominating. Hereditary HO is a rare and life-threatening genetic disorder, but both acquired and hereditary form can cause severe complications, such as peripheral nerve entrapment, pressure ulcers, and disability if joint ankylosis develops, which heavily contributes to a reduced quality of life. Modalities have been proposed to treat HO, but none have emerged as the gold standard. Surgical excision remains the only effective modality; however, the optimal timing is controversial and may cause HO recurrence. Recently, potential therapeutic strategies have emerged that focus on the signaling pathways involved in HO, and small molecule inhibitors have been shown to be promising. Moreover, additional specific targets, such as small interfering RNAs (siRNAs) and non-coding RNAs, could be used to effectively block HO or develop combinatorial therapies for HO.
Collapse
Affiliation(s)
- Mingjian Bei
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Qiyong Cao
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Chunpeng Zhao
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Yaping Xiao
- Department of Orthopedic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Yimin Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Honghu Xiao
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Xu Sun
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Faming Tian
- School Of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Minghui Yang
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Xinbao Wu
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035, China
| |
Collapse
|
2
|
Lian K, Chen Z, Chen L, Li Y, Liu L. Network study of miRNA regulating traumatic heterotopic ossification. PLoS One 2025; 20:e0318779. [PMID: 39932915 PMCID: PMC11813146 DOI: 10.1371/journal.pone.0318779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVE Objective: To identify and analyze the microRNAs that are expressed differently (DE-miRNAs) and forecast their potential roles in the pathophysiological process of traumatic heterotopic ossification (THO). METHODS We conducted RNA sequencing on six samples of normal bone and THO tissues from the patients and conducted differential expression analysis of miRNA. The biological activities of the target genes of the differentially expressed microRNAs (DE-miRNAs) were investigated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The miRNA-mRNA network was constructed using Cytoscape software, incorporating miRNAs with varying expression levels and their corresponding target genes. RESULTS In comparison to the normal control group, a total of 84 differentially expressed microRNAs (p<0.05, |log2FC|>1) were identified, with 27 microRNAs showing up-regulation and 57 microRNAs showing down-regulation. The functional enrichment analysis revealed that the target genes of the de-mirna were primarily enriched in biological processes such as the regulation of protein stability and the management of neuromuscular process balance. Additionally, a miRNA-mRNA expression regulatory network was established. The RT-qPCR analysis revealed that miR-142-3p, miR-150-5p, miR-421, miR-625-5p, miR-675-5p, and miR-940 exhibited a decrease in expression levels in THO tissues. Nevertheless, the expression levels of miR-181c-3p, miR-320c, miR-497-5p, and miR-99a-5p were increased in THO tissues. CONCLUSIONS Our investigation has uncovered the expression patterns and projected the potential activities of differentially expressed microRNAs (DE-miRNAs) in human THO. This research may contribute to a better understanding of the underlying mechanisms and offer new possibilities for therapeutic targets in THO.
Collapse
Affiliation(s)
- Kun Lian
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhiyan Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Leijie Chen
- Department of Orthopedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yongmei Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Luping Liu
- Department of Orthopedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Li SN, Ran RY, Chen J, Liu MC, Dang YM, Lin H. Angiogenesis in heterotopic ossification: From mechanisms to clinical significance. Life Sci 2024; 351:122779. [PMID: 38851421 DOI: 10.1016/j.lfs.2024.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Heterotopic ossification (HO) refers to the formation of pathologic bone in nonskeletal tissues (including muscles, tendons or other soft tissues). HO typically occurs after a severe injury and can occur in any part of the body. HO lesions are highly vascularized. Angiogenesis, which is the formation of new blood vessels, plays an important role in the pathophysiology of HO. Surgical resection is considered an effective treatment for HO. However, it is difficult to completely remove new vessels, which can lead to the recurrence of HO and is often accompanied by significant problems such as intraoperative hemorrhage, demonstrating the important role of angiogenesis in HO. Here, we broadly summarize the current understanding of how angiogenesis contributes to HO; in particular, we focus on new insights into the cellular and signaling mechanisms underlying HO angiogenesis. We also review the development and current challenges associated with antiangiogenic therapy for HO.
Collapse
Affiliation(s)
- Sai-Nan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ruo-Yue Ran
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Meng-Chao Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yan-Miao Dang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
4
|
Butler JJ, Healy H, Anil U, Habibi A, Azam MT, Walls RJ, Kennedy JG. The significance of heterotopic ossification following total ankle arthroplasty: a systematic review and meta-analysis. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2024; 34:1945-1956. [PMID: 38472436 DOI: 10.1007/s00590-024-03866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE The purpose of this systematic review and meta-analysis was to evaluate the prevalence and clinical significance of heterotopic ossification (HO) following total ankle replacement (TAR). METHODS During August 2023, the PubMed, Embase and Cochrane library databases were systematically reviewed to identify clinical studies reporting HO following TAR. Data regarding surgical characteristics, pathological characteristics, subjective clinical outcomes, ankle range of motion, radiographic outcomes, reoperation rates were extracted and analysed. RESULTS Twenty-seven studies with 2639 patients (2695 ankles) at a weighed mean follow-up time of 52.8 ± 26.9 months were included. The pooled prevalence rate was 44.6% (0.25; 0.66). The implant with the highest rate of HO was the INBONE I (100%) and BOX (100%) implants. The most common modified Brooker staging was grade 1 (132 patients, 27.0%). Random effects models of standardized mean differences found no difference in American orthopedic foot and ankle society (AOFAS) scores, visual analog scale scores (VAS) and ankle range of motion (ROM) between patients with HO and patients without HO. Random effects models of correlation coefficients found no correlation between AOFAS, VAS and ROM and the presence of HO. The surgical intervention rate for symptomatic HO was 4.2%. CONCLUSION This systematic review and meta-analysis found that HO is a common finding following TAR that is not associated with inferior clinical outcomes. Surgical intervention was required only for moderate-to-severe, symptomatic HO following TAR. This study is limited by the marked heterogeneity and low level and quality of evidence of the included studies. Further higher quality studies are warranted to determine the precise prevalence and impact of HO on outcomes following TAR.
