1
|
Emerson R, Agrawal K, Singh P, Patro PSS, Kumar N. Cancer Integrin Imaging With 68 Ga-Trivehexin PET-CT in Head and Neck Squamous Cell Carcinoma Improves Diagnostic Accuracy. Clin Nucl Med 2025; 50:e180-e181. [PMID: 39773681 DOI: 10.1097/rlu.0000000000005582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
ABSTRACT Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide. Locoregional nodal involvement by OSCC is commonly encountered. Current conventional and functional imaging modalities have limited diagnostic accuracy in nodal assessment, particularly in head and neck cancer. Thus, definitive management of head and neck malignancies customarily addresses the locoregional nodes along with the primary malignancy. However, OSCC, particularly tongue cancer, shows erratic lymphatic drainage and thus commonly requires extensive bilateral neck dissection, leading to significant morbidity. Cancer integrin imaging with 68 Ga-trivehexin PET-CT can offer highly specific result and thus has the potential for effective tailored management.
Collapse
Affiliation(s)
- Ralph Emerson
- From the Department of Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | | | | | | | | |
Collapse
|
2
|
Singhal T, Agrawal K, Mandal S, Parida GK. Cancer-Specific Integrin Imaging With 68 Ga-Trivehexin : A Potential Imaging for Accurate Staging of Thyroid Malignancy. Clin Nucl Med 2025; 50:e168-e170. [PMID: 39499025 DOI: 10.1097/rlu.0000000000005557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
ABSTRACT 68 Ga-Trivehexin is a novel radiotracer binding to "cancer-specific integrin αvβ6." 68 Ga-Trivehexin has high specificity for tumor cells and, thus, has the potential to replace 18 F-FDG PET/CT due to its limited specificity in the head and neck cancer. Here, we present one case of papillary thyroid carcinoma, where 68 Ga-Trivehexin PET CT demonstrated accurate staging compared with 18 F-FDG PET/CT.
Collapse
Affiliation(s)
- Tejasvini Singhal
- From the Department of Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | | | | | | |
Collapse
|
3
|
Ludwig B, Krautkremer N, Tomassi S, Di Maro S, Di Leva FS, Benge A, Nieberler M, Kessler H, Marinelli L, Kossatz S, Reuning U. Switching Roles─Exploring Concentration-Dependent Agonistic versus Antagonistic Behavior of Integrin Ligands. J Med Chem 2025; 68:4334-4351. [PMID: 39908297 PMCID: PMC11874007 DOI: 10.1021/acs.jmedchem.4c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Identification of integrins as cancer targets has stimulated the development of specific inhibitory ligands. However, following cilengitide's unexpected clinical failure by promoting angiogenesis at low concentrations, pure ligand antagonism was soon scrutinized. We evaluated αvβ3, αvβ6, or α5β1 ligands for concentration-dependent functional switches in respective integrin subtype-overexpressing cancer cells. Cilengitide (L2) or L1 provoked minor transient changes in (p)-FAK and (p)-p44/42(erk-1/2) predominantly at low concentrations and antagonized cell migration at high concentrations, while agonistically accelerating it at low concentrations. L5 (α5β1) showed bell-shaped FAK activation at both concentrations, blocking cell migration at high concentrations only in α5β1+ OV-MZ-6 cells, not acting agonistically. L3 (αvβ6) did not alter signaling upon long exposure but transiently and early activated FAK in αvβ6+ HN cells at both concentrations, with neither antagonistic nor agonistic consequences on cell motility. These data underscore the need for in-depth evaluation of ligand actions to ensure their most promising medical use.
Collapse
Affiliation(s)
- Beatrice
Stefanie Ludwig
- Department
of Nuclear Medicine, School of Medicine & Health, Klinikum rechts
der Isar, TUM University Hospital, Technical
University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
- Central Institute
for Translational Cancer Research (TranslaTUM), School of Medicine
& Health, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Nils Krautkremer
- Department
of Oral and Maxillofacial Surgery, School of Medicine & Health,
Klinikum rechts der Isar, TUM University
Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Stefano Tomassi
- UNINA
−
Department of Pharmacy, University of Naples
Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Salvatore Di Maro
- SUN −
Department of Environmental, Biological and Pharmaceutical Sciences
and Technologies, Università degli
Studi della Campania “Luigi Vanvitelli”, Viale Abramo Lincoln, 5, Caserta 81100, Italy
| | - Francesco Saverio Di Leva
- UNINA
−
Department of Pharmacy, University of Naples
Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Anke Benge
- Department
of Obstetrics & Gynecology, School of Medicine & Health, Clinical
Research Unit, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Markus Nieberler
- Department
of Oral and Maxillofacial Surgery, School of Medicine & Health,
Klinikum rechts der Isar, TUM University
Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Horst Kessler
- Department
of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Institute for Advanced Study, Technical University
Munich, Lichtenbergstrasse
2a, Garching 85748, Germany
| | - Luciana Marinelli
- UNINA
−
Department of Pharmacy, University of Naples
Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Susanne Kossatz
- Department
of Nuclear Medicine, School of Medicine & Health, Klinikum rechts
der Isar, TUM University Hospital, Technical
University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
- Central Institute
for Translational Cancer Research (TranslaTUM), School of Medicine
& Health, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
- Department
of Chemistry, School of Natural Sciences, Technical University Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Ute Reuning
- Department
of Obstetrics & Gynecology, School of Medicine & Health, Clinical
Research Unit, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| |
Collapse
|
4
|
Zhang S, Ma X, Wu J, Shen J, Shi Y, Wang X, Xie L, Sun X, Wu Y, Tian H, Gao X, Chen X, Huang H, Chen L, Song X, Hu Q, Zhang H, Wang F, Jin ZH, Zhang MR, Wang R, Hu K. Enhanced radiotheranostic targeting of integrin α5 β1 with PEGylation-enabled peptide multidisplay platform (PEGibody): A strategy for prolonged tumor retention with fast blood clearance. Acta Pharm Sin B 2025; 15:692-706. [PMID: 40177561 PMCID: PMC11959959 DOI: 10.1016/j.apsb.2024.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 04/05/2025] Open
Abstract
