1
|
Kotani R, Hatano K, Ishibashi K, Iwata A. Meningovascular and parenchymal neurosyphilis showing more extensive inflammatory lesions on 18F-THK5351 PET than MRI. Rinsho Shinkeigaku 2025:cn-002082. [PMID: 40301024 DOI: 10.5692/clinicalneurol.cn-002082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
This manuscript complements the clinical course of the first case of neurosyphilis in our previous report (Kotani. et al. Clin Nuc Med 2024) which highlighted the utility of 18F-THK5351 positron emission tomography (PET), a marker of astrogliosis, to visualize neuroinflammation. The patient was a right-handed man in his early 60s who presented with a three-month history of forgetfulness and subsequent right hemiparesis. Neurological and neuropsychological examinations revealed the right pyramidal signs and impairments in attention, memory, executive function, visuospatial cognition, and verbal fluency. The patient was diagnosed with neurosyphilis based on positive tests for syphilis antibodies in the serum and cerebrospinal fluid (CSF) and elevated CSF cell and protein levels. MRI revealed multiple infarcted lesions that explained the pyramidal signs; however, the lesions responsible for cognitive impairment were not visualized. Two months after penicillin G treatment, the patient exhibited partial improvements in cognitive function, without obvious changes in MRI. To investigate the underlying neuroinflammation associated with astrogliosis, we performed PET imaging after treatment. 18F-THK5351 PET revealed increased uptake and 18F-fluorodeoxyglucose (FDG) PET showed decreased uptake in the left deep frontal white matter and thalamus. We believed that the right pyramidal signs were associated with infarctions contributed by meningovascular syphilis in addition to the arteriosclerosis, whereas cognitive impairment was associated with neuroinflammation due to parenchymal syphilis. Furthermore, the impairment of thalamocortical circuits may have compromised the widespread cortical excitability underlying cognitive impairments. This report highlights the utility of 18F-THK5351 PET imaging in understanding the pathogenesis of neurosyphilis, including cognitive impairment. Further longitudinal studies are required to elucidate the relationship between neuroinflammation and the clinical presentation of neurosyphilis.
Collapse
Affiliation(s)
- Risa Kotani
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology
| | - Keiko Hatano
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology
| | - Kenji Ishibashi
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology
| |
Collapse
|
2
|
Pan J, Hu J, Meng D, Chen L, Wei X. Neuroinflammation in dementia: A meta-analysis of PET imaging studies. Medicine (Baltimore) 2024; 103:e38086. [PMID: 38701247 PMCID: PMC11062685 DOI: 10.1097/md.0000000000038086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Dementia is a major public health challenge for aging societies worldwide. Neuroinflammation is thought to be a key factor in dementia development. The aim of this study was to comprehensively assess translocator protein (TSPO) expression by positron emission tomography (PET) imaging to reveal the characteristics of neuroinflammation in dementia. METHODS We used a meta-analysis to retrieve literature on TSPO expression in dementia using PET imaging technology, including but not limited to the quality of the study design, sample size, and the type of TSPO ligand used in the study. For the included studies, we extracted key data, including TSPO expression levels, clinical characteristics of the study participants, and specific information on brain regions. Meta-analysis was performed using R software to assess the relationship between TSPO expression and dementia. RESULTS After screening, 12 studies that met the criteria were included. The results of the meta-analysis showed that the expression level of TSPO was significantly elevated in patients with dementia, especially in the hippocampal region. The OR in the hippocampus was 1.50 with a 95% CI of 1.09 to 1.25, indicating a significant increase in the expression of TSPO in this region compared to controls. Elevated levels of inflammation in the prefrontal lobe and cingulate gyrus are associated with cognitive impairment in patients. This was despite an OR of 1.00 in the anterior cingulate gyrus, indicating that TSPO expression in this region did not correlate significantly with the findings. The overall heterogeneity test showed I² = 51%, indicating moderate heterogeneity. CONCLUSION This study summarizes the existing literature on TSPO expression in specific regions of the brain in patients with dementia, and also provides some preliminary evidence on the possible association between neuroinflammation and dementia. However, the heterogeneity of results and limitations of the study suggest that we need to interpret these findings with caution. Future studies need to adopt a more rigorous and consistent methodological design to more accurately assess the role of neuroinflammation in dementia, thereby providing a more reliable evidence base for understanding pathological mechanisms and developing potential therapeutic strategies.
