1
|
Martinez de Lapiscina I, Kouri C, Aurrekoetxea J, Sanchez M, Naamneh Elzenaty R, Sauter KS, Camats N, Grau G, Rica I, Rodriguez A, Vela A, Cortazar A, Alonso-Cerezo MC, Bahillo P, Bertholt L, Esteva I, Castaño L, Flück CE. Genetic reanalysis of patients with a difference of sex development carrying the NR5A1/SF-1 variant p.Gly146Ala has discovered other likely disease-causing variations. PLoS One 2023; 18:e0287515. [PMID: 37432935 DOI: 10.1371/journal.pone.0287515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
NR5A1/SF-1 (Steroidogenic factor-1) variants may cause mild to severe differences of sex development (DSD) or may be found in healthy carriers. The NR5A1/SF-1 c.437G>C/p.Gly146Ala variant is common in individuals with a DSD and has been suggested to act as a susceptibility factor for adrenal disease or cryptorchidism. Since the allele frequency is high in the general population, and the functional testing of the p.Gly146Ala variant revealed inconclusive results, the disease-causing effect of this variant has been questioned. However, a role as a disease modifier is still possible given that oligogenic inheritance has been described in patients with NR5A1/SF-1 variants. Therefore, we performed next generation sequencing (NGS) in 13 DSD individuals harboring the NR5A1/SF-1 p.Gly146Ala variant to search for other DSD-causing variants and clarify the function of this variant for the phenotype of the carriers. Panel and whole-exome sequencing was performed, and data were analyzed with a filtering algorithm for detecting variants in NR5A1- and DSD-related genes. The phenotype of the studied individuals ranged from scrotal hypospadias and ambiguous genitalia in 46,XY DSD to opposite sex in both 46,XY and 46,XX. In nine subjects we identified either a clearly pathogenic DSD gene variant (e.g. in AR) or one to four potentially deleterious variants that likely explain the observed phenotype alone (e.g. in FGFR3, CHD7). Our study shows that most individuals carrying the NR5A1/SF-1 p.Gly146Ala variant, harbor at least one other deleterious gene variant which can explain the DSD phenotype. This finding confirms that the NR5A1/SF-1 p.Gly146Ala variant may not contribute to the pathogenesis of DSD and qualifies as a benign polymorphism. Thus, individuals, in whom the NR5A1/SF-1 p.Gly146Ala gene variant has been identified as the underlying genetic cause for their DSD in the past, should be re-evaluated with a NGS method to reveal the real genetic diagnosis.
Collapse
Affiliation(s)
- Idoia Martinez de Lapiscina
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
| | - Chrysanthi Kouri
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Josu Aurrekoetxea
- Biocruces Bizkaia Health Research Institute, Research Group of Medical Oncology, Cruces University Hospital, Barakaldo, Spain
- University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Mirian Sanchez
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
| | - Rawda Naamneh Elzenaty
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Kay-Sara Sauter
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Núria Camats
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Vall d'Hebron Research Institute (VHIR), Growth and Development group, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Gema Grau
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Endo-ERN, Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Itxaso Rica
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Amaia Rodriguez
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Amaia Vela
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Alicia Cortazar
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Endocrinology Department, Cruces University Hospital, Barakaldo, Spain
| | | | - Pilar Bahillo
- Department of Pediatrics, Pediatric Endocrinology Unit, x Clinic University Hospital of Valladolid, Valladolid, Spain
| | - Laura Bertholt
- Pediatric Endocrinology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Isabel Esteva
- Endocrinology Section, Gender Identity Unit, Regional University Hospital of Malaga, Malaga, Spain
| | - Luis Castaño
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
- University of the Basque Country (UPV-EHU), Leioa, Spain
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Christa E Flück
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Reyes AP, León NY, Frost ER, Harley VR. Genetic control of typical and atypical sex development. Nat Rev Urol 2023:10.1038/s41585-023-00754-x. [PMID: 37020056 DOI: 10.1038/s41585-023-00754-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/07/2023]
Abstract
Sex development relies on the sex-specific action of gene networks to differentiate the bipotential gonads of the growing fetus into testis or ovaries, followed by the differentiation of internal and external genitalia depending on the presence or absence of hormones. Differences in sex development (DSD) arise from congenital alterations during any of these processes, and are classified depending on sex chromosomal constitution as sex chromosome DSD, 46,XY DSD or 46,XX DSD. Understanding the genetics and embryology of typical and atypical sex development is essential for diagnosing, treating and managing DSD. Advances have been made in understanding the genetic causes of DSD over the past 10 years, especially for 46,XY DSD. Additional information is required to better understand ovarian and female development and to identify further genetic causes of 46,XX DSD, besides congenital adrenal hyperplasia. Ongoing research is focused on the discovery of further genes related to typical and atypical sex development and, therefore, on improving diagnosis of DSD.