Peptide-based radiopharmaceuticals targeting integrin α5β1 show promise for precise tumor diagnosis and treatment. However, current peptide-based radioligands that target α5β1 demonstrate inadequate in vivo performance owing to limited tumor retention. The use of PEGylation to enhance the tumor retention of radiopharmaceuticals by prolonging blood circulation time poses a risk of increased blood toxicity. Therefore, a PEGylation strategy that boosts tumor retention while minimizing blood circulation time is urgently needed. Here, we developed a PEGylation-enabled peptide multidisplay platform (PEGibody) for PR_b, an α5β1 targeting peptide. PEGibody generation involved PEGylation and self-assembly. [64Cu]QM-2303 PEGibodies displayed spherical nanoparticles ranging from 100 to 200 nm in diameter. Compared with non-PEGylated radioligands, [64Cu]QM-2303 demonstrated enhanced tumor retention time due to increased binding affinity and stability. Importantly, the biodistribution analysis confirmed rapid clearance of [64Cu]QM-2303 from the bloodstream. Administration of a single dose of [177Lu]QM-2303 led to robust antitumor efficacy. Furthermore, [64Cu]/[177Lu]QM-2303 exhibited low hematological and organ toxicity in both healthy and tumor-bearing mice. Therefore, this study presents a PEGibody-based radiotheranostic approach that enhances tumor retention time and provides long-lasting antitumor effects without prolonging blood circulation lifetime. The PEGibody-based radiopharmaceutical [64Cu]/[177Lu]QM-2303 shows great potential for positron emission tomography imaging-guided targeted radionuclide therapy for α5β1-overexpressing tumors.
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaohui Ma
- Department of Vascular and Endovascular Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiang Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Jieting Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuntao Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Xiaona Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuxuan Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongyi Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lu Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xuekai Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qichen Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hailong Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Zhao-Hui Jin
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| |
Collapse
|
5
|
Rheinfrank T, Lebruška V, Stangl S, Vojtíčková M, Nguyen NT, Koller L, Šimeček J, Kubíček V, Kossatz S, Notni J. Three Is a Magic Number: Tailored Clickable Chelators Used to Determine Optimal RGD-Peptide Multiplicity in αvβ6-Integrin Targeted 177Lu-Labeled Cancer Theranostics. Bioconjug Chem 2024; 35:1970-1984. [PMID: 39608839 DOI: 10.1021/acs.bioconjchem.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The cellular adhesion receptor αvβ6-integrin is highly expressed in many cancers, e.g., pancreatic, lung, head-and-neck, cervical, bladder, and esophageal carcinoma. Multimerization of αvβ6-integrin-specific RGD peptides increases the target affinity and retention but affects biodistribution and pharmacokinetics. Amide formation of the terminal carboxylic acid moieties of the square-symmetrical bifunctional chelator DOTPI with 3-azidopropylamine yields derivatives with 4, 3, and 2 terminal azides and zero, 1, and 2 remaining carboxylic acids, respectively, whereby formation of the 2-cis-isomer is preferred according to NMR investigation of the Eu(III)-complexes. Cu(II)-catalyzed alkyne-azide cycloaddition (CuAAC) of the alkyne-functionalized αvβ6-integrin binding peptide cyclo[YRGDLAYp(NMe)K(pent-4-ynoic amide)] (Tyr2) yields the respective di-, tri-, and tetrameric conjugates for Lu-177-labeling. In mice bearing αvβ6-integrin-expressing xenografts of H2009 (human lung adenocarcinoma) cells, the Lu-177-labeled trimer's tumor-to-blood ratio of 112 exceeds that of the tetramer (10.4) and the dimer (54). Co-infusion of gelofusine (succinylated gelatin) reduces the renal uptake of the trimer by 89%, resulting in a 10-fold better tumor-to-kidney ratio, while no improvement of that ratio is observed with arginine/lysine, para-aminohippuric acid (PAH), and hydroxyethyl starch (HES) coinfusions. Since the Lu-177-labeled Tyr2-trimer outperforms the dimer and the tetramer, such trimers are considered the best lead structures for the ongoing development of αvβ6-integrin targeted anticancer theranostics.
Collapse
Affiliation(s)
- Tim Rheinfrank
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Viktor Lebruška
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic
| | - Stefan Stangl
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Margareta Vojtíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic
| | - Nghia Trong Nguyen
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Lena Koller
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Jakub Šimeček
- TRIMT GmbH, Carl-Eschebach-Str. 7, 01454 Radeberg, Germany
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic
| | - Susanne Kossatz
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Johannes Notni
- TRIMT GmbH, Carl-Eschebach-Str. 7, 01454 Radeberg, Germany
- Institute of Pathology, School of Medicine, Technical University Munich, Trogerstr. 18, D-81675 München, Germany
| |
Collapse
|
6
|
Zierke M, Rangger C, Samadikhah K, Kreutz C, Schmid AM, Haubner R. 68Ga-Labeled TRAP-Based Glycoside Trimers for Imaging of the Functional Liver Reserve. J Med Chem 2024; 67:19668-19677. [PMID: 39413281 PMCID: PMC11571218 DOI: 10.1021/acs.jmedchem.4c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
The exclusive asialoglycoprotein receptor (ASGR) expression on hepatocytes makes it an attractive target for imaging of the functional liver reserve. Here, we present a set of TRAP-based glycoside trimers and evaluate their imaging properties compared to the gold standard [99mTc]Tc-GSA. The click-chemistry-based synthesis approach provided easy access to trimeric low-molecular-weight compounds. Labeling with 68Ga was carried out in high radiochemical yields (>99%). Complexes showed high stability and hydrophilicity. Protein binding ranged between 10 and 25%. Highest binding affinity (IC50) and best liver accumulation were found for [68Ga]Ga-T3N3, followed by [68Ga]Ga-T3G3 and [68Ga]Ga-T0G3. Rapid elimination from the rest of the body resulted in excellent target-to-background ratios. Our studies confirmed that high ASGR uptake depends on the correct spacer design and that N-acetylgalactosamine improves targeting properties in vivo. Thus, [68Ga]Ga-T3N3 represents a new low-molecular-weight radiopharmaceutical with pharmacokinetics similar to those of [99mTc]Tc-GSA.