Collapse
Affiliation(s)
- Jie Pan
- Department of Neurology, The First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing City, Zhejiang Province, China
| | - Jin Hu
- Department of Neurology, The First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing City, Zhejiang Province, China
| | - Danyang Meng
- Department of Neurology, The First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing City, Zhejiang Province, China
| | - Liang Chen
- Department of Head and Neck Surgery, The First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing City, Zhejiang Province, China
| | - Xianling Wei
- Department of Nuclear Medicine, The First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing City, Zhejiang Province, China
| |
Collapse
|
3
|
Ishibashi K. Clinical application of MAO-B PET using 18F-THK5351 in neurological disorders. Geriatr Gerontol Int 2024; 24 Suppl 1:31-43. [PMID: 37973072 PMCID: PMC11503588 DOI: 10.1111/ggi.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Monoamine oxidase B (MAO-B) is an enzyme localized to the outer mitochondrial membrane and highly concentrated in astrocytes. Temporal changes in regional MAO-B levels can be used as an index of astrocytic proliferation, known as activated astrocytes or astrogliosis. MAO-B is a marker to evaluate the degree of astrogliosis. Therefore, MAO-B positron emission tomography (PET) is a powerful imaging technique for visualizing and quantifying ongoing astrogliosis through the estimate of regional MAO-B levels. Each neurodegenerative disorder generally has a characteristic distribution pattern of astrogliosis secondary to neuronal loss and pathological protein aggregation. Therefore, by imaging astrogliosis, MAO-B PET can be used as a neurodegeneration marker for identifying degenerative lesions. Any inflammation in the brain usually accompanies astrogliosis starting from an acute phase to a chronic phase. Therefore, by imaging astrogliosis, MAO-B PET can be used as a neuroinflammation marker for identifying inflammatory lesions. MAO-B levels are high in gliomas originating from astrocytes but low in lymphoid tumors. Therefore, MAO-B PET can be used as a brain tumor marker for identifying astrocytic gliomas by imaging MAO-B levels and distinguishing between astrocytic and lymphoid tumors. This review summarizes the clinical application of MAO-B PET using 18F-THK5351 as markers for neurodegeneration, neuroinflammation, and brain tumors in neurological disorders. Because we assume that MAO-B PET is clinically applied to an individual patient, we focus on visual inspection of MAO-B images at the individual patient level. Geriatr Gerontol Int 2024; 24: 31-43.
Collapse
Affiliation(s)
- Kenji Ishibashi
- Diagnostic Neuroimaging Research, Research Team for NeuroimagingTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| |
Collapse
|
4
|
Huang KL, Hsiao IT, Chang TY, Yang SY, Chang YJ, Wu HC, Liu CH, Wu YM, Lin KJ, Ho MY, Lee TH. Neurodegeneration and Vascular Burden on Cognition After Midlife: A Plasma and Neuroimaging Biomarker Study. Front Hum Neurosci 2022; 15:735063. [PMID: 34970128 PMCID: PMC8712753 DOI: 10.3389/fnhum.2021.735063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives: Neurodegeneration and vascular burden are the two most common causes of post-stroke cognitive impairment. However, the interrelationship between the plasma beta-amyloid (Aβ) and tau protein, cortical atrophy and brain amyloid accumulation on PET imaging in stroke patients is undetermined. We aimed to explore: (1) the relationships of cortical thickness and amyloid burden on PET with plasma Aβ40, Aβ42, tau protein and their composite scores in stroke patients; and (2) the associations of post-stroke cognitive presentations with these plasma and neuroimaging biomarkers. Methods: The prospective project recruited first-ever ischemic stroke patients around 3 months after stroke onset. The plasma Aβ40, Aβ42, and total tau protein were measured with the immunomagnetic reduction method. Cortical thickness was evaluated on MRI, and cortical amyloid plaque deposition was evaluated by 18F-florbetapir PET. Cognition was evaluated with Mini-Mental State Examination (MMSE), Geriatric Depression Scale (GDS), Dementia Rating Scale-2 (DRS-2). Results: The study recruited 24 stroke patients and 13 normal controls. The plasma tau and tau*Aβ42 levels were correlated with mean cortical thickness after age adjustment. The Aβ42/Aβ40 ratio was correlated with global cortical 18F-florbetapir uptake value. The DRS-2 and GDS scores were associated with mean cortical thickness and plasma biomarkers, including Aβ42/Aβ40, tau, tau*Aβ42, tau/Aβ42, and tau/Aβ40 levels, in stroke patients. Conclusion: Plasma Aβ, tau, and their composite scores were associated with cognitive performance 3 months after stroke, and these plasma biomarkers were correlated with corresponding imaging biomarkers of neurodegeneration. Further longitudinal studies with a larger sample size are warranted to replicate the study results.
