1
|
Wakasugi N, Takano H, Abe M, Sawamoto N, Murai T, Mizuno T, Matsuoka T, Yamakuni R, Yabe H, Matsuda H, Hanakawa T. Harmonizing multisite data with the ComBat method for enhanced Parkinson's disease diagnosis via DAT-SPECT. Front Neurol 2024; 15:1306546. [PMID: 38440115 PMCID: PMC10911132 DOI: 10.3389/fneur.2024.1306546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
Background Dopamine transporter single-photon emission computed tomography (DAT-SPECT) is a crucial tool for evaluating patients with Parkinson's disease (PD). However, its implication is limited by inter-site variability in large multisite clinical trials. To overcome the limitation, a conventional prospective correction method employs linear regression with phantom scanning, which is effective yet available only in a prospective manner. An alternative, although relatively underexplored, involves retrospective modeling using a statistical method known as "combatting batch effects when combining batches of gene expression microarray data" (ComBat). Methods We analyzed DAT-SPECT-specific binding ratios (SBRs) derived from 72 healthy older adults and 81 patients with PD registered in four clinical sites. We applied both the prospective correction and the retrospective ComBat correction to the original SBRs. Next, we compared the performance of the original and two corrected SBRs to differentiate the PD patients from the healthy controls. Diagnostic accuracy was assessed using the area under the receiver operating characteristic curve (AUC-ROC). Results The original SBRs were 6.13 ± 1.54 (mean ± standard deviation) and 2.03 ± 1.41 in the control and PD groups, respectively. After the prospective correction, the mean SBRs were 6.52 ± 1.06 and 2.40 ± 0.99 in the control and PD groups, respectively. After the retrospective ComBat correction, the SBRs were 5.25 ± 0.89 and 2.01 ± 0.73 in the control and PD groups, respectively, resulting in substantial changes in mean values with fewer variances. The original SBRs demonstrated fair performance in differentiating PD from controls (Hedges's g = 2.76; AUC-ROC = 0.936). Both correction methods improved discrimination performance. The ComBat-corrected SBR demonstrated comparable performance (g = 3.99 and AUC-ROC = 0.987) to the prospectively corrected SBR (g = 4.32 and AUC-ROC = 0.992) for discrimination. Conclusion Although we confirmed that SBRs fairly discriminated PD from healthy older adults without any correction, the correction methods improved their discrimination performance in a multisite setting. Our results support the utility of harmonization methods with ComBat for consolidating SBR-based diagnosis or stratification of PD in multisite studies. Nonetheless, given the substantial changes in the mean values of ComBat-corrected SBRs, caution is advised when interpreting them.
Collapse
Affiliation(s)
- Noritaka Wakasugi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Harumasa Takano
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mitsunari Abe
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Teruyuki Matsuoka
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Psychiatry, NHO Maizuru Medical Center, Kyoto, Japan
| | - Ryo Yamakuni
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
2
|
Al‐Alsheikh AS, Alabdulkader S, Miras AD, Goldstone AP. Effects of bariatric surgery and dietary interventions for obesity on brain neurotransmitter systems and metabolism: A systematic review of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies. Obes Rev 2023; 24:e13620. [PMID: 37699864 PMCID: PMC10909448 DOI: 10.1111/obr.13620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/05/2023] [Accepted: 07/10/2023] [Indexed: 09/14/2023]
Abstract
This systematic review collates studies of dietary or bariatric surgery interventions for obesity using positron emission tomography and single-photon emission computed tomography. Of 604 publications identified, 22 met inclusion criteria. Twelve studies assessed bariatric surgery (seven gastric bypass, five gastric bypass/sleeve gastrectomy), and ten dietary interventions (six low-calorie diet, three very low-calorie diet, one prolonged fasting). Thirteen studies examined neurotransmitter systems (six used tracers for dopamine DRD2/3 receptors: two each for 11 C-raclopride, 18 F-fallypride, 123 I-IBZM; one for dopamine transporter, 123 I-FP-CIT; one used tracer for serotonin 5-HT2A receptor, 18 F-altanserin; two used tracers for serotonin transporter, 11 C-DASB or 123 I-FP-CIT; two used tracer for μ-opioid receptor, 11 C-carfentanil; one used tracer for noradrenaline transporter, 11 C-MRB); seven studies assessed glucose uptake using 18 F-fluorodeoxyglucose; four studies assessed regional cerebral blood flow using 15 O-H2 O (one study also used arterial spin labeling); and two studies measured fatty acid uptake using 18 F-FTHA and one using 11 C-palmitate. The review summarizes findings and correlations with clinical outcomes, eating behavior, and mechanistic mediators. The small number of studies using each tracer and intervention, lack of dietary intervention control groups in any surgical studies, heterogeneity in time since intervention and degree of weight loss, and small sample sizes hindered the drawing of robust conclusions across studies.