Collapse
Affiliation(s)
- Maximilian
A. Zierke
- Department
of Nuclear Medicine, Medical University
of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Christine Rangger
- Department
of Nuclear Medicine, Medical University
of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Kimia Samadikhah
- Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 73076 Tübingen, Germany
| | - Christoph Kreutz
- Institute
of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Andreas M. Schmid
- Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 73076 Tübingen, Germany
| | - Roland Haubner
- Department
of Nuclear Medicine, Medical University
of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Wu Q, Song J, Liu W, Li L, Li S. Recent advances in positron emission tomography for detecting early fibrosis after myocardial infarction. Front Cardiovasc Med 2024; 11:1479777. [PMID: 39529975 PMCID: PMC11552091 DOI: 10.3389/fcvm.2024.1479777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiac remodeling after myocardial infarction is one of the key factors affecting patient prognosis. Myocardial fibrosis is an important pathological link of adverse ventricular remodeling after myocardial infarction, and early fibrosis is reversible. Timely detection and intervention can effectively prevent its progression to irreversible ventricular remodeling. Although imaging modalities such as CMR and echocardiography can identify fibrosis, their sensitivity and specificity are limited, and they cannot detect early fibrosis or its activity level. Positron emission tomography (PET) allows non-invasive visualization of cellular and subcellular processes and can monitor and quantify molecules and proteins in the fibrotic pathway. It is valuable in assessing the extent of early myocardial fibrosis progression, selecting appropriate treatments, evaluating response to therapy, and determining the prognosis. In this article, we present a brief overview of mechanisms underlying myocardial fibrosis following myocardial infarction and several routine imaging techniques currently available for assessing fibrosis. Then, we focus on the application of PET molecular imaging in detecting fibrosis after myocardial infarction.
Collapse
Affiliation(s)
- Qiuyan Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Jialin Song
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Wenyan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Li Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Pelzl L, Mantino S, Sauter M, Manuylova T, Vogel U, Klingel K. Lymphocytic Myocarditis in Children with Parvovirus B19 Infection: Pathological and Molecular Insights. Biomedicines 2024; 12:1909. [PMID: 39200373 PMCID: PMC11352141 DOI: 10.3390/biomedicines12081909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND This study aims to evaluate the role of parvovirus B19 (B19V) in the pathogenesis of myocarditis in a paediatric population, including post-mortem samples from two children. METHODS From 2004 to 2023, endomyocardial biopsies (EMBs) from children under 16 years of age were analyzed using histology, immunohistochemistry, and molecular pathology. A total of 306 children with acute and 1060 children with chronic lymphocytic myocarditis were identified. RESULTS B19V infection was more frequent in acute myocarditis than in chronic myocarditis (43% vs. 14%), with higher viral loads in acute cases regardless of age. The most prominent cardiac CD3+ T cell infiltration was noted in children < 2 years, correlating with high cardiac B19V loads. In two male infants who died from B19V infection, B19V DNA was localized in the endothelial cells of multiple organs using in situ hybridization. Virus replication was found in the endothelial cells of small cardiac arterioles and venules but not in capillaries. B19V DNA/mRNA was also detected in immune cells, especially in the spleen and lymph nodes, revealing virus replication in B lymphocytes. CONCLUSIONS B19V can induce severe lymphocytic myocarditis, especially in young children. The simultaneous histopathological and molecular assessment of EMBs is important for early diagnosis of viral myocarditis, preventing severe disease, and ensuring appropriate therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital of Tuebingen, 72076 Tuebingen, Germany; (L.P.); (S.M.); (M.S.); (T.M.); (U.V.)