Collapse
Affiliation(s)
- James J Butler
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, 171 Delancey Street, 2nd Floor, New York, NY, 10002, USA
| | - Hazel Healy
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Utkarsh Anil
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, 171 Delancey Street, 2nd Floor, New York, NY, 10002, USA
| | - Akram Habibi
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, 171 Delancey Street, 2nd Floor, New York, NY, 10002, USA
| | - Mohammad T Azam
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, 171 Delancey Street, 2nd Floor, New York, NY, 10002, USA
| | - Raymond J Walls
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, 171 Delancey Street, 2nd Floor, New York, NY, 10002, USA
| | - John G Kennedy
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, 171 Delancey Street, 2nd Floor, New York, NY, 10002, USA.
| |
Collapse
|
5
|
Mohammed OA, Alghamdi M, Adam MIE, BinAfif WF, Alfaifi J, Alamri MMS, Alqarni AA, Alhalafi AH, Bahashwan E, AlQahtani AAJ, Ayed A, Hassan RH, Abdel-Reheim MA, Abdel Mageed SS, Rezigalla AA, Doghish AS. miRNAs dysregulation in ankylosing spondylitis: A review of implications for disease mechanisms, and diagnostic markers. Int J Biol Macromol 2024; 268:131814. [PMID: 38677679 DOI: 10.1016/j.ijbiomac.2024.131814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Epigenetic processes, including non-coding RNA, histone modifications, and DNA methylation, play a vital role in connecting the environment to the development of a disorder, especially when there is a favorable genetic background. Ankylosing Spondylitis (AS) is a chronic type of spinal arthritis that highlights the significance of epigenetics in diseases related to autoimmunity and inflammation. MicroRNAs (miRNAs) are small non-coding RNAs that are involved in both normal and aberrant pathological and physiological gene expression. This study focuses on the pathophysiological pathways to clarify the role of miRNAs in AS. We have conducted a thorough investigation of the involvement of miRNAs in several processes, including inflammation, the production of new bone, T-cell activity, and the regulation of pathways such as BMP, Wnt, and TGFβ signaling. Undoubtedly, miRNAs play a crucial role in enhancing our comprehension of the pathophysiology of AS, and their promise as a therapeutic strategy is quickly expanding.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Ali Alqarni
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Ayed
- Department of Surgery, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Rania H Hassan
- Dermatology Clinic, Abbasseya Psychiatric Hospital, Abbasseya, Cairo 11517, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
6
|
Mierzejewski B, Pulik Ł, Grabowska I, Sibilska A, Ciemerych MA, Łęgosz P, Brzoska E. Coding and noncoding RNA profile of human heterotopic ossifications - Risk factors and biomarkers. Bone 2023; 176:116883. [PMID: 37597797 DOI: 10.1016/j.bone.2023.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Heterotopic ossification (HO) means the formation of bone in muscles and soft tissues, such as ligaments or tendons. HO could have a genetic history or develop after a traumatic event, as a result of muscle injury, fractures, burns, surgery, or neurological disorders. Many lines of evidence suggest that the formation of HO is related to the pathological differentiation of stem or progenitor cells present within soft tissues or mobilized from the bone marrow. The cells responsible for the initiation and progression of HO are generally called HO precursor cells. The exact mechanisms behind the development of HO are not fully understood. However, several factors have been identified as potential contributors. For example, local tissue injury and inflammation disturb soft tissue homeostasis. Inflammatory cells release growth factors and cytokines that promote osteogenic or chondrogenic differentiation of HO precursor cells. The bone morphogenetic protein (BMP) is one of the main factors involved in the development of HO. In this study, next-generation sequencing (NGS) and RT-qPCR were performed to analyze the differences in mRNA, miRNA, and lncRNA expression profiles between muscles, control bone samples, and HO samples coming from patients who underwent total hip replacement (THR). As a result, crucial changes in the level of gene expression between HO and healthy tissues were identified. The bioinformatic analysis allowed to describe the processes most severely impacted, as well as genes which level differed the most significantly between HO and control samples. Our analysis showed that the level of transcripts involved in leukocyte migration, differentiation, and activation, as well as markers of chronic inflammatory diseases, that is, miR-148, increased in HO, as compared to muscle. Furthermore, the levels of miR-195 and miR-143, which are involved in angiogenesis, were up-regulated in HO, as compared to bone. Thus, we suggested that inflammation and angiogenesis play an important role in HO formation. Importantly, we noticed that HO is characterized by a higher level of TLR3 expression, compared to muscle and bone. Thus, we suggest that infection may also be a risk factor in HO development. Furthermore, an increased level of transcripts coding proteins involved in osteogenesis and signaling pathways, such as ALPL, SP7, BGLAP, BMP8A, BMP8B, SMPD3 was noticed in HO, as compared to muscles. Interestingly, miR-99b, miR-146, miR-204, and LINC00320 were up-regulated in HO, comparing to muscles and bone. Therefore, we suggested that these molecules could be important biomarkers of HO formation and a potential target for therapies.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Łukasz Pulik
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Aleksandra Sibilska
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland.
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland.
| |
Collapse
|