Collapse
Affiliation(s)
- Kuo-Lun Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Yu Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | - Yeu-Jhy Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu-Chuan Wu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Hung Liu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ming Wu
- Department of Radiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Yang Ho
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Hai Lee
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
5
|
The Imaging Features and Clinical Associations of a Novel Tau PET Tracer-18F-APN1607 in Alzheimer Disease. Clin Nucl Med 2020; 45:747-756. [PMID: 32701794 DOI: 10.1097/rlu.0000000000003164] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF THE REPORT In vivo tau PET imaging could help clarify the spatial distribution of tau deposition in Alzheimer disease (AD) and aid in the differential diagnosis of tauopathies. To date, there have been no in vivo F-APN1607 tau PET studies in patients with AD. METHODS We applied tau tracer in 12 normal controls (NCs) and 10 patients in the mild to moderate stage of probable AD. Detailed clinical information, cognitive measurements, and disease severity were documented. Regional SUV ratios (SUVRs) from F-AV-45 (florbetapir), F-APN1607 PET images, and regional gray matter (GM) atrophic ratios were calculated for further analysis. RESULTS Quantitative analyses showed significantly elevated SUVRs in the frontal, temporal, parietal, occipital lobes, anterior and posterior cingulate gyri, precuneus, and parahippocampal region (all P's < 0.01) with medium to large effect sizes (0.44-0.75). The SUVRs from F-APN1607 PET imaging showed significant correlations with the Alzheimer's Disease Assessment Scale (ADAS-cog) scores (all P's < 0.01) and strong correlation coefficients (R ranged from 0.54 to 0.68), even adjusted for age and sex effects. Finally, the SUVRs from F-APN1607 PET imaging of the parahippocampal region showed rapid saturation as the ADAS-cog scores increased, and the SUVRs of the posterior cingulate gyrus and the temporal, frontal, parietal, and occipital regions slowly increased. The combined SUVRs from amyloid, tau PET, and regional GM atrophic ratio showed regional specific patterns as the ADAS-cog scores increased. CONCLUSIONS Our findings suggest that the F-APN1607 tau tracer correlated well with cognitive changes and demonstrated the spatial pattern of amyloid, tau deposition, and GM atrophy in the progression of AD.
Collapse
|
6
|
Huang KL, Hsiao IT, Ho MY, Hsu JL, Chang YJ, Chang TY, Liu CH, Chang CH, Wu YM, Wu KY, Wey SP, Yen TC, Okamura N, Lee TH, Lin KJ. Investigation of reactive astrogliosis effect on post-stroke cognitive impairment. J Neuroinflammation 2020; 17:308. [PMID: 33069238 PMCID: PMC7568828 DOI: 10.1186/s12974-020-01985-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The aim of this study is to investigate the associations between post-stroke cognitive impairment (PSCI) severity and reactive astrogliosis (RA) extent on normalized 18F-THK-5351 positron-emission tomography (PET) imaging in amyloid-negative patients with first-ever stroke. METHODS We prospectively enrolled 63 amyloid-negative patients with first-ever stroke. Neurocognitive evaluation, MRI, 18F-THK-5351, and 18F-florbetapir PET were performed around 3 months after stroke. The 18F-THK-5351 uptake intensity was normalized using a signal distribution template to obtain the Z-SUM scores as the RA extent in the whole brain and cerebral hemisphere ipsilateral to stroke lesion. We evaluated stroke volume, leukoaraiosis, and brain atrophy on MRI. We used a comprehensive neurocognitive battery to obtain composite cognitive scores, and defined PSCI as a general cognitive function score < - 1. We analyzed the influence of Z-SUM scores on PSCI severity after adjusting for demographic, vascular, and neurodegenerative variables. RESULTS Twenty-five of 63 stroke patients had PSCI. Patients with PSCI had older age, lower education, and more severe cortical atrophy and total Z-SUM scores. Total Z-SUM scores were significantly associated with general cognitive and executive functions at multiple regression models. Path analyses showed that stroke can exert cognitive influence directly by stroke itself as well as indirectly through RA, including total and ipsilateral Z-SUM scores, in patients with either right or left hemisphere stroke. CONCLUSION The patterns and intensity of 18F-THK-5351 uptake in amyloid-negative patients with first-ever stroke were associated with PSCI manifestations, which suggests that RA presents a modulating effect in PSCI development.