| |
Collapse
|
9
|
Quigley NG, Zierke MA, Ludwig BS, Richter F, Nguyen NT, Reissig F, Šimeček J, Kossatz S, Notni J. The importance of tyrosines in multimers of cyclic RGD nonapeptides: towards αvβ6-integrin targeted radiotherapeutics. RSC Med Chem 2024; 15:2018-2029. [PMID: 38911160 PMCID: PMC11187563 DOI: 10.1039/d4md00073k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/18/2024] [Indexed: 06/25/2024] Open
Abstract
In a recent paper in this journal (RSC Med. Chem., 2023, 14, 2429), we described an unusually strong impact of regiospecific exchange of phenylalanines by tyrosines in 10 gallium-68-labeled trimers of certain cyclic RGD peptides, c[XRGDLAXp(NMe)K] (X = F or Y), on non-specific organ uptakes. We found that there was, in part, no correlation of liver uptake with established polarity proxies, such as the octanol-water distribution coefficient (log D). Since this observation could not be explained straightforwardly, we suggested that the symmetry of the compounds had resulted in a synergistic interaction of certain components of the macromolecules. In the present work, we investigated whether a comparable effect also occurred for a series of 5 tetramers labeled with lutetium-177. We found that in contrast to the trimers, liver uptake of the tetramers was well correlated to their polarity, indicating that the unusual observations along the trimer series indeed was a unique feature, probably related to their particular symmetry. Since the Lu-177 labeled tetramers are also potential agents for treatment of a variety of αvβ6-integrin expressing cancers, these were evaluated in mice bearing human lung adenocarcinoma xenografts. Due to their tumor-specific uptake and retention in biodistribution and SPECT imaging experiments, these compounds are considered a step forward on the way to αvβ6-integrin-targeted anticancer agents. Furthermore, we noticed that the presence of tyrosines in general had a positive impact on the in vivo performance of our peptide multimers. In view of the fact that a corresponding rule was already proposed in the context of protein engineering, we argue in favor of considering peptide multimers as a special class of small or medium-sized proteins. In summary, we contend that the performance of peptide multimers is less determined by the in vitro characteristics (particularly, affinity and selectivity) of monomers, but rather by the peptides' suitability for the overall macromolecular design concept, and peptides containing tyrosines are preferred.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institute of Pathology, School of Medicine and Health, Technische Universität München Munich Germany
| | | | - Beatrice Stefanie Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine and Health, Technische Universität München Munich Germany
| | - Frauke Richter
- Institute of Pathology, School of Medicine and Health, Technische Universität München Munich Germany
| | - Nghia Trong Nguyen
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine and Health, Technische Universität München Munich Germany
| | - Falco Reissig
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| | - Jakub Šimeček
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine and Health, Technische Universität München Munich Germany
| | - Johannes Notni
- Institute of Pathology, School of Medicine and Health, Technische Universität München Munich Germany
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| |
Collapse
|
10
|
Javid H, Oryani MA, Rezagholinejad N, Esparham A, Tajaldini M, Karimi‐Shahri M. RGD peptide in cancer targeting: Benefits, challenges, solutions, and possible integrin-RGD interactions. Cancer Med 2024; 13:e6800. [PMID: 38349028 PMCID: PMC10832341 DOI: 10.1002/cam4.6800] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024] Open
Abstract
RGD peptide can be found in cell adhesion and signaling proteins, such as fibronectin, vitronectin, and fibrinogen. RGD peptides' principal function is to facilitate cell adhesion by interacting with integrin receptors on the cell surface. They have been intensively researched for use in biotechnology and medicine, including incorporation into biomaterials, conjugation to medicinal molecules or nanoparticles, and labeling with imaging agents. RGD peptides can be utilized to specifically target cancer cells and the tumor vasculature by engaging with these integrins, improving drug delivery efficiency and minimizing adverse effects on healthy tissues. RGD-functionalized drug carriers are a viable option for cancer therapy as this focused approach has demonstrated promise in the future. Writing a review on the RGD peptide can significantly influence how drugs are developed in the future by improving our understanding of the peptide, finding knowledge gaps, fostering innovation, and making drug design easier.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory SciencesVarastegan Institute for Medical SciencesMashhadIran
- Department of Clinical Biochemistry, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Ali Esparham
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahboubeh Tajaldini
- Ischemic Disorder Research CenterGolestan University of Medical SciencesGorganIran
| | - Mehdi Karimi‐Shahri
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Pathology, School of MedicineGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
11
|
Quigley NG, Richter F, Kossatz S, Notni J. Complexity of αvβ6-integrin targeting RGD peptide trimers: emergence of non-specific binding by synergistic interaction. RSC Med Chem 2023; 14:2564-2573. [PMID: 38099056 PMCID: PMC10718521 DOI: 10.1039/d3md00365e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 12/17/2023] Open
Abstract
Multimerization is an established strategy to design bioactive macromolecules with enhanced avidity, which has been widely employed to increase the target-specific binding and uptake of imaging probes and pharmaceuticals. However, the factors governing the general biodistribution of multimeric probes are less well understood but are nonetheless decisive for their clinical application. We found that regiospecific exchange of phenylalanine by tyrosine (chemically equivalent to addition of single oxygen atoms) can have an unexpected, dramatic impact on the in vivo behavior of gallium-68 labeled αvβ6-integrin binding peptides trimers. For example, introduction of one and two Tyr, equivalent to just 1 and 2 additional oxygens and molecular weight increases of 0.38% and 0.76% for our >4 kDa constructs, reduced non-specific liver uptake by 50% and 72%, respectively. The observed effect did not correlate to established polarity measures such as log D, and generally defies explanation by reductionist approaches. We conclude that multimers should be viewed not just as molecular combinations of peptides whose properties simply add up, but as whole entities with higher intrinsic complexity and thus a strong tendency to exhibit newly emerged properties that, on principle, cannot be predicted from the characteristics of the monomers used.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institute of Pathology, School of Medicine, Technische Universität München Trogerstr. 18 D-81675 München Germany
| | - Frauke Richter
- Institute of Pathology, School of Medicine, Technische Universität München Trogerstr. 18 D-81675 München Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technische Universität München Munich Germany
| | - Johannes Notni
- Institute of Pathology, School of Medicine, Technische Universität München Trogerstr. 18 D-81675 München Germany
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| |
Collapse
|
12
|
Bengel FM, Diekmann J, Hess A, Jerosch-Herold M. Myocardial Fibrosis: Emerging Target for Cardiac Molecular Imaging and Opportunity for Image-Guided Therapy. J Nucl Med 2023; 64:49S-58S. [PMID: 37918842 DOI: 10.2967/jnumed.122.264867] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
Myocardial fibrosis is a major contributor to the development and progression of heart failure. Significant progress in the understanding of its pathobiology has led to the introduction and preclinical testing of multiple highly specific antifibrotic therapies. Because the mechanisms of fibrosis are highly dynamic, and because the involved cell populations are heterogeneous and plastic, there is increasing emphasis that any therapy directed specifically against myocardial fibrosis will require personalization and guidance by equally specific diagnostic testing for successful clinical translation. Noninvasive imaging techniques have undergone significant progress and provide increasingly specific information about the quantity, quality, and activity of myocardial fibrosis. Cardiac MRI can precisely map the extracellular space of the myocardium, whereas nuclear imaging characterizes activated fibroblasts and immune cells as the cellular components contributing to fibrosis. Existing techniques may be used in complementarity to provide the imaging biomarkers needed for the success of novel targeted therapies. This review provides a road map on how progress in basic fibrosis research, antifibrotic drug development, and high-end noninvasive imaging may come together to facilitate the success of fibrosis-directed cardiovascular medicine.