Collapse
Affiliation(s)
- Alejandra P Reyes
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Genetics Department, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Nayla Y León
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Emily R Frost
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Sotillos S, von der Decken I, Domenech Mercadé I, Srinivasan S, Sirokha D, Livshits L, Vanni S, Nef S, Biason-Lauber A, Rodríguez Gutiérrez D, Castelli-Gair Hombría J. A conserved function of Human DLC3 and Drosophila Cv-c in testis development. eLife 2022; 11:82343. [PMID: 36326091 PMCID: PMC9678365 DOI: 10.7554/elife.82343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
The identification of genes affecting gonad development is essential to understand the mechanisms causing Variations/Differences in Sex Development (DSD). Recently, a DLC3 mutation was associated with male gonadal dysgenesis in 46,XY DSD patients. We have studied the requirement of Cv-c, the Drosophila ortholog of DLC3, in Drosophila gonad development, as well as the functional capacity of DLC3 human variants to rescue cv-c gonad defects. We show that Cv-c is required to maintain testis integrity during fly development. We find that Cv-c and human DLC3 can perform the same function in fly embryos, as flies carrying wild type but not patient DLC3 variations can rescue gonadal dysgenesis, suggesting functional conservation. We also demonstrate that the StART domain mediates Cv-c's function in the male gonad independently from the GAP domain's activity. This work demonstrates a role for DLC3/Cv-c in male gonadogenesis and highlights a novel StART domain mediated function required to organize the gonadal mesoderm and maintain its interaction with the germ cells during testis development.
Collapse
Affiliation(s)
- Sol Sotillos
- Centro Andaluz de Biología del DesarrolloSevilleSpain
| | - Isabel von der Decken
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | - Ivan Domenech Mercadé
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | | | - Dmytro Sirokha
- Institute of Molecular Biology and Genetics, National Academy of Sciences of UkraineKyivUkraine
| | - Ludmila Livshits
- Institute of Molecular Biology and Genetics, National Academy of Sciences of UkraineKyivUkraine
| | - Stefano Vanni
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Anna Biason-Lauber
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | - Daniel Rodríguez Gutiérrez
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | | |
Collapse
|
4
|
Zhu Y. Metalloproteases in gonad formation and ovulation. Gen Comp Endocrinol 2021; 314:113924. [PMID: 34606745 PMCID: PMC8576836 DOI: 10.1016/j.ygcen.2021.113924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023]
Abstract
Changes in expression or activation of various metalloproteases including matrix metalloproteases (Mmp), a disintegrin and metalloprotease (Adam) and a disintegrin and metalloprotease with thrombospondin motif (Adamts), and their endogenous inhibitors (tissue inhibitors of metalloproteases, Timp), have been shown to be critical for ovulation in various species from studies in past decades. Some of these metalloproteases such as Adamts1, Adamts9, Mmp2, and Mmp9 have also been shown to be regulated by luteinizing hormone (LH) and/or progestin, which are essential triggers for ovulation in all vertebrate species. Most of these metalloproteases also express broadly in various tissues and cells including germ cells and somatic gonad cells. Thus, metalloproteases likely play roles in gonad formation processes comprising primordial germ cell (PGC) migration, development of germ and somatic cells, and sex determination. However, our knowledge on the functions and mechanisms of metalloproteases in these processes in vertebrates is still lacking. This review will summarize our current knowledge on the metalloproteases in ovulation and gonad formation with emphasis on PGC migration and germ cell development.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
5
|
Bowles J, Feng CW, Ineson J, Miles K, Spiller CM, Harley VR, Sinclair AH, Koopman P. Retinoic Acid Antagonizes Testis Development in Mice. Cell Rep 2019; 24:1330-1341. [PMID: 30067986 DOI: 10.1016/j.celrep.2018.06.111] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/26/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022] Open
Abstract
Mammalian sex determination depends on a complex interplay of signals that promote the bipotential fetal gonad to develop as either a testis or an ovary, but the details are incompletely understood. Here, we investigated whether removal of the signaling molecule retinoic acid (RA) by the degradative enzyme CYP26B1 is necessary for proper development of somatic cells of the testes. Gonadal organ culture experiments suggested that RA promotes expression of some ovarian markers and suppresses expression of some testicular markers, acting downstream of Sox9. XY Cyp26b1-null embryos, in which endogenous RA is not degraded, develop mild ovotestes, but more important, steroidogenesis is impaired and the reproductive tract feminized. Experiments involving purified gonadal cells showed that these effects are independent of germ cells and suggest the direct involvement of the orphan nuclear receptor DAX1. Our results reveal that active removal of endogenous RA is required for normal testis development in the mouse.
