1
|
Gonzalez AJ, Gonzalez-Montoro A. Developments in Dedicated Prostate PET Instrumentation. PET Clin 2024; 19:49-57. [PMID: 37778967 DOI: 10.1016/j.cpet.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This article summarizes the evolution of dedicated prostate PET instrumentation. It starts by introducing prostate cancer, as well as the most common diagnostic and staging methods that are used in the clinics. Then, it describes the key aspects of PET detectors and their assembly in full PET scanners highlighting the most suitable geometries for prostate examination, and a review on the existing prostate dedicated PET. Finally, the next steps for extending the use of PET in the daily diagnose, staging, and image-guided biopsy of patients with prostate cancer are discussed.
Collapse
Affiliation(s)
- Antonio J Gonzalez
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain.
| | - Andrea Gonzalez-Montoro
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| |
Collapse
|
2
|
Krokos G, MacKewn J, Dunn J, Marsden P. A review of PET attenuation correction methods for PET-MR. EJNMMI Phys 2023; 10:52. [PMID: 37695384 PMCID: PMC10495310 DOI: 10.1186/s40658-023-00569-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Despite being thirteen years since the installation of the first PET-MR system, the scanners constitute a very small proportion of the total hybrid PET systems installed. This is in stark contrast to the rapid expansion of the PET-CT scanner, which quickly established its importance in patient diagnosis within a similar timeframe. One of the main hurdles is the development of an accurate, reproducible and easy-to-use method for attenuation correction. Quantitative discrepancies in PET images between the manufacturer-provided MR methods and the more established CT- or transmission-based attenuation correction methods have led the scientific community in a continuous effort to develop a robust and accurate alternative. These can be divided into four broad categories: (i) MR-based, (ii) emission-based, (iii) atlas-based and the (iv) machine learning-based attenuation correction, which is rapidly gaining momentum. The first is based on segmenting the MR images in various tissues and allocating a predefined attenuation coefficient for each tissue. Emission-based attenuation correction methods aim in utilising the PET emission data by simultaneously reconstructing the radioactivity distribution and the attenuation image. Atlas-based attenuation correction methods aim to predict a CT or transmission image given an MR image of a new patient, by using databases containing CT or transmission images from the general population. Finally, in machine learning methods, a model that could predict the required image given the acquired MR or non-attenuation-corrected PET image is developed by exploiting the underlying features of the images. Deep learning methods are the dominant approach in this category. Compared to the more traditional machine learning, which uses structured data for building a model, deep learning makes direct use of the acquired images to identify underlying features. This up-to-date review goes through the literature of attenuation correction approaches in PET-MR after categorising them. The various approaches in each category are described and discussed. After exploring each category separately, a general overview is given of the current status and potential future approaches along with a comparison of the four outlined categories.
Collapse
Affiliation(s)
- Georgios Krokos
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Jane MacKewn
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK
| | - Joel Dunn
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK
| | - Paul Marsden
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
3
|
Sohn JH, Behr SC, Hernandez PM, Seo Y. Quantitative Assessment of Myocardial Ischemia With Positron Emission Tomography. J Thorac Imaging 2023; 38:247-259. [PMID: 33492046 PMCID: PMC8295411 DOI: 10.1097/rti.0000000000000579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent advances in positron emission tomography (PET) technology and reconstruction techniques have now made quantitative assessment using cardiac PET readily available in most cardiac PET imaging centers. Multiple PET myocardial perfusion imaging (MPI) radiopharmaceuticals are available for quantitative examination of myocardial ischemia, with each having distinct convenience and accuracy profile. Important properties of these radiopharmaceuticals ( 15 O-water, 13 N-ammonia, 82 Rb, 11 C-acetate, and 18 F-flurpiridaz) including radionuclide half-life, mean positron range in tissue, and the relationship between kinetic parameters and myocardial blood flow (MBF) are presented. Absolute quantification of MBF requires PET MPI to be performed with protocols that allow the generation of dynamic multiframes of reconstructed data. Using a tissue compartment model, the rate constant that governs the rate of PET MPI radiopharmaceutical extraction from the blood plasma to myocardial tissue is calculated. Then, this rate constant ( K1 ) is converted to MBF using an established extraction formula for each radiopharmaceutical. As most of the modern PET scanners acquire the data only in list mode, techniques of processing the list-mode data into dynamic multiframes are also reviewed. Finally, the impact of modern PET technologies such as PET/CT, PET/MR, total-body PET, machine learning/deep learning on comprehensive and quantitative assessment of myocardial ischemia is briefly described in this review.