Collapse
Affiliation(s)
- Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany; and
| | - Johanna Diekmann
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany; and
| | - Annika Hess
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany; and
| | | |
Collapse
|
13
|
Ganguly T, Bauer N, Davis RA, Foster CC, Harris RE, Hausner SH, Roncali E, Tang SY, Sutcliffe JL. Preclinical Evaluation of 68Ga- and 177Lu-Labeled Integrin α vβ 6-Targeting Radiotheranostic Peptides. J Nucl Med 2023; 64:639-644. [PMID: 36207137 PMCID: PMC11927081 DOI: 10.2967/jnumed.122.264749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022] Open
Abstract
The integrin αvβ6, an epithelium-specific cell surface receptor, is overexpressed on numerous malignancies, including the highly lethal pancreatic ductal adenocarcinomas. Here, we developed and tested a novel αvβ6-targeting peptide, DOTA-5G (1) radiolabeled with 68Ga, for PET/CT imaging and 177Lu for treatment. With the goal to develop a radiotheranostic, further modifications were made for increased circulation time, renal recycling, and tumor uptake, yielding DOTA-albumin-binding moiety-5G (2). Methods: Peptides 1 and 2 were synthesized on solid phase, and their affinity for αvβ6 was assessed by enzyme-linked immunosorbent assay. The peptides were radiolabeled with 68Ga and 177Lu. In vitro cell binding, internalization, and efflux of 68Ga-1 and 177Lu-2 were evaluated in αvβ6-positive BxPC-3 human pancreatic cancer cells. PET/CT imaging of 68Ga-1 and 68Ga-2 was performed on female nu/nu mice bearing subcutaneous BxPC-3 tumors. Biodistribution was performed for 68Ga-1 (1 and 2 h after injection), 68Ga-2 (2 and 4 h after injection), and 177Lu-1 and 177Lu-2 (1, 24, 48, and 72 h after injection). The 177Lu-2 biodistribution data were extrapolated for human dosimetry data estimates using OLINDA/EXM 1.1. Therapeutic efficacy of 177Lu-2 was evaluated in mice bearing BxPC-3 tumors. Results: Peptides 1 and 2 demonstrated high affinity (<55 nM) for αvβ6 by enzyme-linked immunosorbent assay. 68Ga-1, 68Ga-2, 177Lu-1, and 177Lu-2 were synthesized in high radiochemical purity. Rapid in vitro binding and internalization of 68Ga-1 and 177Lu-2 were observed in BxPC-3 cells. PET/CT imaging and biodistribution studies demonstrated uptake in BxPC-3 tumors. Introduction of the albumin-binding moiety in 177Lu-2 resulted in a 5-fold increase in tumor uptake and retention over time. Based on the extended dosimetry data, the dose-limiting organ for 177Lu-2 is the kidney. Treatment with 177Lu-2 prolonged median survival by 1.5- to 2-fold versus controls. Conclusion: 68Ga-1 and 177Lu-2 demonstrated high affinity for the integrin αvβ6 both in vitro and in vivo, were rapidly internalized into BxPC-3 cells, and were stable in mouse and human serum. Both radiotracers showed favorable pharmacokinetics in preclinical studies, with predominantly renal excretion and good tumor-to-normal-tissue ratios. Favorable human dosimetry data suggest the potential of 177Lu-2 as a treatment for pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Tanushree Ganguly
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Nadine Bauer
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
| | - Ryan A Davis
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Cameron C Foster
- Division of Nuclear Medicine, Department of Radiology, University of California Davis, Sacramento, California; and
| | - Rebecca E Harris
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
| | - Sven H Hausner
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California Davis, Davis, California
- Division of Nuclear Medicine, Department of Radiology, University of California Davis, Sacramento, California; and
| | - Sarah Y Tang
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
| | - Julie L Sutcliffe
- Department of Biomedical Engineering, University of California Davis, Davis, California;
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
- Center for Molecular and Genomic Imaging, University of California Davis, Davis, California
| |
Collapse
|
14
|
Wang T, Xu P, Fang J, Li C, Zeng X, Liu J, Meng L, Zhuang R, Zhang X, Su X, Guo Z. Synthesis and Preclinical Evaluation of a 68Ga-Labeled Pyridine-Based Benzamide Dimer for Malignant Melanoma Imaging. Mol Pharm 2023; 20:1015-1024. [PMID: 36562303 DOI: 10.1021/acs.molpharmaceut.2c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Benzamide (BZA), a small molecule that can freely cross cell membranes and bind to melanin, has served as an effective targeting group for melanoma theranostics. In this study, a novel pyridine-based BZA dimer (denoted as H-2) was labeled with 68Ga ([68Ga]Ga-H-2) for positron emission tomography (PET) imaging of malignant melanomas. [68Ga]Ga-H-2 was obtained with high radiochemical yield (98.0 ± 2.0%) and satisfactory radiochemical purity (>95.0%). The specificity and affinity of [68Ga]Ga-H-2 were confirmed in melanoma B16F10 cells and in vivo PET imaging of multiple tumor models (B16F10 tumors, A375 melanoma, and lung metastases). Monomeric [68Ga]Ga-H-1 was prepared as a control radiotracer to verify the effects of the molecular structure on pharmacokinetics. The values of the lipid-water partition coefficient of [68Ga]Ga-H-2 and [68Ga]Ga-H-1 demonstrated hydrophilicity with log P = -2.37 ± 0.07 and -2.02 ± 0.09, respectively. PET imaging and biodistribution showed a higher uptake of [68Ga]Ga-H-2 in B16F10 primary and metastatic melanomas than that in A375 melanomas. However, the relatively low uptake of monomeric [68Ga]Ga-H-1 in B16F10 tumors and high accumulation in nontarget organs resulted in poor PET imaging quality. This study demonstrates the synthesis and preclinical evaluation of the novel pyridine-based BZA dimer [68Ga]Ga-H-2 and indicates that the dimer tracer has promising applications in malignant melanoma-specific PET imaging because of its high uptake and long-time retention in malignant melanoma.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China.,PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Pengfei Xu
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Jianyang Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Cijuan Li
- Department of Nuclear Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xinying Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jia Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Lingxin Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xinhui Su
- Department of Nuclear Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China.,PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| |
Collapse
|
15
|
Carlsen EA, Loft M, Loft A, Czyzewska D, Andreassen M, Langer SW, Knigge U, Kjaer A. Prospective Phase II Trial of [ 68Ga]Ga-NODAGA-E[c(RGDyK)] 2 PET/CT Imaging of Integrin α vβ 3 for Prognostication in Patients with Neuroendocrine Neoplasms. J Nucl Med 2023; 64:252-259. [PMID: 35981899 PMCID: PMC9902862 DOI: 10.2967/jnumed.122.264383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 02/04/2023] Open