Collapse
Affiliation(s)
- Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chun-Wei Feng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jessica Ineson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kim Miles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cassy M Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vincent R Harley
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Livermore C, Warr N, Chalon N, Siggers P, Mianné J, Codner G, Teboul L, Wells S, Greenfield A. Male mice lacking ADAMTS-16 are fertile but exhibit testes of reduced weight. Sci Rep 2019; 9:17195. [PMID: 31748609 PMCID: PMC6868159 DOI: 10.1038/s41598-019-53900-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/06/2019] [Indexed: 01/04/2023] Open
Abstract
Adamts16 encodes a disintegrin-like and metalloproteinase with thrombospondin motifs, 16, a member of a family of multi-domain, zinc-binding proteinases. ADAMTS-16 is implicated in a number of pathological conditions, including hypertension, cancer and osteoarthritis. A large number of observations, including a recent report of human ADAMTS16 variants in cases of 46,XY disorders/differences of sex development (DSD), also implicate this gene in human testis determination. We used CRISPR/Cas9 genome editing to generate a loss-of-function allele in the mouse in order to examine whether ADAMTS-16 functions in mouse testis determination or testicular function. Male mice lacking Adamts16 on the C57BL/6N background undergo normal testis determination in the fetal period. However, adult homozygotes have an average testis weight that is around 10% lower than age-matched controls. Cohorts of mutant males tested at 3-months and 6-months of age were fertile. We conclude that ADAMTS-16 is not required for testis determination or male fertility in mice. We discuss these phenotypic data and their significance for our understanding of ADAMTS-16 function.
Collapse
Affiliation(s)
- Catherine Livermore
- Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Nick Warr
- Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Nicolas Chalon
- Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Pam Siggers
- Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Joffrey Mianné
- Mary Lyon Centre, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK.,Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Gemma Codner
- Mary Lyon Centre, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Lydia Teboul
- Mary Lyon Centre, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Sara Wells
- Mary Lyon Centre, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
7
|
Saatcioglu HD, Kano M, Horn H, Zhang L, Samore W, Nagykery N, Meinsohn MC, Hyun M, Suliman R, Poulo J, Hsu J, Sacha C, Wang D, Gao G, Lage K, Oliva E, Morris Sabatini ME, Donahoe PK, Pépin D. Single-cell sequencing of neonatal uterus reveals an Misr2+ endometrial progenitor indispensable for fertility. eLife 2019; 8:46349. [PMID: 31232694 PMCID: PMC6650247 DOI: 10.7554/elife.46349] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
The Mullerian ducts are the anlagen of the female reproductive tract, which regress in the male fetus in response to MIS. This process is driven by subluminal mesenchymal cells expressing Misr2, which trigger the regression of the adjacent Mullerian ductal epithelium. In females, these Misr2+ cells are retained, yet their contribution to the development of the uterus remains unknown. Here, we report that subluminal Misr2+ cells persist postnatally in the uterus of rodents, but recede by week 37 of gestation in humans. Using single-cell RNA sequencing, we demonstrate that ectopic postnatal MIS administration inhibits these cells and prevents the formation of endometrial stroma in rodents, suggesting a progenitor function. Exposure to MIS during the first six days of life, by inhibiting specification of the stroma, dysregulates paracrine signals necessary for uterine development, eventually resulting in apoptosis of the Misr2+ cells, uterine hypoplasia, and complete infertility in the adult female. In the womb, mammals possess all of the preliminary sexual structures necessary to become either male or female. This includes the Mullerian duct, which develops into the Fallopian tubes, uterus, cervix, and vagina in female fetuses. In male fetuses, the testis secretes a hormone called Mullerian inhibiting substance (MIS). This triggers the activity of a small group of cells, known as Misr2+ cells, that cause the Mullerian duct to degenerate, preventing males from developing female sexual organs. It was not clear what happens to Misr2+ cells in female fetuses or if they affect how the uterus develops. Saatcioglu et al. now show that in newborn female mice and rats, a type of Misr2+ cell that sits within a thin inner layer of the developing uterus still responds to MIS. At this time, the uterus is in a critical early period of development. Treating the mice and rats with MIS protein during their