Collapse
Affiliation(s)
- Alhanouf S. Al‐Alsheikh
- Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
- Department of Community Health Sciences, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Shahd Alabdulkader
- Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
- Department of Health Sciences, College of Health and Rehabilitation SciencesPrincess Nourah Bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Alexander D. Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
- School of Medicine, Faculty of Life and Health SciencesUlster UniversityLondonderryUK
| | - Anthony P. Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College LondonHammersmith HospitalLondonUK
| |
Collapse
|
3
|
Boertien JM, Murtomäki K, Pereira PAB, van der Zee S, Mertsalmi TH, Levo R, Nojonen T, Mäkinen E, Jaakkola E, Laine P, Paulin L, Pekkonen E, Kaasinen V, Auvinen P, Scheperjans F, van Laar T. Fecal microbiome alterations in treatment-naive de novo Parkinson's disease. NPJ Parkinsons Dis 2022; 8:129. [PMID: 36216843 PMCID: PMC9551094 DOI: 10.1038/s41531-022-00395-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
Gut microbiota alterations in Parkinson's disease (PD) have been found in several studies and are suggested to contribute to the pathogenesis of PD. However, previous results could not be adequately adjusted for a potential confounding effect of PD medication and disease duration, as almost all PD participants were already using dopaminergic medication and were included several years after diagnosis. Here, the gut microbiome composition of treatment-naive de novo PD subjects was assessed compared to healthy controls (HC) in two large independent case-control cohorts (n = 136 and 56 PD, n = 85 and 87 HC), using 16S-sequencing of fecal samples. Relevant variables such as technical batches, diet and constipation were assessed for their potential effects. Overall gut microbiome composition differed between PD and HC in both cohorts, suggesting gut microbiome alterations are already present in de novo PD subjects at the time of diagnosis, without the possible confounding effect of dopaminergic medication. Although no differentially abundant taxon could be replicated in both cohorts, multiple short chain fatty acids (SCFA) producing taxa were decreased in PD in both cohorts. In particular, several taxa belonging to the family Lachnospiraceae were decreased in abundance. Fewer taxonomic differences were found compared to previous studies, indicating smaller effect sizes in de novo PD.