Abstract
Integrin αvβ3, a subtype of the arginine-glycine-aspartate (RGD)-recognizing cell surface integrins, is upregulated on endothelial cells during angiogenesis and on tumor cells. Because of involvement in tumor growth, invasiveness and metastases, and angiogenesis, integrin αvβ3 is an attractive target in cancers. In this study, we applied 68Ga-NODAGA-E[c(RGDyK)]2 for imaging of integrin αvβ3 in patients with neuroendocrine neoplasms (NENs) and its potential use for prognostication. We hypothesized that 68Ga-NODAGA-E[c(RGDyK)]2 PET/CT would show tumor lesion uptake and that higher tumor lesion uptake was associated with a poorer prognosis. Methods: Between December 2017 and November 2020 we prospectively enrolled 113 patients with NEN of all grades (2019 World Health Organization classification) for 68Ga-NODAGA-E[c(RGDyK)]2 PET/CT. The scan was acquired 45 min after injection of 200 MBq of 68Ga-NODAGA-E[c(RGDyK)]2 Board-certified specialists in nuclear medicine and radiology analyzed the PET/CT measuring SUVmax in tumor lesions. Positive tumor lesions were defined as those with tumor-to-liver background ≥ 2. Maximal tumor SUVmax for each patient was used as a predictor of outcome. Patients were followed for at least 1 y to assess progression-free survival and overall survival. Results: Of 113 patients enrolled in the trial, 99 underwent 68Ga-NODAGA-E[c(RGDyK)]2 PET/CT, with 97 patients having evaluable lesions. The patients predominantly had small intestinal (64%) or pancreatic (20%) NEN and most had metastatic disease (93%). Most patients had low-grade tumors (78%), whereas 22% had high-grade tumors. During a median follow-up of 31 mo (interquartile range, 26-38 mo), 62 patients (64%) experienced disease progression and 25 (26%) patients died. In total, 76% of patients had positive tumor lesions, and of the patients with high-grade tumors 91% had positive tumor lesions. High integrin αvβ3 expression, defined as an SUVmax of at least 5.25, had a hazard ratio of 2.11 (95% CI, 1.18-3.78) and 6.95 (95% CI, 1.64-29.51) for progression-free survival and overall survival, respectively (P = 0.01 for both). Conclusion: Tumor lesion uptake of 68Ga-NODAGA-E[c(RGDyK)]2 was evident in patients with all grades of NEN. High uptake was associated with a poorer prognosis. Further studies are warranted to establish whether 68Ga-NODAGA-E[c(RGDyK)]2 PET/CT may become a prediction tool for identification of patients eligible for treatments targeting integrin αvβ3.
Collapse
Affiliation(s)
- Esben Andreas Carlsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital, Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark;,ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mathias Loft
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital, Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark;,ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Annika Loft
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital, Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark;,ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Dorota Czyzewska
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital, Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark;,ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mikkel Andreassen
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark;,Department of Clinical Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Seppo W. Langer
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark;,Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark;,Department Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; and
| | - Ulrich Knigge
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark;,Department of Clinical Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark;,Department of Surgical Gastroenterology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital, Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; .,ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
16
|
Monieri M, Rainone P, Sacchi A, Gori A, Gasparri AM, Coliva A, Citro A, Ferrara B, Policardi M, Valtorta S, Pocaterra A, Alfano M, Sheppard D, Piemonti L, Moresco RM, Corti A, Curnis F. A stapled chromogranin A-derived peptide homes in on tumors that express αvβ6 or αvβ8 integrins. Int J Biol Sci 2023; 19:156-166. [PMID: 36594095 PMCID: PMC9760430 DOI: 10.7150/ijbs.76148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
Rationale: The αvβ6- and αvβ8-integrins, two cell-adhesion receptors upregulated in many tumors and involved in the activation of the latency associated peptide (LAP)/TGFβ complex, represent potential targets for tumor imaging and therapy. We investigated the tumor-homing properties of a chromogranin A-derived peptide containing an RGDL motif followed by a chemically stapled alpha-helix (called "5a"), which selectively recognizes the LAP/TGFβ complex-binding site of αvβ6 and αvβ8. Methods: Peptide 5a was labeled with IRDye 800CW (a near-infrared fluorescent dye) or with 18F-NOTA (a label for positron emission tomography (PET)); the integrin-binding properties of free peptide and conjugates were then investigated using purified αvβ6/αvβ8 integrins and various αvβ6/αvβ8 single - or double-positive cancer cells; tumor-homing, biodistribution and imaging properties of the conjugates were investigated in subcutaneous and orthotopic αvβ6-positive carcinomas of the pancreas, and in mice bearing subcutaneous αvβ8-positive prostate tumors. Results: In vitro studies showed that 5a can bind both integrins with high affinity and inhibits cell-mediated TGFβ activation. The 5a-IRDye and 5a-NOTA conjugates could bind purified αvβ6/αvβ8 integrins with no loss of affinity compared to free peptide, and selectively recognized various αvβ6/αvβ8 single- or double-positive cancer cells, including cells from pancreatic carcinoma, melanoma, oral mucosa, bladder and prostate cancer. In vivo static and dynamic optical near-infrared and PET/CT imaging and biodistribution studies, performed in mice with subcutaneous and orthotopic αvβ6-positive carcinomas of the pancreas, showed high target-specific uptake of fluorescence- and radio-labeled peptide by tumors and low non-specific uptake in other organs and tissues, except for excretory organs. Significant target-specific uptake of fluorescence-labeled peptide was also observed in mice bearing αvβ8-positive prostate tumors. Conclusions: The results indicate that 5a can home to αvβ6- and/or αvβ8-positive tumors, suggesting that this peptide can be exploited as a ligand for delivering imaging or anticancer agents to αvβ6/αvβ8 single- or double-positive tumors, or as a tumor-homing inhibitor of these TGFβ activators.