first six days of life eventually caused the Misr2+ cells to die. The treatment also prevented a layer of connective tissue, known as the endometrial stroma, from forming in the uterus. As a result, the mice and rats were infertile and had severely underdeveloped uteri. While the Misr2+ cells are present in newborn rats and mice, Saatcioglu et al. found that they disappeared before birth in humans. However, the overall results suggest that Misr2+ cells act as progenitor cells that develop into the cells of the endometrial stroma. Future work could investigate the roles these cells play in causing uterine developmental disorders and infertility disorders. Furthermore, the finding that MIS inhibits the Misr2+ cells could help researchers to develop treatments for uterine cancer and other conditions where the cells of the uterus grow and divide too much.
Collapse
Affiliation(s)
- Hatice Duygu Saatcioglu
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Motohiro Kano
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Heiko Horn
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States.,Stanley Center, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Lihua Zhang
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Wesley Samore
- Department of Pathology, Massachusetts General Hospital, Boston, United States
| | - Nicholas Nagykery
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Marie-Charlotte Meinsohn
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Minsuk Hyun
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Rana Suliman
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Joy Poulo
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States.,Stanley Center, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jennifer Hsu
- Department of Gynecology and Reproductive Biology, Massachussets General Hospital, Boston, United States
| | - Caitlin Sacha
- Department of Gynecology and Reproductive Biology, Massachussets General Hospital, Boston, United States
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, United States
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, United States
| | - Kasper Lage
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States.,Stanley Center, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Esther Oliva
- Department of Pathology, Massachusetts General Hospital, Boston, United States
| | - Mary E Morris Sabatini
- Department of Gynecology and Reproductive Biology, Massachussets General Hospital, Boston, United States
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - David Pépin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| |
Collapse
|
8
|
Han X, Shao W, Yue Z, Xing L, Shen L, Long C, Zhang D, He D, Lin T, Wei G. [Di (2-ethylhexyl) phthalate-induced hypospadias in SD rats is related with Mafb expression: a transcriptome profiling-based study]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:456-463. [PMID: 31068290 DOI: 10.12122/j.issn.1673-4254.2019.04.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the transcriptome profile of genital tubercles (GTs) in male SD rats and explore the mechanism of hypospadias induced by Di (2-ethylhexyl) phthalate (DEHP). METHODS Forty time-pregnant SD rats were randomly divided into 4 equal groups, namely GD16 group and GD19 group (in which the male GTs were collected on gestation day[GD]16 and GD19 for RNA-seq, respectively), control group and DEHP exposure group (with administration of oil and 750 mg/kg DEHP by gavage from GD12 to GD19, respectively).In the control and DEHP exposure groups, the GTs were collected from the male fetuses on GD19.5, and scanning electron microscopy and HE staining were used to observe the morphological changes.The differentially expressed genes (DEGs) in the GTs were screened using lllumina HiSeq 2000 followed by GO and KEGG enrichment analyses to characterize the transcriptome profile.Immunofluorescence assay was performed to verify the DEGs (Mafb) identified by RNA-seq results.Immunofluorescence assay and Western blotting were used to examine the expression levels of Mafb in the penile tissue. RESULTS A total of 1360 DEGs were detected in the GTs between GD16 group and GD19 group by RNA-seq.Among these genes, 797 were up-regulated and 563 were down-regulated.These DEGs were mainly enriched in the cell adhesion plaque signaling pathway, axon guidance signaling pathway, and extracellular matrix receptor signaling pathway.Compared with that in GD16 group, Mafb was significantly up-regulated in GD19 group, which was consistent with the sequencing results.Mafb and β-catenin were significantly down-regulated in DEHP-exposed group compared with the control group (P < 0.01). CONCLUSIONS Mafb expression increases progressively with the development of GTs in male SD rats.DEHP exposure causes significant down-regulation of Mafb and β-catenin, suggesting that β-catenin signaling pathway that affects Mafb is related to DEHP-induced hypospadias in SD rats.
