1
|
Rossetti M, Stanca S, Panichi LB, Bongioanni P. Brain metabolic profiling of schizophrenia: a path towards a better understanding of the neuropathogenesis of psychosis. Metab Brain Dis 2024; 40:28. [PMID: 39570439 DOI: 10.1007/s11011-024-01447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024]
Abstract
Schizophrenia (SCZ) is a complex psychotic syndrome whose pathogenesis involves countless protagonists, none of which, to date, can fully explain how this disorder develops. In this narrative review, an overview of the biochemical impairment is offered according to several perspectives. Indeed, the metabolic framework behind SCZ dopaminergic hypotheses, glutamate - gamma-amynobutyric acid dysregulation, norepinephrine and serotonin, calcium channel dysfunction is addressed together with the energetic impairment, involving glucose and lipids in SCZ etiopathogenesis, in order to highlight the multilevel pathways affected in this neuropsychiatric disorder. Furthermore, neuroinflammation is analyzed, by virtue of its important role, widely investigated in recent years, in neurodegeneration. Tracing the neurotransmitter activity at the brain level by assessing the metabolic network behind the abovementioned molecules puts into light as unavoidable the need for future studies to adopt an integrate approach to address SCZ pathological and clinical picture. The combination of all these factors, essential in acquiring an overview on the complexity of SCZ pathophysiology represents a crucial step in the development of a more targeted management of SCZ patients.
Collapse
Affiliation(s)
- Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, Pisa, 56126, Italy
- NeuroCare Onlus, Pisa, 56100, Italy
| | - Stefano Stanca
- Department of Humanities, University of Naples Federico II, Via Porta di Massa 1, Naples, 80133, Italy.
| | - Leona Bokulic Panichi
- NeuroCare Onlus, Pisa, 56100, Italy
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56100, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, Pisa, 56100, Italy
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56100, Italy
| |
Collapse
|
2
|
Wang Z, Xue K, Kang Y, Liu Z, Cheng J, Zhang Y, Wei Y. Altered intrinsic neural activity and its molecular analyses in first-episode schizophrenia with auditory verbal hallucinations. Front Neurosci 2024; 18:1478963. [PMID: 39534020 PMCID: PMC11554611 DOI: 10.3389/fnins.2024.1478963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Auditory verbal hallucinations (AVHs) are one of the signature positive symptoms of schizophrenia, affecting a substantial portion of patients with schizophrenia. These hallucinations seriously impact the lives of patients, resulting in a substantial social burden. Recent studies have shown a significant correlation between abnormal local brain activity and the neurobiological mechanisms of AVHs. However, it is not fully clear whether altered intrinsic brain activity in schizophrenia patients with AVHs is correlated with specific neurotransmitter systems. Methods We included 50 first-episode, drug-naïve schizophrenia patients with AVHs, 50 patients without AVHs (NAVHs), and 50 age- and sex-matched healthy controls (HCs). The amplitude of low-frequency fluctuation (ALFF) was utilized to explore the altered intrinsic brain activity in the AVH group. Subsequently, we spatially correlated the altered ALFF with neurotransmitter maps using JuSpace. Results In our study, compared to HCs, the AVH group exhibited significantly reduced ALFF in multiple brain regions, mainly including the left precuneus, bilateral supplementary motor areas, bilateral paracentral lobules, bilateral precentral gyri, and bilateral postcentral gyri. The NAVH group showed significantly reduced ALFF in the left inferior occipital gyrus, left calcarine gyrus, and left lingual gyrus compared to HCs. Furthermore, the AVH group showed higher ALFF in the right inferior frontal gyrus compared to the NAVH group. Additionally, these ALFF alterations in the AVH group were closely related to three neurotransmitters, including dopamine, serotonin and norepinephrine. Conclusion We link neurotransmitters to abnormal intrinsic brain activity in first-episode, drug-naïve schizophrenia patients with AVHs, contributing to a comprehensive understanding of the pathophysiological processes and treatment pathways underlying AVHs.