Collapse
Affiliation(s)
- Matteo Monieri
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rainone
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelina Sacchi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche, C.N.R., Milan, Italy
| | - Anna Maria Gasparri
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Coliva
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Benedetta Ferrara
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Policardi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Valtorta
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute of Molecular Bioimaging and Physiology of C.N.R., Segrate, Italy
| | - Arianna Pocaterra
- Division of Immunology Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dean Sheppard
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute of Molecular Bioimaging and Physiology of C.N.R., Segrate, Italy
| | - Angelo Corti
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy.,✉ Corresponding authors: Angelo Corti (ORICD: 0000-0002-0893-6191) and Flavio Curnis (ORICD: 0000-0002-7231-9569), Division of Experimental Oncology, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy (Tel. +390226434802; E-mail: and )
| | - Flavio Curnis
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,✉ Corresponding authors: Angelo Corti (ORICD: 0000-0002-0893-6191) and Flavio Curnis (ORICD: 0000-0002-7231-9569), Division of Experimental Oncology, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy (Tel. +390226434802; E-mail: and )
| |
Collapse
|
17
|
RGD Forever!-Past, Present, and Future of a 3-Letter-Code in Radiopharmacy and Life Sciences. Pharmaceuticals (Basel) 2022; 16:ph16010056. [PMID: 36678553 PMCID: PMC9866491 DOI: 10.3390/ph16010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
"RGD" is frequently pictured as a ligand for αvβ3-integrin and useful for molecular targeting of angiogenesis-which is about as simplistic as the idea that laser beams are green or red and particularly useful for arming spaceships. There is, however, much more to RGD. In particular, targeting angiogenesis is likely not the most significant stronghold of RGD-comprising constructs. RGD is the one-letter code of a very short peptide sequence, arginine-lysine-aspartate, which is recognized by eight different integrins, namely, α(IIb)β3, α5β1, α8β1, and the five dimers that αv forms with β1, β3, β5, β6, and β8. These 8 RGD receptors form an own subset among the entire class of 24 known integrins, which furthermore comprises another three distinct groups (4 collagen receptors, 4 laminin receptors, and 8 leukocyte receptors). However, the 8 RGD-recognizing integrins are far from being alike. They do not even share the same tissue prevalences and functions, but are expressed on fundamentally different cell types and fulfill the most diverse biological tasks. For example, α(IIb)β3 is found on platelets and mediates thrombus formation, whereas αvβ6- and αvβ8-integrin are expressed on epithelial cells, activate TFG-β, and thus may promote cancer progression and invasion as well as fibrosis. Recent non-clinical experiments and clinical findings suggest that the highly specific expression of αvβ6-integrin by some carcinoma types, in combination with the availability of the corresponding small-molecule ligands, may open a multitude of new and promising avenues for improved cancer diagnosis and therapy, including, but not limited to, radiopharmaceutical approaches.
Collapse
|
18
|
Radiometal-theranostics: the first 20 years*. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractThis review describes the basic principles of radiometal-theranostics and its dawn based on the development of the positron-emitting 86Y and 86Y-labeled radiopharmaceuticals to quantify biodistribution and dosimetry of 90Y-labeled analogue therapeutics. The nuclear and inorganic development of 86Y (including nuclear and cross section data, irradiation, radiochemical separation and recovery) led to preclinical and clinical evaluation of 86Y-labeled citrate and EDTMP complexes and yielded organ radiation doses in terms of mGy/MBq 90Y. The approach was extended to [86/90Y]Y-DOTA-TOC, yielding again yielded organ radiation doses in terms of mGy/MBq 90Y. The review further discusses the consequences of this early development in terms of further radiometals that were used (68Ga, 177Lu etc.), more chelators that were developed, new biological targets that were addressed (SSTR, PSMA, FAP, etc.) and subsequent generations of radiometal-theranostics that resulted out of that.
Collapse
|
19
|
Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23137071. [PMID: 35806074 PMCID: PMC9267012 DOI: 10.3390/ijms23137071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022] Open
Abstract
Extensive angiogenesis is a characteristic feature in the synovial tissue of rheumatoid arthritis (RA) from a very early stage of the disease onward and constitutes a crucial event for the development of the proliferative synovium. This process is markedly intensified in patients with prolonged disease duration, high disease activity, disease severity, and significant inflammatory cell infiltration. Angiogenesis is therefore an interesting target for the development of new therapeutic approaches as well as disease monitoring strategies in RA. To this end, nuclear imaging modalities represent valuable non-invasive tools that can selectively target molecular markers of angiogenesis and accurately and quantitatively track molecular changes in multiple joints simultaneously. This systematic review summarizes the imaging markers used for single photon emission computed tomography (SPECT) and/or positron emission tomography (PET) approaches, targeting pathways and mediators involved in synovial neo-angiogenesis in RA.