Collapse
Affiliation(s)
- Kuo-Lun Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
- Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Yang Ho
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
- Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, Chang Gung University, New Taipei City, Taiwan
- Taipei Medical University, College of Humanities and Social Sciences, Graduate Institute of Humanities in Medicine and Research Center for Brain and Consciousness, Shuang Ho Hospital, Taipei, Taiwan
| | - Yeu-Jhy Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
| | - Ting-Yu Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
| | - Chi-Hung Liu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
| | - Chien-Hung Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
| | - Yi-Ming Wu
- Department of Radiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shiaw-Pyng Wey
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
- Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Chen Yen
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
- Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Nobuyuki Okamura
- Division of Neuro-imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tsong-Hai Lee
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan.
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan.
- Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
A critical review of radiotracers in the positron emission tomography imaging of traumatic brain injury: FDG, tau, and amyloid imaging in mild traumatic brain injury and chronic traumatic encephalopathy. Eur J Nucl Med Mol Imaging 2020; 48:623-641. [DOI: 10.1007/s00259-020-04926-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
|
8
|
Ishibashi K, Miura Y, Hirata K, Toyohara J, Ishii K. Relationship between the temporal course of astrogliosis and symptom improvement in cerebral infarction: report of a case monitored using 18F-THK5351 positron emission tomography. BMC Med Imaging 2020; 20:81. [PMID: 32664871 PMCID: PMC7362635 DOI: 10.1186/s12880-020-00481-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background 18F-THK5351 was recently shown to bind to monoamine oxidase B (MAO-B) with high affinity. MAO-B is highly concentrated in astrocytes and increases during astrogliosis. Therefore, 18F-THK5351 accumulates in lesions undergoing astrogliosis. Cerebral infarction causes astrogliosis, which may be beneficial for repairing and regenerating injured cells and tissues in the lesions. Therefore, monitoring the degree of astrogliosis and stroke symptoms is essential for understanding the roles of astrogliosis in cerebral infarction. Case presentation A 72-year-old man, complaining of total loss of sensation in the left index finger, was diagnosed with acute cerebral infarction, and underwent 18F-THK5351 positron emission tomography (PET) on two occasions after the stroke. The first PET scan performed on day 27 revealed intense uptake in the infarct lesion located around the right precentral and postcentral gyri. However, the second PET scan on day 391 showed that the uptake had diminished significantly. The sensory deficit in the left index finger had improved by 30 and 70% at the times of the first and second PET scans, respectively. Conclusions 18F-THK5351 uptake in the infarct lesion evidently changed between days 27 and 391, along with improved sensory deficit in the left index finger. Astrocytes reportedly play a role in restoring neuronal integrity. Therefore, the temporal course of astrogliosis may have been related to improving stroke symptoms in this patient, suggesting that the degree of astrogliosis in the infarct lesion may aid in assessing the prognosis in stroke patients.
