1
|
Roohani B, Mendez AS, Dangarwala M, Katz S, Marquez-Nostra B. Nuclear Imaging of Bispecific Antibodies on the Rise. J Nucl Med 2024; 65:1512-1517. [PMID: 39266295 PMCID: PMC11448611 DOI: 10.2967/jnumed.123.267215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/08/2024] [Indexed: 09/14/2024] Open
Abstract
Bispecific antibodies (bsAbs) are engineered to target 2 different epitopes simultaneously. About 75% of the 16 clinically approved bsAbs have entered the clinic internationally since 2022. Hence, research on biomedical imaging of various radiolabeled bsAb scaffolds may serve to improve patient selection for bsAb therapy. Here, we provide a comprehensive overview of recent advances in radiolabeled bsAbs for imaging via PET or SPECT. We compare direct targeting and pretargeting approaches in preclinical and clinical studies in oncologic research. Furthermore, we show preclinical applications of imaging bsAbs in neurodegenerative diseases. Finally, we offer perspectives on the future directions of imaging bsAbs based on their challenges and opportunities.
Collapse
Affiliation(s)
- Borna Roohani
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut; and
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aldred Shane Mendez
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut; and
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mann Dangarwala
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Samantha Katz
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut; and
| | | |
Collapse
|
2
|
Wang Y, Zhang J, Han B, Tan L, Cai W, Li Y, Su Y, Yu Y, Wang X, Duan X, Wang H, Shi X, Wang J, Yang X, Liu T. Noncanonical amino acids as doubly bio-orthogonal handles for one-pot preparation of protein multiconjugates. Nat Commun 2023; 14:974. [PMID: 36810592 PMCID: PMC9944564 DOI: 10.1038/s41467-023-36658-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Genetic encoding of noncanonical amino acid (ncAA) for site-specific protein modification has been widely applied for many biological and therapeutic applications. To efficiently prepare homogeneous protein multiconjugates, we design two encodable noncanonical amino acids (ncAAs), 4-(6-(3-azidopropyl)-s-tetrazin-3-yl) phenylalanine (pTAF) and 3-(6-(3-azidopropyl)-s-tetrazin-3-yl) phenylalanine (mTAF), containing mutually orthogonal and bioorthogonal azide and tetrazine reaction handles. Recombinant proteins and antibody fragments containing the TAFs can easily be functionalized in one-pot reactions with combinations of commercially available fluorophores, radioisotopes, PEGs, and drugs in a plug-and-play manner to afford protein dual conjugates to assess combinations of tumor diagnosis, image-guided surgery, and targeted therapy in mouse models. Furthermore, we demonstrate that simultaneously incorporating mTAF and a ketone-containing ncAA into one protein via two non-sense codons allows preparation of a site-specific protein triconjugate. Our results demonstrate that TAFs are doubly bio-orthogonal handles for efficient and scalable preparation of homogeneous protein multiconjugates.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Jingming Zhang
- Department of Nuclear Medicine, Peking University First Hospital, 100034, Beijing, China
| | - Boyang Han
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Linzhi Tan
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Wenkang Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Yuxuan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Yeyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Yutong Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Xin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Xiaojiang Duan
- Department of Nuclear Medicine, Peking University First Hospital, 100034, Beijing, China
| | - Haoyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Xiaomeng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, 100034, Beijing, China. .,Institute of Medical Technology, Peking University Health Science Center, 100191, Beijing, China.
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China.
| |
Collapse
|
3
|
Boekestijn I, van Oosterom MN, Dell'Oglio P, van Velden FHP, Pool M, Maurer T, Rietbergen DDD, Buckle T, van Leeuwen FWB. The current status and future prospects for molecular imaging-guided precision surgery. Cancer Imaging 2022; 22:48. [PMID: 36068619 PMCID: PMC9446692 DOI: 10.1186/s40644-022-00482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/21/2022] [Indexed: 01/19/2023] Open
Abstract
Molecular imaging technologies are increasingly used to diagnose, monitor, and guide treatment of i.e., cancer. In this review, the current status and future prospects of the use of molecular imaging as an instrument to help realize precision surgery is addressed with focus on the main components that form the conceptual basis of intraoperative molecular imaging. Paramount for successful interventions is the relevance and accessibility of surgical targets. In addition, selection of the correct combination of imaging agents and modalities is critical to visualize both microscopic and bulk disease sites with high affinity and specificity. In this context developments within engineering/imaging physics continue to drive the growth of image-guided surgery. Particularly important herein is enhancement of sensitivity through improved contrast and spatial resolution, features that are critical if sites of cancer involvement are not to be overlooked during surgery. By facilitating the connection between surgical planning and surgical execution, digital surgery technologies such as computer-aided visualization nicely complement these technologies. The complexity of image guidance, combined with the plurality of technologies that are becoming available, also drives the need for evaluation mechanisms that can objectively score the impact that technologies exert on the performance of healthcare professionals and outcome improvement for patients.