Collapse
|
20
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Dietz M, Kamani CH, Dunet V, Fournier S, Rubimbura V, Testart Dardel N, Schaefer A, Jreige M, Boughdad S, Nicod Lalonde M, Schaefer N, Mewton N, Prior JO, Treglia G. Overview of the RGD-Based PET Agents Use in Patients With Cardiovascular Diseases: A Systematic Review. Front Med (Lausanne) 2022; 9:887508. [PMID: 35602497 PMCID: PMC9120643 DOI: 10.3389/fmed.2022.887508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 01/02/2023] Open
Abstract
Studies using arginine–glycine–aspartate (RGD)-PET agents in cardiovascular diseases have been recently published. The aim of this systematic review was to perform an updated, evidence-based summary about the role of RGD-based PET agents in patients with cardiovascular diseases to better address future research in this setting. Original articles within the field of interest reporting the role of RGD-based PET agents in patients with cardiovascular diseases were eligible for inclusion in this systematic review. A systematic literature search of PubMed/MEDLINE and Cochrane library databases was performed until October 26, 2021. Literature shows an increasing role of RGD-based PET agents in patients with cardiovascular diseases. Overall, two main topics emerged: the infarcted myocardium and atherosclerosis. The existing studies support that αvβ3 integrin expression in the infarcted myocardium is well evident in RGD PET/CT scans. RGD-based PET radiotracers accumulate at the site of infarction as early as 3 days and seem to be peaking at 1–3 weeks post myocardial infarction before decreasing, but only 1 study assessed serial changes of myocardial RGD-based PET uptake after ischemic events. RGD-based PET uptake in large vessels showed correlation with CT plaque burden, and increased signal was found in patients with prior cardiovascular events. In human atherosclerotic carotid plaques, increased PET signal was observed in stenotic compared with non-stenotic areas based on MR or CT angiography data. Histopathological analysis found a co-localization between tracer accumulation and areas of αvβ3 expression. Promising applications using RGD-based PET agents are emerging, such as prediction of remodeling processes in the infarcted myocardium or detection of active atherosclerosis, with potentially significant clinical impact.
Collapse
Affiliation(s)
- Matthieu Dietz
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- INSERM U1060, CarMeN Laboratory, University of Lyon, Lyon, France
| | - Christel H. Kamani
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- Cardiology Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Stephane Fournier
- Cardiology Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Vladimir Rubimbura
- Cardiology Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Nathalie Testart Dardel
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Ana Schaefer
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Mario Jreige
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sarah Boughdad
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Marie Nicod Lalonde
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Niklaus Schaefer
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Nathan Mewton
- INSERM U1060, CarMeN Laboratory, University of Lyon, Lyon, France
- Cardiovascular Hospital Louis Pradel, Department of Heart Failure, Hospices Civils de Lyon, Lyon, France
- Clinical Investigation Center Inserm 1407, Lyon, France
| | - John O. Prior
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
- *Correspondence: John O. Prior
| | - Giorgio Treglia
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
22
|
Kossatz S, Beer AJ, Notni J. It's Time to Shift the Paradigm: Translation and Clinical Application of Non-αvβ3 Integrin Targeting Radiopharmaceuticals. Cancers (Basel) 2021; 13:cancers13235958. [PMID: 34885066 PMCID: PMC8657165 DOI: 10.3390/cancers13235958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cancer cells often present a different set of proteins on their surface than normal cells. This also applies to integrins, a class of 24 cell surface receptors which mainly are responsible for physically anchoring cells in tissues, but also fulfil a plethora of other functions. If a certain integrin is found on tumor cells but not on normal ones, radioactive molecules (named tracers) that specifically bind to this integrin will accumulate in the cancer lesion if injected into the blood stream. The emitted radiation can be detected from outside the body and allows for localization and thus, diagnosis, of cancer. Only one of the 24 integrins, the subtype αvβ3, has hitherto been thoroughly investigated in this context. We herein summarize the most recent, pertinent research on other integrins, and argue that some of these approaches might ultimately improve the clinical management of the most lethal cancers, such as pancreatic carcinoma. Abstract For almost the entire period of the last two decades, translational research in the area of integrin-targeting radiopharmaceuticals was strongly focused on the subtype αvβ3, owing to its expression on endothelial cells and its well-established role as a biomarker for, and promoter of, angiogenesis. Despite a large number of translated tracers and clinical studies, a clinical value of αvβ3-integrin imaging could not be defined yet. The focus of research has, thus, been moving slowly but steadily towards other integrin subtypes which are involved in a large variety of tumorigenic pathways. Peptidic and non-peptidic radioligands for the integrins α5β1, αvβ6, αvβ8, α6β1, α6β4, α3β1, α4β1, and αMβ2 were first synthesized and characterized preclinically. Some of these compounds, targeting the subtypes αvβ6, αvβ8, and α6β1/β4, were subsequently translated into humans during the last few years. αvβ6-Integrin has arguably attracted most attention because it is expressed by some of the cancers with the worst prognosis (above all, pancreatic ductal adenocarcinoma), which substantiates a clinical need for the respective theranostic agents. The receptor furthermore represents a biomarker for malignancy and invasiveness of carcinomas, as well as for fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and probably even for Sars-CoV-2 (COVID-19) related syndromes. Accordingly, the largest number of recent first-in-human applications has been reported for radiolabeled compounds targeting αvβ6-integrin. The results indicate a substantial clinical value, which might lead to a paradigm change and trigger the replacement of αvβ3 by αvβ6 as the most popular integrin in theranostics.
Collapse
Affiliation(s)
- Susanne Kossatz
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | | | - Johannes Notni
- Department of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- TRIMT GmbH, 01454 Radeberg, Germany
- Correspondence: ; Tel.: +49-89-4140-6075; Fax: +49-89-4140-6949
| |
Collapse
|