Collapse
Affiliation(s)
- Jae Ho Sohn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Spencer C. Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | | | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, CA
- UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA
| |
Collapse
|
4
|
Wimalarathne D, Ruan W, Sun X, Liu F, Gai Y, Liu Q, Hu F, Lan X. Impact of TOF on Brain PET With Short-Lived 11C-Labeled Tracers Among Suspected Patients With AD/PD: Using Hybrid PET/MRI. Front Med (Lausanne) 2022; 9:823292. [PMID: 35308534 PMCID: PMC8926006 DOI: 10.3389/fmed.2022.823292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the impact of the time-of-flight (TOF) reconstruction on brain PET with short-lived 11C-labeled tracers in PET magnetic resonance (PET/MR) brain images among suspected patients with Alzheimer's and Parkinson's disease (AD/PD). Methods Patients who underwent 11C-2-ß-carbomethoxy-3-b-(4-fluorophenyl) tropane (11C-CFT) and 2-(4-N-[11C] methylaminophenyl)-6-hydroxybenzothiazole (11C-PiB) PET/MRI were retrospectively included in the study. Each PET LIST mode data were reconstructed with and without the TOF reconstruction algorithm. Standard uptake values (SUVs) of Caudate Nucleus (CN), Putamen (PU), and Whole-brain (WB) were measured. TOF and non-TOF SUVs were assessed by using paired t-test. Standard formulas were applied to measure contrast, signal-to-noise ratio (SNR), and percentage relative average difference of SUVs (%RAD-SUVs). Results Total 75 patients were included with the median age (years) and body mass index (BMI-kg/m2) of 60.2 ± 10.9 years and 23.9 ± 3.7 kg/m2 in 11C-CFT (n = 41) and 62.2 ± 6.8 years and 24.7 ± 2.9 kg/m2 in 11C-PiB (n = 34), respectively. Higher average SUVs and positive %RAD-SUVs were observed in CN and PU in TOF compared with non-TOF reconstructions for the two 11C-labeled radiotracers. Differences of SUVmean were significant (p < 0.05) in CN and PU for both 11C-labeled radiotracers. SUVmax was enhanced significantly in CN and PU for 11C-CFT and CN for 11C-PiB, but not in PU. Significant contrast enhancement was observed in PU for both 11C-labeled radiotracers, whereas SNR gain was significant in PU, only for 11C-PiB in TOF reconstruction. Conclusion Time-of-flight leads to a better signal vs. noise trade-off than non-TOF in 11C-labeled tracers between CN and PU, improving the SUVs, contrast, and SNR, which were valuable for reducing injected radiation dose. Improved timing resolution aided the rapid decay rate of short-lived 11C-labeled tracers, and it shortened the scan time, increasing the patient comfort, and reducing the motion artifact among patients with AD/PD. However, one should adopt the combined TOF algorithm with caution for the quantitative analysis because it has different effects on the SUVmax, contrast, and SNR of different brain regions.