Collapse
Affiliation(s)
- Jeffrey M. Boertien
- grid.4494.d0000 0000 9558 4598Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kirsi Murtomäki
- grid.7737.40000 0004 0410 2071Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland
| | - Pedro A. B. Pereira
- grid.7737.40000 0004 0410 2071Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Sygrid van der Zee
- grid.4494.d0000 0000 9558 4598Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Tuomas H. Mertsalmi
- grid.7737.40000 0004 0410 2071Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland
| | - Reeta Levo
- grid.7737.40000 0004 0410 2071Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland
| | - Tanja Nojonen
- grid.7737.40000 0004 0410 2071Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland
| | - Elina Mäkinen
- grid.7737.40000 0004 0410 2071Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland ,grid.410552.70000 0004 0628 215XClinical Neurosciences, University of Turku and Neurocenter, Turku University Hospital, Turku, Finland
| | - Elina Jaakkola
- grid.410552.70000 0004 0628 215XClinical Neurosciences, University of Turku and Neurocenter, Turku University Hospital, Turku, Finland
| | - Pia Laine
- grid.7737.40000 0004 0410 2071Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- grid.7737.40000 0004 0410 2071Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Eero Pekkonen
- grid.7737.40000 0004 0410 2071Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland
| | - Valtteri Kaasinen
- grid.410552.70000 0004 0628 215XClinical Neurosciences, University of Turku and Neurocenter, Turku University Hospital, Turku, Finland
| | - Petri Auvinen
- grid.7737.40000 0004 0410 2071Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Filip Scheperjans
- grid.7737.40000 0004 0410 2071Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland
| | - Teus van Laar
- grid.4494.d0000 0000 9558 4598Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | |
Collapse
|
4
|
Chiu PY, Hou PN, Hung GU, Hsieh TC, Chan PK, Kao CH. Real-World Testing of a Machine Learning-Derived Visual Scale for Tc99m TRODAT-1 for Diagnosing Lewy Body Disease: Comparison with a Traditional Approach Using Semiquantification. J Pers Med 2022; 12:1369. [PMID: 36143154 PMCID: PMC9505116 DOI: 10.3390/jpm12091369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives: Abnormal dopamine transporter (DAT) uptake is an important biomarker for diagnosing Lewy body disease (LBD), including Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). We evaluated a machine learning-derived visual scale (ML-VS) for Tc99m TRODAT-1 from one center and compared it with the striatal/background ratio (SBR) using semiquantification for diagnosing LBD in two other centers. Patients and Methods: This was a retrospective analysis of data from a history-based computerized dementia diagnostic system. MT-VS and SBR among normal controls (NCs) and patients with PD, PD with dementia (PDD), DLB, or Alzheimer’s disease (AD) were compared. Results: We included 715 individuals, including 122 NCs, 286 patients with PD, 40 with AD, 179 with DLB, and 88 with PDD. Compared with NCs, patients with PD exhibited a significantly higher prevalence of abnormal DAT uptake using all methods. Compared with the AD group, PDD and DLB groups exhibited a significantly higher prevalence of abnormal DAT uptake using all methods. The distribution of ML-VS was significantly different between PD and NC, DLB and AD, and PDD and AD groups (all p < 0.001). The correlation coefficient of ML-VS/SBR in all participants was 0.679. Conclusions: The ML-VS designed in one center is useful for differentiating PD from NC, DLB from AD, and PDD from AD in other centers. Its correlation with traditional approaches using different scanning machines is also acceptable. Future studies should develop models using data pools from multiple centers for increasing diagnostic accuracy.
Collapse
Affiliation(s)
- Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua 50008, Taiwan
- Department of Applied Mathematics, Tunghai University, Taichung 40704, Taiwan
| | - Po-Nien Hou
- Department of Nuclear Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Guang-Uei Hung
- Department of Nuclear Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Te-Chun Hsieh
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Biomedical Imaging and Radiological Science, Elite Campus, China Medical University, Taichung 40402, Taiwan
| | - Pak-Ki Chan
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chia-Hung Kao
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung 40402, Taiwan
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, Elite Campus, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
5
|
Dopamine dysfunction in depression: application of texture analysis to dopamine transporter single-photon emission computed tomography imaging. Transl Psychiatry 2022; 12:309. [PMID: 35922402 PMCID: PMC9349249 DOI: 10.1038/s41398-022-02080-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Dopamine dysfunction has been associated with depression. However, results of recent neuroimaging studies on dopamine transporter (DAT), which reflect the function of the dopaminergic system, are inconclusive. The aim of this study was to apply texture analysis, a novel method to extract information about the textural properties of images (e.g., coarseness), to single-photon emission computed tomography (SPECT) imaging in depression. We performed SPECT using 123I-ioflupane to measure DAT binding in 150 patients with major depressive disorder (N = 112) and bipolar disorder (N = 38). The texture features of DAT binding in subregions of the striatum were calculated. We evaluated the relationship between the texture feature values (coarseness, contrast, and busyness) and severity of depression, and then examined the effects of medication and diagnosis on such relationship. Furthermore, using the data from 40 healthy subjects, we examined the effects of age and sex on the texture feature values. The degree of busyness of the limbic region in the left striatum linked to the severity of depression (p = 0.0025). The post-hoc analysis revealed that this texture feature value was significantly higher in both the severe and non-severe depression groups than in the remission group (p = 0.001 and p = 0.028, respectively). This finding remained consistent after considering the effect of medication. The effects of age and sex in healthy individuals were not evident in this texture feature value. Our findings imply that the application of texture analysis to DAT-SPECT may provide a state-marker of depression.