Collapse
Affiliation(s)
- Ziyu Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Yimeng Kang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Zijun Liu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| |
Collapse
|
3
|
Bechelli L, Tomasella E, Cardoso SL, Belmonte M, Gelman DM. Selective dopamine D2 receptor deletion from Nkx6.2 expressing cells causes impaired cognitive, motivation and anxiety phenotypes in mice. Sci Rep 2023; 13:19473. [PMID: 37945756 PMCID: PMC10636105 DOI: 10.1038/s41598-023-46954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Abnormal dopamine neurotransmission is a common trait of some psychiatric diseases, like schizophrenia or bipolar disorder. Excessive dopaminergic tone in subcortical brain regions is associated with psychotic episodes, while reduced prefrontal dopaminergic activity is associated with impaired cognitive performance and reduced motivation, among other symptoms. Inhibitory interneurons expressing the calcium binding protein parvalbumin are particularly affected in both schizophrenia and bipolar disorder, as they set a fine-tuned physiological inhibitory/excitatory balance. Parvalbumin and somatostatin interneuron subtypes, are born from the medial ganglionic eminence and require the sequential expression of specific transcription factors for their specification, such as Nkx6.2. Here, we aimed at characterizing in detail interneuron subtypes derived from Nkx6.2 expressing progenitors by the generation of an Nkx6.2 Cre transgenic mouse line. We show that Nkx6.2 specifies over a third part of the total population of cortical somatostatin interneurons, preferentially at early developmental time points, whereas at late developmental stages, Nkx6.2 expressing progenitors shift to parvalbumin interneuron specification. Dopamine D2 receptor deletion from Nkx6.2 expressing progenitors causes abnormal phenotypes restricted to cognitive, motivation and anxiety domains. Our results show that Nkx6.2 have the potential to specify both somatostatin and parvalbumin interneurons in an opposite timed program and that DRD2 expression is required in Nkx6.2 expressing progenitors to avoid impaired phenotypes commonly associated to the pathophysiology of psychiatric diseases.
Collapse
Affiliation(s)
- Lucila Bechelli
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME., Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)., Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | - Eugenia Tomasella
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME., Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)., Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sofia Lopez Cardoso
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME., Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)., Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martina Belmonte
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME., Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)., Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego M Gelman
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME., Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)., Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina.
- Universidad Argentina de la Empresa (UADE), Lima 757, C1073AAO, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
4
|
Terstege DJ, Epp JR. Parvalbumin as a sex-specific target in Alzheimer's disease research - A mini-review. Neurosci Biobehav Rev 2023; 153:105370. [PMID: 37619647 DOI: 10.1016/j.neubiorev.2023.105370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, and both the incidence of this disease and its associated cognitive decline disproportionally effect women. While the etiology of AD is unknown, recent work has demonstrated that the balance of excitatory and inhibitory activity across the brain may serve as a strong predictor of cognitive impairments in AD. Across the cortex, the most prominent source of inhibitory signalling is from a class of parvalbumin-expressing interneurons (PV+). In this mini-review, the impacts of sex- and age-related factors on the function of PV+ neurons are examined within the context of vulnerability to AD pathology. These primary factors of influence include changes in brain metabolism, circulating sex hormone levels, and inflammatory response. In addition to positing the increased vulnerability of PV+ neurons to dysfunction in AD, this mini-review highlights the critical importance of presenting sex stratified data in the study of AD.
Collapse
Affiliation(s)
- Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
5
|
Caffeine-Induced Acute and Delayed Responses in Cerebral Metabolism of Control and Schizophrenia-Like Wisket Rats. Int J Mol Sci 2022; 23:ijms23158186. [PMID: 35897774 PMCID: PMC9331118 DOI: 10.3390/ijms23158186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Recently, morphological impairments have been detected in the brain of a triple-hit rat schizophrenia model (Wisket), and delayed depressive effects of caffeine treatment in both control and Wisket animals have also been shown. The aims of this study were to determine the basal and caffeine-induced acute (30 min) and delayed (24 h) changes in the cerebral 18fluorodeoxyglucose (18F-FDG) uptake by positron emission tomography (PET) in control and Wisket rats. No significant differences were identified in the basal whole-brain metabolism between the two groups, and the metabolism was not modified acutely by a single intraperitoneal caffeine (20 mg/kg) injection in either group. However, one day after caffeine administration, significantly enhanced 18F-FDG uptake was detected in the whole brain and the investigated areas (hippocampus, striatum, thalamus, and hypothalamus) in the control group. Although the Wisket animals showed only moderate enhancements in the 18F-FDG uptake, significantly lower brain metabolism was observed in this group than in the caffeine-treated control group. This study highlights that the basal brain metabolism of Wisket animals was similar to control rats, and that was not influenced acutely by single caffeine treatment at the whole-brain level. Nevertheless, the distinct delayed responsiveness to this psychostimulant in Wisket model rats suggests impaired control of the cerebral metabolism.