Collapse
Affiliation(s)
- Imke Boekestijn
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paolo Dell'Oglio
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Floris H P van Velden
- Medical Physics, Department of Radiology , Leiden University Medical Center, Leiden, the Netherlands
| | - Martin Pool
- Department of Clinical Farmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tobias Maurer
- Martini-Klinik Prostate Cancer Centre Hamburg, Hamburg, Germany
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
Hollandsworth HM, Turner MA, Hoffman RM, Bouvet M. A review of tumor-specific fluorescence-guided surgery for colorectal cancer. Surg Oncol 2021; 36:84-90. [PMID: 33316684 PMCID: PMC7855598 DOI: 10.1016/j.suronc.2020.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023]
Abstract
The present study reviews the use of tumor-specific antibodies conjugated to fluorescent dyes in preclinical and clinical studies to enhance visualization of primary tumors and metastases for fluorescence-guided surgery (FGS) in colorectal cancer (CRC). A search strategy was developed using the peer-reviewed National Center for Biotechnology Information (NCBI) database on PubMed. Studies using tumor-specific fluorescence imaging and FGS techniques on murine models of colorectal cell lines or patient-derived orthotopic xenograft (PDOX) colorectal cancer are reviewed. A total of 24 articles were identified that met the inclusion criteria, 21 preclinical and 3 clinical trials. The most widely used target antigen in preclinical and clinical trials was carcinoembryonic antigen (CEA). Mouse studies and clinical studies have demonstrated that the use of FGS in CRC can aid in decreased residual tumor and decreased rates of recurrence. As the mainstay of colorectal cancer treatment is surgery, the addition of intraoperative fluorescence imaging can help locate tumor margins, visualize occult micro-metastases, drive surgical decision making and improve patient outcomes.
Collapse
Affiliation(s)
- Hannah M Hollandsworth
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Michael A Turner
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Robert M Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA; AntiCancer Inc., San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
5
|
Rondon A, Degoul F. Antibody Pretargeting Based on Bioorthogonal Click Chemistry for Cancer Imaging and Targeted Radionuclide Therapy. Bioconjug Chem 2020; 31:159-173. [PMID: 31855602 DOI: 10.1021/acs.bioconjchem.9b00761] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioorthogonal click chemistry-employing antibody-conjugated trans-cyclooctenes (TCO) and tetrazine (Tz)-based radioligands able to covalently bind in vivo-appeared recently as a potential alternative to circumvent the hematotoxicity induced by radioimmunotherapy of solid tumors. This Review focuses on the recent advances concerning TCO/Tz pretargeting in both cancer imaging and targeted-radionuclide therapy for prospective clinical transfer. We exhaustively identified 25 PubMed publications reporting preclinical imaging and 5 therapy studies with full mAbs as targeting vectors, since its first application in 2010. The fast, safe, modulable, and specific TCO/Tz pretargeting showed high potential as a theranostic tool to get more personalized and precise cancer care. The recent optimizations reported here highlighted a possible first clinical evaluation of IEDDA pretargeting in the coming years.
Collapse
Affiliation(s)
- Aurélie Rondon
- Université Clermont Auvergne , Imagerie Moléculaire et Stratégies Théranostiques , BP 184, F-63005 Clermont-Ferrand , France.,Inserm, U 1240 , F-63000 Clermont-Ferrand , France.,Centre Jean Perrin , F-63011 Clermont-Ferrand , France
| | - Françoise Degoul
- Université Clermont Auvergne , Imagerie Moléculaire et Stratégies Théranostiques , BP 184, F-63005 Clermont-Ferrand , France.,Inserm, U 1240 , F-63000 Clermont-Ferrand , France.,Centre Jean Perrin , F-63011 Clermont-Ferrand , France
| |
Collapse
|