Collapse
|
6
|
Aster HC, Romanos M, Walitza S, Gerlach M, Mühlberger A, Rizzo A, Andreatta M, Hasenauer N, Hartrampf PE, Nerlich K, Reiners C, Lorenz R, Buck AK, Deserno L. Responsivity of the Striatal Dopamine System to Methylphenidate-A Within-Subject I-123-β-CIT-SPECT Study in Male Children and Adolescents With Attention-Deficit/Hyperactivity Disorder. Front Psychiatry 2022; 13:804730. [PMID: 35492708 PMCID: PMC9046584 DOI: 10.3389/fpsyt.2022.804730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/15/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Methylphenidate (MPH) is the first-line pharmacological treatment of attention-deficit/hyperactivity disorder (ADHD). MPH binds to the dopamine (DA) transporter (DAT), which has high density in the striatum. Assessments of the striatal dopamine transporter by single positron emission computed tomography (SPECT) in childhood and adolescent patients are rare but can provide insight on how the effects of MPH affect DAT availability. The aim of our within-subject study was to investigate the effect of MPH on DAT availability and how responsivity to MPH in DAT availability is linked to clinical symptoms and cognitive functioning. METHODS Thirteen adolescent male patients (9-16 years) with a diagnosis of ADHD according to the DSM-IV and long-term stimulant medication (for at least 6 months) with MPH were assessed twice within 7 days using SPECT after application of I-123-β-CIT to examine DAT binding potential (DAT BP). SPECT measures took place in an on- and off-MPH status balanced for order across participants. A virtual reality continuous performance test was performed at each time point. Further clinical symptoms were assessed for baseline off-MPH. RESULTS On-MPH status was associated with a highly significant change (-29.9%) of striatal DAT BP as compared to off-MPH (t = -4.12, p = 0.002). A more pronounced change in striatal DAT BP was associated with higher off-MPH attentional and externalizing symptom ratings (Pearson r = 0.68, p = 0.01). Striatal DAT BP off-MPH, but not on-MPH, was associated with higher symptom ratings (Pearson r = 0.56, p = 0.04). CONCLUSION Our findings corroborate previous reports from mainly adult samples that MPH changes striatal DAT BP availability and suggest higher off-MPH DAT BP, likely reflecting low baseline DA levels, as a marker of symptom severity.
Collapse
Affiliation(s)
- Hans-Christoph Aster
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Würzburg, Würzburg, Germany.,Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Würzburg, Würzburg, Germany
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Manfred Gerlach
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Würzburg, Würzburg, Germany
| | - Andreas Mühlberger
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Albert Rizzo
- Department of Psychiatry and Behavioral Sciences, University of Southern California (USC) Davis School of Gerontology and USC Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Marta Andreatta
- Clinical Psychology, Erasmus School of Social and Behavioural Sciences, Rotterdam, Netherlands
| | - Natalie Hasenauer
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | | | - Kai Nerlich
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Christoph Reiners
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Reinhard Lorenz
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Würzburg, Würzburg, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|