Collapse
Affiliation(s)
- Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan. .,Department of Neurology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.
| | - Yoshiharu Miura
- Department of Neurology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kosei Hirata
- Department of Neurology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.,Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
9
|
Harada R, Hayakawa Y, Ezura M, Lerdsirisuk P, Du Y, Ishikawa Y, Iwata R, Shidahara M, Ishiki A, Kikuchi A, Arai H, Kudo Y, Yanai K, Furumoto S, Okamura N. 18F-SMBT-1: A Selective and Reversible PET Tracer for Monoamine Oxidase-B Imaging. J Nucl Med 2020; 62:253-258. [PMID: 32646880 DOI: 10.2967/jnumed.120.244400] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022] Open
Abstract
Reactive astrocytes play a key role in the pathogenesis of various neurodegenerative diseases. Monoamine oxidase-B (MAO-B) is one of the promising targets for the imaging of astrogliosis in the human brain. A novel selective and reversible MAO-B tracer, (S)-(2-methylpyrid-5-yl)-6-[(3-18F-fluoro-2-hydroxy)propoxy]quinoline (18F-SMBT-1), was successfully developed via lead optimization from the first-generation tau PET tracer 18F-THK-5351. Methods: SMBT-1 was radiolabeled with 18F using the corresponding precursor. The binding affinity of radiolabeled compounds to MAO-B was assessed using saturation and competitive binding assays. The binding selectivity of 18F-SMBT-1 to MAO-B was evaluated by autoradiography of frozen human brain tissues. The pharmacokinetics and metabolism were assessed in normal mice after intravenous administration of 18F-SMBT-1. A 14-d toxicity study after the intravenous administration of 18F-SMBT-1 was performed using rats and mice. Results: In vitro binding assays demonstrated a high binding affinity of 18F-SMBT-1 to MAO-B (dissociation constant, 3.7 nM). In contrast, it showed low binding affinity to MAO-A and protein aggregates such as amyloid-β and tau fibrils. Autoradiographic analysis showed higher amounts of 18F-SMBT-1 binding in the Alzheimer disease brain sections than in the control brain sections. 18F-SMBT-1 binding was completely displaced with the reversible MAO-B inhibitor lazabemide, demonstrating the high selectivity of 18F-SMBT-1 for MAO-B. Furthermore, 18F-SMBT-1 showed a high uptake by brain, rapid washout, and no radiolabeled metabolites in the brain of normal mice. 18F-SMBT-1 showed no significant binding to various receptors, ion channels, or transporters, and no toxic effects related to its administration were observed in mice and rats. Conclusion: 18F-SMBT-1 is a promising and selective MAO-B PET tracer candidate, which would be useful for quantitative monitoring of astrogliosis in the human brain.
Collapse
Affiliation(s)
- Ryuichi Harada
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan .,Department of Geriatrics and Gerontology, Division of Brain Sciences, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Yoshimi Hayakawa
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Michinori Ezura
- Department of Neurology, Tohoku University Graduate School of Medicine. 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | | | - Yiqing Du
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | - Yoichi Ishikawa
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Ren Iwata
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Miho Shidahara
- Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Japan; and
| | - Aiko Ishiki
- Department of Geriatrics and Gerontology, Division of Brain Sciences, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Akio Kikuchi
- Department of Neurology, Tohoku University Graduate School of Medicine. 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hiroyuki Arai
- Department of Geriatrics and Gerontology, Division of Brain Sciences, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Yukitsuka Kudo
- Department of Geriatrics and Gerontology, Division of Brain Sciences, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan.,Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Nobuyuki Okamura
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan.,Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
10
|
Tapeinos C, Battaglini M, Marino A, Ciofani G. Smart diagnostic nano-agents for cerebral ischemia. J Mater Chem B 2020; 8:6233-6251. [DOI: 10.1039/d0tb00260g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A summary of the latest developments on imaging techniques and smart nano-diagnostics used for ischemic stroke.
Collapse
Affiliation(s)
- Christos Tapeinos
- Istituto Italiano di Tecnologia
- Smart Bio-Interfaces
- 56025 Pontedera
- Italy
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia
- Smart Bio-Interfaces
- 56025 Pontedera
- Italy
- Scuola Superiore Sant’Anna
| | - Attilio Marino
- Istituto Italiano di Tecnologia
- Smart Bio-Interfaces
- 56025 Pontedera
- Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia
- Smart Bio-Interfaces
- 56025 Pontedera
- Italy
| |
Collapse
|