Collapse
Affiliation(s)
- D.D.N Wimalarathne
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiography and Radiotherapy, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Sun
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Garcia J, Compte A, Galan C, Cozar M, Buxeda M, Mourelo S, Piñeiro T, Soler M, Valls E, Bassa P, Santabarbara J. 18F-choline PET/MR in the initial staging of prostate cancer. Impact on the therapeutic approach. Rev Esp Med Nucl Imagen Mol 2021. [DOI: 10.1016/j.remnie.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
18F-choline PET/MRI on initial staging of prostate cancer. Impact on therapy approach. Rev Esp Med Nucl Imagen Mol 2021; 40:72-81. [PMID: 33579662 DOI: 10.1016/j.remn.2020.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022]
Abstract
AIM Evaluate the therapy impact of initial staging in patients diagnosed with prostate cancer by 18 F-choline PET/MRI hybrid technique. MATERIAL A prospective study which included 31 patients diagnosed with prostate cancer; Gleason > 7; mean PSA 13.6 ng/mL (range 6.3-20.6). PET/MRI studies were acquired simultaneously with hybrid equipment (SIGNA.3T, GE) following intravenous injection of 185 ± 18.5MBq of 18F-choline: - Early/prostate imaging: PET emission + multiparametric MR: DIXON-T1-T2-diffusion-gadolinium. - Late/whole-body imaging: PET emission + MR: DIXON-T1-T2-diffusion-STIR sequences. Images were visually evaluated. SUV & ADC & textures were also calculated. Treatment selection was based upon Oncology Committee consensus decision. RESULTS Procedure was well tolerated in all patients, and no artifacts were reported. MRI was superior in T staging in eight patients (25.8%) (Likert: 2-3), whereas PET increased MRI sensitivity in three patients (9.7%) (PIRADS: 3). PROSTATE LESION LOCATION Peripheral 91.4%, transitional 8.6%. SUVmax threshold: 2.95: sensitivity 92.9%, specificity 66.7%. No correlation SUV vs. ADC. Better distinction between stage T2 vs. T3 using the DiscrLin model with NG = 16 (AUC 0.7767 ± 0.3386). PET was superior to T2 in textures analysis (0.588 vs. 0.412). Seventeen patients (54.8%) were staged ≥ T3, with surgical treatment being contraindicated. Fifteen patients (48.4%) presented with extra-prostatic disease: 8/31 oligometastatic and 7/31 multiple metastasis. Therapy approach following PET/MRI was: radical treatment in 24/31 patients (77.4%), 14 radical prostatectomy and 10 MRI-guided radiotherapy; systemic treatment in 7/31 patients (22.6%). CONCLUSION 18F-choline PET/MRI had a complementary role for the T staging, with a high detection rate for NM infiltration. PET/MRI findings allowed patients to be directed either to prostatectomy or MRI-guided radiotherapy, and thus avoiding radicaltreatment in 22.6% of patients.
Collapse
|
7
|
Evangelista L, Zattoni F, Cassarino G, Artioli P, Cecchin D, Dal Moro F, Zucchetta P. PET/MRI in prostate cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2020; 48:859-873. [PMID: 32901351 PMCID: PMC8036222 DOI: 10.1007/s00259-020-05025-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022]
Abstract
Aim In recent years, the clinical availability of scanners for integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) has enabled the practical potential of multimodal, combined metabolic-receptor, anatomical, and functional imaging to be explored. The present systematic review and meta-analysis summarize the diagnostic information provided by PET/MRI in patients with prostate cancer (PCa). Materials and methods A literature search was conducted in three different databases. The terms used were “choline” or “prostate-specific membrane antigen - PSMA” AND “prostate cancer” or “prostate” AND “PET/MRI” or “PET MRI” or “PET-MRI” or “positron emission tomography/magnetic resonance imaging.” All relevant records identified were combined, and the full texts were retrieved. Reports were excluded if (1) they did not consider hybrid PET/MRI; or (2) the sample size was < 10 patients; or (3) the raw data were not enough to enable the completion of a 2 × 2 contingency table. Results Fifty articles were eligible for systematic review, and 23 for meta-analysis. The pooled data concerned 2104 patients. Initial disease staging was the main indication for PET/MRI in 24 studies. Radiolabeled PSMA was the tracer most frequently used. In primary tumors, the pooled sensitivity for the patient-based analysis was 94.9%. At restaging, the pooled detection rate was 80.9% and was higher for radiolabeled PSMA than for choline (81.8% and 77.3%, respectively). Conclusions PET/MRI proved highly sensitive in detecting primary PCa, with a high detection rate for recurrent disease, particularly when radiolabeled PSMA was used. Electronic supplementary material The online version of this article (10.1007/s00259-020-05025-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine, Padova University Hospital, Via Giustiniani 2, Padova, Italy.