Collapse
Affiliation(s)
- Xiang Han
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Wang Shao
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Zhou Yue
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Liu Xing
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lianju Shen
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Chunlan Long
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Tao Lin
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
9
|
Planells B, Gómez-Redondo I, Pericuesta E, Lonergan P, Gutiérrez-Adán A. Differential isoform expression and alternative splicing in sex determination in mice. BMC Genomics 2019; 20:202. [PMID: 30871468 PMCID: PMC6419433 DOI: 10.1186/s12864-019-5572-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Alternative splicing (AS) may play an important role in gonadal sex determination (GSD) in mammals. The present study was designed to identify differentially expressed isoforms and AS modifications accompanying GSD in mice. Results Using deep RNA-sequencing, we performed a transcriptional analysis of XX and XY gonads during sex determination on embryonic days 11 (E11) and 12 (E12). Analysis of differentially expressed genes (DEG) identified hundreds of genes related to GSD and early sex differentiation that may represent good candidates for sex reversal. Expression at time point E11 in males was significantly enriched in RNA splicing and mRNA processing Gene Ontology terms. Differentially expressed isoform analysis identified hundreds of specific isoforms related to GSD, many of which showed no differences in the DEG analysis. Hundreds of AS events were identified as modified at E11 and E12. Female E11 gonads featured sex-biased upregulation of intron retention (in genes related to regulation of transcription, protein phosphorylation, protein transport and mRNA splicing) and exon skipping (in genes related to chromatin repression) suggesting AS as a post-transcription mechanism that controls sex determination of the bipotential fetal gonad. Conclusion Our data suggests an important role of splicing regulatory mechanisms for sex determination in mice. Electronic supplementary material The online version of this article (10.1186/s12864-019-5572-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamín Planells
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.,School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Isabel Gómez-Redondo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.
| |
Collapse
|
10
|
Barseghyan H, Délot EC, Vilain E. New technologies to uncover the molecular basis of disorders of sex development. Mol Cell Endocrinol 2018; 468:60-69. [PMID: 29655603 PMCID: PMC7249677 DOI: 10.1016/j.mce.2018.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 02/04/2023]
Abstract
The elegant developmental biology experiments conducted in the 1940s by French physiologist Alfred Jost demonstrated that the sexual phenotype of a mammalian embryo depended whether the embryonic gonad develops into a testis or not. In humans, anomalies in the processes that regulate development of chromosomal, gonadal or anatomic sex result in a spectrum of conditions termed Disorders/Differences of Sex Development (DSD). Each of these conditions is rare, and understanding of their genetic etiology is still incomplete. Historically, DSD diagnoses have been difficult to establish due to the lack of standardization of anatomical and endocrine phenotyping procedures as well as genetic testing. Yet, a definitive diagnosis is critical for optimal management of the medical and psychosocial challenges associated with DSD conditions. The advent in the clinical realm of next-generation sequencing methods, with constantly decreasing price and turnaround time, has revolutionized the diagnostic process. Here we review the successes and limitations of the genetic methods currently available for DSD diagnosis, including Sanger sequencing, karyotyping, exome sequencing and chromosomal microarrays. While exome sequencing provides higher diagnostic rates, many patients still remain undiagnosed. Newer approaches, such as whole-genome sequencing and whole-genome mapping, along with gene expression studies, have the potential to identify novel DSD-causing genes and significantly increase total diagnostic yield, hopefully shortening the patient's journey to an accurate diagnosis and enhancing health-related quality-of-life outcomes for patients and families.
Collapse
Affiliation(s)
- Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC, 20010, USA.
| | - Emmanuèle C Délot
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC, 20010, USA.
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC, 20010, USA.
| |
Collapse
|