Collapse
|
6
|
Uccelli NA, Codagnone MG, Traetta ME, Levanovich N, Rosato Siri MV, Urrutia L, Falasco G, Vázquez S, Pasquini JM, Reinés AG. Neurobiological substrates underlying corpus callosum hypoconnectivity and brain metabolic patterns in the valproic acid rat model of autism spectrum disorder. J Neurochem 2021; 159:128-144. [PMID: 34081798 DOI: 10.1111/jnc.15444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022]
Abstract
Atypical connectivity between brain regions and altered structure of the corpus callosum (CC) in imaging studies supports the long-distance hypoconnectivity hypothesis proposed for autism spectrum disorder (ASD). The aim of this study was to unveil the CC ultrastructural and cellular changes employing the valproic acid (VPA) rat model of ASD. Male Wistar rats were exposed to VPA (450 mg/kg i.p.) or saline (control) during gestation (embryonic day 10.5), and maturation, exploration, and social behavior were subsequently tested. Myelin content, ultrastructure, and oligodendroglial lineage were studied in the CC at post-natal days 15 (infant) and 36 (juvenile). As a functional outcome, brain metabolic activity was determined by positron emission tomography. Concomitantly with behavioral deficits in juvenile VPA rats, the CC showed reduced myelin basic protein, conserved total number of axons, reduced percentage of myelinated axons, and aberrant and less compact arrangements of myelin sheath ultrastructure. Mature oligodendrocytes decreased and oligodendrocyte precursors increased in the absence of astrogliosis or microgliosis. In medial prefrontal and somatosensory cortices of juvenile VPA rats, myelin ultrastructure and oligodendroglial lineage were preserved. VPA animals exhibited global brain hypometabolism and local hypermetabolism in brain regions relevant for ASD. In turn, the CC of infant VPA rats showed reduced myelin content but preserved oligodendroglial lineage. Our findings indicate that CC hypomyelination is established during infancy and prior to oligodendroglial pattern alterations, which suggests that axon-oligodendroglia communication could be compromised in VPA animals. Thus, CC hypomyelination may underlie white matter alterations and contribute to atypical patterns of connectivity and metabolism found in ASD.
Collapse
Affiliation(s)
- Nonthué Alejandra Uccelli
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN) Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Gabriel Codagnone
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN) Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Evelyn Traetta
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN) Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nadia Levanovich
- Fundación para la lucha contra las enfermedades neurológicas de la infancia (FLENI), Centro de Imágenes Moleculares (CIM), Escobar, Argentina
| | - María Victoria Rosato Siri
- CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológica (IQUIFIB) Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leandro Urrutia
- Fundación para la lucha contra las enfermedades neurológicas de la infancia (FLENI), Centro de Imágenes Moleculares (CIM), Escobar, Argentina
| | - Germán Falasco
- Fundación para la lucha contra las enfermedades neurológicas de la infancia (FLENI), Centro de Imágenes Moleculares (CIM), Escobar, Argentina
| | - Silvia Vázquez
- Fundación para la lucha contra las enfermedades neurológicas de la infancia (FLENI), Centro de Imágenes Moleculares (CIM), Escobar, Argentina
| | - Juana María Pasquini
- CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológica (IQUIFIB) Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Gabriela Reinés
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN) Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Cassel JC, Ferraris M, Quilichini P, Cholvin T, Boch L, Stephan A, Pereira de Vasconcelos A. The reuniens and rhomboid nuclei of the thalamus: A crossroads for cognition-relevant information processing? Neurosci Biobehav Rev 2021; 126:338-360. [PMID: 33766671 DOI: 10.1016/j.neubiorev.2021.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 01/29/2023]
Abstract
Over the past twenty years, the reuniens and rhomboid (ReRh) nuclei, which constitute the ventral midline thalamus, have received constantly growing attention. Since our first review article about the functional contributions of ReRh nuclei (Cassel et al., 2013), numerous (>80) important papers have extended anatomical knowledge, including at a developmental level, introduced new and very original electrophysiological insights on ReRh functions, and brought novel results on cognitive and non-cognitive implications of the ReRh. The current review will cover these recent articles, more on Re than on Rh, and their contribution will be approached according to their affiliation with work before 2013. These neuroanatomical, electrophysiological or behavioral findings appear coherent and point to the ReRh nuclei as two major components of a multistructural system supporting numerous cognitive (and non-cognitive) functions. They gate the flow of information, perhaps especially from the medial prefrontal cortex to the hippocampus and back, and coordinate activity and processing across these two (and possibly other) brain regions of major cognitive relevance.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France.
| | - Maëva Ferraris
- Aix Marseille Université, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Pascale Quilichini
- Aix Marseille Université, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Thibault Cholvin
- Institute for Physiology I, University Clinics Freiburg, 79104 Freiburg, Germany
| | - Laurine Boch
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| |
Collapse
|