| | - Fabio Zattoni
- Urology Unit, Department of Medicine, Udine University Hospital, Udine, Italy
| | - Gianluca Cassarino
- Nuclear Medicine Unit, Department of Medicine, Padova University Hospital, Via Giustiniani 2, Padova, Italy
| | - Paolo Artioli
- Nuclear Medicine Unit, Department of Medicine, Padova University Hospital, Via Giustiniani 2, Padova, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine, Padova University Hospital, Via Giustiniani 2, Padova, Italy
| | - Fabrizio Dal Moro
- Urology Unit, Department of Medicine, Udine University Hospital, Udine, Italy.,Urology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine, Padova University Hospital, Via Giustiniani 2, Padova, Italy
| |
Collapse
|
8
|
Choi CH, Felder T, Felder J, Tellmann L, Hong SM, Wegener HP, Shah NJ, Ziemons K. Design, evaluation and comparison of endorectal coils for hybrid MR-PET imaging of the prostate. Phys Med Biol 2020; 65:115005. [PMID: 32268314 DOI: 10.1088/1361-6560/ab87f8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Prostate cancer is one of the most common cancers among men and its early detection is critical for its successful treatment. The use of multimodal imaging, such as MR-PET, is most advantageous as it is able to provide detailed information about the prostate. However, as the human prostate is flexible and can move into different positions under external conditions, it is important to localise the focused region-of-interest using both MRI and PET under identical circumstances. In this work, we designed five commonly used linear and quadrature radiofrequency surface coils suitable for hybrid MR-PET use in endorectal applications. Due to the endorectal design and the shielded PET insert, the outer face of the coils investigated was curved and the region to be imaged was outside the volume of the coil. The tilting angles of the coils were varied with respect to the main magnetic field direction. This was done to approximate the various positions from which the prostate could be imaged. The transmit efficiencies and safety excitation efficiencies from simulations, together with the signal-to-noise ratios from the MR images were calculated and analysed. Overall, it was found that the overlapped loops driven in quadrature were superior to the other types of coils we tested. In order to determine the effect of the different coil designs on PET, transmission scans were carried out, and it was observed that the differences between attenuation maps with and without the coils were negligible. The findings of this work can provide useful guidance for the integration of such coil designs into MR-PET hybrid systems in the future.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Grafe H, Lindemann ME, Ruhlmann V, Oehmigen M, Hirmas N, Umutlu L, Herrmann K, Quick HH. Evaluation of improved attenuation correction in whole-body PET/MR on patients with bone metastasis using various radiotracers. Eur J Nucl Med Mol Imaging 2020; 47:2269-2279. [PMID: 32125487 PMCID: PMC7396397 DOI: 10.1007/s00259-020-04738-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/20/2020] [Indexed: 01/18/2023]
Abstract
Purpose This study evaluates the quantitative effect of improved MR-based attenuation correction (AC), including bone segmentation and the HUGE method for truncation correction in PET/MR whole-body hybrid imaging specifically of oncologic patients with bone metastasis and using various radiotracers. Methods Twenty-three patients that underwent altogether 28 whole-body PET/MR examinations with findings of bone metastasis were included in this study. Different radiotracers (18F-FDG, 68Ga-PSMA, 68Ga-DOTATOC, 124I–MIBG) were injected according to appropriate clinical indications. Each of the 28 whole-body PET datasets was reconstructed three times using AC with (1) standard four-compartment μ-maps (background air, lung, muscle, and soft tissue), (2) five-compartment μ-maps (adding bone), and (3) six-compartment μ-maps (adding bone and HUGE truncation correction). The SUVmax of each detected bone lesion was measured in each reconstruction to evaluate the quantitative impact of improved MR-based AC. Relative difference images between four- and six-compartment μ-maps were calculated. MR-based HUGE truncation correction was compared with the PET-based MLAA truncation correction method in all patients. Results Overall, 69 bone lesions were detected and evaluated. The mean increase in relative difference over all 69 lesions in SUVmax was 5.4 ± 6.4% when comparing the improved six-compartment AC with the standard four-compartment AC. Maximal relative difference of 28.4% was measured in one lesion. Truncation correction with HUGE worked robust and resulted in realistic body contouring in all 28 exams and for all 4 different radiotracers. Truncation correction with MLAA revealed overestimations of arm tissue volume in all PET/MR exams with 18F-FDG radiotracer and failed in all other exams with radiotracers 68Ga-PSMA, 68Ga-DOTATOC, and 124I- MIBG due to limitations in body contour detection. Conclusion Improved MR-based AC, including bone segmentation and HUGE truncation correction in whole-body PET/MR on patients with bone lesions and using various radiotracers, is important to ensure best possible diagnostic image quality and accurate PET quantification. The HUGE method for truncation correction based on MR worked robust and results in realistic body contouring, independent of the radiotracers used.
Collapse
Affiliation(s)
- Hong Grafe
- Department of Nuclear Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Maike E Lindemann
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Verena Ruhlmann
- Department of Nuclear Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Mark Oehmigen
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Nader Hirmas
- Department of Nuclear Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Zollverein, 45141, Essen, Germany
| |
Collapse
|
10
|
Nikulin P, Maus J, Hofheinz F, Lougovski A, van den Hoff J. Time efficient scatter correction for time-of-flight PET: the immediate scatter approximation. Phys Med Biol 2019; 64:075005. [PMID: 30856617 DOI: 10.1088/1361-6560/ab0e9b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Utilization of time-of-flight (TOF) information allows us to improve image quality and convergence rate in iterative PET image reconstruction. In order to obtain quantitatively correct images accurate scatter correction (SC) is required that accounts for the non-uniform distribution of scatter events over the TOF bins. However, existing simplified TOF-SC algorithms frequently exhibit limited accuracy while the currently accepted reference method-the TOF extension of the single scatter simulation approach (TOF-SSS)-is computationally demanding and can substantially slow down the reconstruction. In this paper we propose and evaluate a new accelerated TOF-SC algorithm in order to improve this situation. The key idea of the algorithm is the use of an immediate scatter approximation (ISA) for scatter time distribution calculation which speeds up estimation of the required TOF scatter by a factor of up to five in comparison to TOF-SSS. The proposed approach was evaluated in dedicated phantom measurements providing challenging high activity contrast conditions as well as in representative clinical patient data sets. Our results show that ISA is a viable alternative to TOF-SSS. The reconstructed images are in excellent quantitative agreement with those obtained with TOF-SSS while overall reconstruction time can be reduced by a factor of two in whole-body studies, even when using a listmode reconstruction not optimized for speed.
Collapse
Affiliation(s)
- Pavel Nikulin
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | | |
Collapse
|
11
|
Muehlematter UJ, Nagel HW, Becker A, Mueller J, Vokinger KN, de Galiza Barbosa F, Ter Voert EEGT, Veit-Haibach P, Burger IA. Correction to: impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer. EJNMMI Res 2018; 8:68. [PMID: 30054768 PMCID: PMC6063803 DOI: 10.1186/s13550-018-0413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022] Open
Abstract
Unfortunately, after publication of this article [1], it was noticed that the name of Urs J. Muehlematter was incorrectly displayed as Urs J. Mühlematter. The corrected author list can be seen above and the original article has been corrected to reflect this.
Collapse
Affiliation(s)
- Urs J Muehlematter
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
| | - Hannes W Nagel
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Anton Becker
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Julian Mueller
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Edwin E G T Ter Voert
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Patrick Veit-Haibach
- Department Joint Medical Imaging, Toronto General Hospital, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Irene A Burger
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|